306 research outputs found

    Robustness of Randomized Rumour Spreading

    Get PDF
    In this work we consider three well-studied broadcast protocols: Push, Pull and Push&Pull. A key property of all these models, which is also an important reason for their popularity, is that they are presumed to be very robust, since they are simple, randomized, and, crucially, do not utilize explicitly the global structure of the underlying graph. While sporadic results exist, there has been no systematic theoretical treatment quantifying the robustness of these models. Here we investigate this question with respect to two orthogonal aspects: (adversarial) modifications of the underlying graph and message transmission failures. We explore in particular the following notion of Local Resilience: beginning with a graph, we investigate up to which fraction of the edges an adversary has to be allowed to delete at each vertex, so that the protocols need significantly more rounds to broadcast the information. Our main findings establish a separation among the three models. It turns out that Pull is robust with respect to all parameters that we consider. On the other hand, Push may slow down significantly, even if the adversary is allowed to modify the degrees of the vertices by an arbitrarily small positive fraction only. Finally, Push&Pull is robust when no message transmission failures are considered, otherwise it may be slowed down. On the technical side, we develop two novel methods for the analysis of randomized rumour spreading protocols. First, we exploit the notion of self-bounding functions to facilitate significantly the round-based analysis: we show that for any graph the variance of the growth of informed vertices is bounded by its expectation, so that concentration results follow immediately. Second, in order to control adversarial modifications of the graph we make use of a powerful tool from extremal graph theory, namely Szemer\`edi's Regularity Lemma.Comment: version 2: more thorough literature revie

    Gossip vs. Markov Chains, and Randomness-Efficient Rumor Spreading

    Get PDF
    We study gossip algorithms for the rumor spreading problem which asks one node to deliver a rumor to all nodes in an unknown network. We present the first protocol for any expander graph GG with nn nodes such that, the protocol informs every node in O(logn)O(\log n) rounds with high probability, and uses O~(logn)\tilde{O}(\log n) random bits in total. The runtime of our protocol is tight, and the randomness requirement of O~(logn)\tilde{O}(\log n) random bits almost matches the lower bound of Ω(logn)\Omega(\log n) random bits for dense graphs. We further show that, for many graph families, polylogarithmic number of random bits in total suffice to spread the rumor in O(polylogn)O(\mathrm{poly}\log n) rounds. These results together give us an almost complete understanding of the randomness requirement of this fundamental gossip process. Our analysis relies on unexpectedly tight connections among gossip processes, Markov chains, and branching programs. First, we establish a connection between rumor spreading processes and Markov chains, which is used to approximate the rumor spreading time by the mixing time of Markov chains. Second, we show a reduction from rumor spreading processes to branching programs, and this reduction provides a general framework to derandomize gossip processes. In addition to designing rumor spreading protocols, these novel techniques may have applications in studying parallel and multiple random walks, and randomness complexity of distributed algorithms.Comment: 41 pages, 1 figure. arXiv admin note: substantial text overlap with arXiv:1304.135

    On the push&pull protocol for rumour spreading

    Full text link
    The asynchronous push&pull protocol, a randomized distributed algorithm for spreading a rumour in a graph GG, works as follows. Independent Poisson clocks of rate 1 are associated with the vertices of GG. Initially, one vertex of GG knows the rumour. Whenever the clock of a vertex xx rings, it calls a random neighbour yy: if xx knows the rumour and yy does not, then xx tells yy the rumour (a push operation), and if xx does not know the rumour and yy knows it, yy tells xx the rumour (a pull operation). The average spread time of GG is the expected time it takes for all vertices to know the rumour, and the guaranteed spread time of GG is the smallest time tt such that with probability at least 11/n1-1/n, after time tt all vertices know the rumour. The synchronous variant of this protocol, in which each clock rings precisely at times 1,2,1,2,\dots, has been studied extensively. We prove the following results for any nn-vertex graph: In either version, the average spread time is at most linear even if only the pull operation is used, and the guaranteed spread time is within a logarithmic factor of the average spread time, so it is O(nlogn)O(n\log n). In the asynchronous version, both the average and guaranteed spread times are Ω(logn)\Omega(\log n). We give examples of graphs illustrating that these bounds are best possible up to constant factors. We also prove theoretical relationships between the guaranteed spread times in the two versions. Firstly, in all graphs the guaranteed spread time in the asynchronous version is within an O(logn)O(\log n) factor of that in the synchronous version, and this is tight. Next, we find examples of graphs whose asynchronous spread times are logarithmic, but the synchronous versions are polynomially large. Finally, we show for any graph that the ratio of the synchronous spread time to the asynchronous spread time is O(n2/3)O(n^{2/3}).Comment: 25 page

    Global Computation in a Poorly Connected World: Fast Rumor Spreading with No Dependence on Conductance

    Get PDF
    In this paper, we study the question of how efficiently a collection of interconnected nodes can perform a global computation in the widely studied GOSSIP model of communication. In this model, nodes do not know the global topology of the network, and they may only initiate contact with a single neighbor in each round. This model contrasts with the much less restrictive LOCAL model, where a node may simultaneously communicate with all of its neighbors in a single round. A basic question in this setting is how many rounds of communication are required for the information dissemination problem, in which each node has some piece of information and is required to collect all others. In this paper, we give an algorithm that solves the information dissemination problem in at most O(D+polylog(n))O(D+\text{polylog}{(n)}) rounds in a network of diameter DD, withno dependence on the conductance. This is at most an additive polylogarithmic factor from the trivial lower bound of DD, which applies even in the LOCAL model. In fact, we prove that something stronger is true: any algorithm that requires TT rounds in the LOCAL model can be simulated in O(T+polylog(n))O(T +\mathrm{polylog}(n)) rounds in the GOSSIP model. We thus prove that these two models of distributed computation are essentially equivalent

    Quasi-Random Rumor Spreading: Reducing Randomness Can Be Costly

    Full text link
    We give a time-randomness tradeoff for the quasi-random rumor spreading protocol proposed by Doerr, Friedrich and Sauerwald [SODA 2008] on complete graphs. In this protocol, the goal is to spread a piece of information originating from one vertex throughout the network. Each vertex is assumed to have a (cyclic) list of its neighbors. Once a vertex is informed by one of its neighbors, it chooses a position in its list uniformly at random and then informs its neighbors starting from that position and proceeding in order of the list. Angelopoulos, Doerr, Huber and Panagiotou [Electron.~J.~Combin.~2009] showed that after (1+o(1))(log2n+lnn)(1+o(1))(\log_2 n + \ln n) rounds, the rumor will have been broadcasted to all nodes with probability 1o(1)1 - o(1). We study the broadcast time when the amount of randomness available at each node is reduced in natural way. In particular, we prove that if each node can only make its initial random selection from every \ell-th node on its list, then there exists lists such that (1ε)(log2n+lnnlog2ln)+1(1-\varepsilon) (\log_2 n + \ln n - \log_2 \ell - \ln \ell)+\ell-1 steps are needed to inform every vertex with probability at least 1O(exp(nε2lnn))1-O\bigl(\exp\bigl(-\frac{n^\varepsilon}{2\ln n}\bigr)\bigr). This shows that a further reduction of the amount of randomness used in a simple quasi-random protocol comes at a loss of efficiency

    Strong Robustness of Randomized Rumor Spreading Protocols

    Full text link
    Randomized rumor spreading is a classical protocol to disseminate information across a network. At SODA 2008, a quasirandom version of this protocol was proposed and competitive bounds for its run-time were proven. This prompts the question: to what extent does the quasirandom protocol inherit the second principal advantage of randomized rumor spreading, namely robustness against transmission failures? In this paper, we present a result precise up to (1±o(1))(1 \pm o(1)) factors. We limit ourselves to the network in which every two vertices are connected by a direct link. Run-times accurate to their leading constants are unknown for all other non-trivial networks. We show that if each transmission reaches its destination with a probability of p(0,1]p \in (0,1], after (1+\e)(\frac{1}{\log_2(1+p)}\log_2n+\frac{1}{p}\ln n) rounds the quasirandom protocol has informed all nn nodes in the network with probability at least 1-n^{-p\e/40}. Note that this is faster than the intuitively natural 1/p1/p factor increase over the run-time of approximately log2n+lnn\log_2 n + \ln n for the non-corrupted case. We also provide a corresponding lower bound for the classical model. This demonstrates that the quasirandom model is at least as robust as the fully random model despite the greatly reduced degree of independent randomness.Comment: Accepted for publication in "Discrete Applied Mathematics". A short version appeared in the proceedings of the 20th International Symposium on Algorithms and Computation (ISAAC 2009). Minor typos fixed in the second version. Proofs of Lemma 11 and Theorem 12 fixed in the third version. Proof of Lemma 8 fixed in the fourth versio
    corecore