631 research outputs found

    On One-Rule Grid Semi-Thue Systems

    Get PDF
    International audienceThe family of one-rule grid semi-Thue systems, introduced by Alfons Geser, is the family of one-rule semi-Thue systems such that there exists a letter c that occurs as often in the left-hand side as the right-hand side of the rewriting rule. We prove that for any one-rule grid semi-Thue system S, the set S(w) of all words obtainable from w using repeatedly the rewriting rule of S is a constructible context-free language. We also prove the regularity of the set Loop(S) of all words that start a loop in a one-rule grid semi-Thue systems S.La famille des systèmes de semi-Thue à une seule règle "en grille", introduite par Alfons Geser, est la famille des systèmes de réécriture de mots pour lesquels il existe une lettre apparaissant autant de fois dans la partie gauche et dans la partie droite de leur unique règle. Nous prouvons que, pour tout système S de cette famille, l'ensemble S(w) des mots obtenus à partir du mot w en appliquant itérativement la règle de réécriture de S est un langage algébrique constructible. Nous prouvons également que l'ensemble Loop(S) des mots qui sont à l'origine d'une boucle de réécriture pour un systèmes de semi-Thue à une seule règle "en grille" S est un langage régulier

    Cyclic rewriting and conjugacy problems

    Full text link
    Cyclic words are equivalence classes of cyclic permutations of ordinary words. When a group is given by a rewriting relation, a rewriting system on cyclic words is induced, which is used to construct algorithms to find minimal length elements of conjugacy classes in the group. These techniques are applied to the universal groups of Stallings pregroups and in particular to free products with amalgamation, HNN-extensions and virtually free groups, to yield simple and intuitive algorithms and proofs of conjugacy criteria.Comment: 37 pages, 1 figure, submitted. Changes to introductio

    Partial monoids: associativity and confluence

    Full text link
    A partial monoid PP is a set with a partial multiplication ×\times (and total identity 1P1_P) which satisfies some associativity axiom. The partial monoid PP may be embedded in a free monoid P∗P^* and the product ⋆\star is simulated by a string rewriting system on P∗P^* that consists in evaluating the concatenation of two letters as a product in PP, when it is defined, and a letter 1P1_P as the empty word ϵ\epsilon. In this paper we study the profound relations between confluence for such a system and associativity of the multiplication. Moreover we develop a reduction strategy to ensure confluence and which allows us to define a multiplication on normal forms associative up to a given congruence of P∗P^*. Finally we show that this operation is associative if, and only if, the rewriting system under consideration is confluent

    Computing exponentially faster: Implementing a nondeterministic universal Turing machine using DNA

    Get PDF
    The theory of computer science is based around Universal Turing Machines (UTMs): abstract machines able to execute all possible algorithms. Modern digital computers are physical embodiments of UTMs. The nondeterministic polynomial (NP) time complexity class of problems is the most significant in computer science, and an efficient (i.e. polynomial P) way to solve such problems would be of profound economic and social importance. By definition nondeterministic UTMs (NUTMs) solve NP complete problems in P time. However, NUTMs have previously been believed to be physically impossible to construct. Thue string rewriting systems are computationally equivalent to UTMs, and are naturally nondeterministic. Here we describe the physical design for a NUTM that implements a universal Thue system. The design exploits the ability of DNA to replicate to execute an exponential number of computational paths in P time. Each Thue rewriting step is embodied in a DNA edit implemented using a novel combination of polymerase chain reactions and site-directed mutagenesis. We demonstrate that this design works using both computational modelling and in vitro molecular biology experimentation. The current design has limitations, such as restricted error-correction. However, it opens up the prospect of engineering NUTM based computers able to outperform all standard computers on important practical problems

    Max Dehn, Axel Thue, and the Undecidable

    Full text link
    This is a short essay on the roles of Max Dehn and Axel Thue in the formulation of the word problem for (semi)groups, and the story of the proofs showing that the word problem is undecidable.Comment: Definition of undecidability and unsolvability improve
    • …
    corecore