
rsif.royalsocietypublishing.org
Research
Cite this article: Currin A, Korovin K, Ababi

M, Roper K, Kell DB, Day PJ, King RD. 2017

Computing exponentially faster: implementing

a non-deterministic universal Turing machine

using DNA. J. R. Soc. Interface 14: 20160990.

http://dx.doi.org/10.1098/rsif.2016.0990
Received: 8 December 2016

Accepted: 6 February 2017
Subject Category:
Life Sciences – Engineering interface

Subject Areas:
biotechnology, nanotechnology

Keywords:
non-deterministic universal Turing machine,

DNA computing, complexity theory
Author for correspondence:
Ross D. King

e-mail: ross.king@manchester.ac.uk
†Joint first authors.

Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.fig-

share.c.3691882.

& 2017 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Computing exponentially faster:
implementing a non-deterministic
universal Turing machine using DNA

Andrew Currin1,2,†, Konstantin Korovin3,†, Maria Ababi4, Katherine Roper3,
Douglas B. Kell1,2, Philip J. Day4,5 and Ross D. King3,4

1SYNBIOCHEM, Manchester Institute of Biotechnology, 2School of Chemistry, 3School of Computer Science,
4Manchester Institute of Biotechnology, and 5Faculty of Biology, Medicine and Health, University of Manchester,
Manchester, UK

RDK, 0000-0001-7208-4387

The theory of computer science is based around universal Turing machines

(UTMs): abstract machines able to execute all possible algorithms. Modern

digital computers are physical embodiments of classical UTMs. For the most

important class of problem in computer science, non-deterministic polynomial

complete problems, non-deterministic UTMs (NUTMs) are theoretically expo-

nentially faster than both classical UTMs and quantum mechanical UTMs

(QUTMs). However, no attempt has previously been made to build an

NUTM, and their construction has been regarded as impossible. Here, we

demonstrate the first physical design of an NUTM. This design is based on

Thue string rewriting systems, and thereby avoids the limitations of most pre-

vious DNA computing schemes: all the computation is local (simple edits to

strings) so there is no need for communication, and there is no need to order

operations. The design exploits DNA’s ability to replicate to execute an expo-

nential number of computational paths in P time. Each Thue rewriting step is

embodied in a DNA edit implemented using a novel combination of polymer-

ase chain reactions and site-directed mutagenesis. We demonstrate that the

design works using both computational modelling and in vitro molecular

biology experimentation: the design is thermodynamically favourable, micro-

programming can be used to encode arbitrary Thue rules, all classes of Thue

rule can be implemented, and non-deterministic rule implementation. In an

NUTM, the resource limitation is space, which contrasts with classical UTMs

and QUTMs where it is time. This fundamental difference enables an

NUTM to trade space for time, which is significant for both theoretical compu-

ter science and physics. It is also of practical importance, for to quote Richard

Feynman ‘there’s plenty of room at the bottom’. This means that a desktop

DNA NUTM could potentially utilize more processors than all the electronic

computers in the world combined, and thereby outperform the world’s

current fastest supercomputer, while consuming a tiny fraction of its energy.
1. Introduction
Universal Turing machines (UTMs) form the theoretical foundation of compu-

ter science [1–13]: the Church–Turing thesis states that UTMs exactly define the

concept of an algorithm-effective calculability. UTMs also play a fundamen-

tal role in science: the Church–Turing principle states that they are sufficient to

simulate perfectly all physically realizable systems [5,6,8].

UTMs are an abstract mathematical concept, but the language that describes

them begs a physical interpretation. Digital electronic computers physically

embody UTMs, but differ from them in that they have bounded memory,

may only run for a bounded amount of time, make errors, etc. [9]. This tension

between physical and abstract machines is at the heart of computer science.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2016.0990&domain=pdf&date_stamp=2017-03-01
mailto:ross.king@manchester.ac.uk
https://dx.doi.org/10.6084/m9.figshare.c.3691882
https://dx.doi.org/10.6084/m9.figshare.c.3691882
http://orcid.org/
http://orcid.org/0000-0001-7208-4387
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

EXP—not feasible

P—feasible
NP

2n

tim
e

(n
)

n2

n

log (n)

problem size (n)

EX
P

tim
e

PS
PA

C
E

N
P

tim
e

P
tim

e

lo
g

tim
e

co-N
P tim

e

NPC

(b)

(a)

Figure 1 Computational complexity. (a) The feasibility thesis asserts that there
is a fundamental qualitative difference between algorithms that run in poly-
nomial time (P time) (e.g. schoolbook multiplication), and algorithms that
run in exponential time (EXP time) (e.g. position evaluation in a generalized
game) [2,11 – 18]. As problem size increases P time algorithms can still feasibly
(efficiently) be executed on a physical computer, whereas EXP time algorithms
cannot. The feasibility thesis also asserts that NP algorithms cannot feasibly be
executed, but this is less clear as this assumes P = NP. (b) Complexity classes
are related through the subset relationship: log time # P time # NP #
PSPACE # EXP time [2,11 – 18]. Little is known of the exact details of
these relationships, e.g. does P ¼ NP? (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20160990

2

The theory of computability investigates which problems a

UTM can solve using unbounded space and time [1–4,11,12].

The related theory of computational complexity investigates

how much time and space are needed to solve particular pro-

blem classes [2,4,11–18]. The complexity of an algorithm is

its asymptotic worst-case use of a resource (space, time) as a

function of the size of its input. A major conclusion of complex-

ity theory is the ‘feasibility thesis’: that a natural problem has

an efficient algorithm if and only if it has a polynomial-time

(P) algorithm [2,11,12,15] (figure 1a). A function f : I! I is

in the class P if there is an algorithm computing f and positive

constants A, k, such that for every n and every jxj � n the

algorithm computes f(x) in at most Ank steps.

The most significant concept in complexity theory is the

class of non-deterministic polynomial time (NP) problems.

Informally, this is the class of decision problems where the

solution can be verified in P time, i.e. membership propositions

have short efficiently verifiable proofs [2,11,12,14–17]. More

formally, a decision problem C is in the class NP if there is a

function Vc � P and a constant k such that

— If x [C then 9y with jyj � jxjk and Vc(x, y) ¼ 1

— If x � C then 8y we have Vc(x, y) ¼ 0

A sequence y that ‘convinces’ Vc that x [C is often called

a ‘witness’ or ‘certificate’ [17]. Many of the most important
practical computational problems belong to the NP class,

e.g. graph isomorphism, Boolean satisfiability, travelling

salesman, graph colouring, etc. NP complete problems are

the most difficult in NP, and all NP problems can be reduced

to them in P time [2,4,11–18]. This means that if one can solve

any type of NP complete problem in P time then one can

solve all NP problems in P time.

To make these abstract concepts more concrete, consider

the NP problems of prime factorization and 3SAT. In prime fac-

torization, the problem is to determine the unique list (bag) of

prime factors that when multiplied together produce a given

integer. This is an NP problem because it is possible to verify

in P time that the given prime factors actually multiply together

to give the integer, but there is no known P time algorithm to

find these prime factors. (The multiplication of two numbers

is quadratic—O(b2), where b is the number of bits in the

number, using schoolbook long multiplication—assuming a

standard position based representation of numbers.) Integer

factorization is important because its asymmetric difficulty is

at the heart of the best-known public-key encryption method

of RSA [19], and because it is the most celebrated problem

where quantum mechanical UTMs (QUTMs) outperform clas-

sical UTMs, i.e. there is a P time QUTM algorithm to find prime

factors. However, integer factoring is a special NP problem in a

number of ways, for example every problem has a single

unique solution, and so the problem is not thought to be NP

complete [11].

The standard NP complete problem is 3SAT. In 3SAT, the

problem is to find an assignment of Boolean variables

to satisfy an expression of the following form: (X1_X2_X3)

^ (�X1_X4_�X5) ^ (�X2_X3_X6). . .. Satisfying such an

equation means finding a way to assign the value either

True (T) or False (F) to each of the Boolean variables Xn,

e.g. X1 ¼ T, so as to make the overall expression True. It

can easily be seen that verifying a solution is P time—just

fill in the values evaluate the expression. However, there is

no known P time algorithm to find solutions. 3SAT is

NP complete because it has been proved possible to trans-

form any NP problem into a 3SAT problem in P time

[2,11–13]. This implies that if one could solve arbitrary

3SAT problems in P time then one could solve any NP

problem in P time.

The NP class is commonly believed to be a strict superset

of P, i.e. P = NP; as it would seem generally harder to find a

solution to a problem than to verify a correct solution

(figure 1b). However, this has never been proved, and the

P ¼NP question is the arguably the most important open

problem in mathematics [11,15,18]. The problem is also of

immense practical importance, for if P ¼ NP it would essen-

tially solve mathematics and transform science/engineering,

but also have devastating consequences for activities that

depend on cryptography for security, such as the banking

system, the Internet, etc. [13,15,18].

It is important to distinguish the mathematical problem

of the truth or falsehood of the proposition ‘P ¼NP’, and

the practical problem of solving NP problems in P time [9].

A mathematical problem is constrained by a given set of

axioms and proof methods, whereas all possible physical

means may be used to solve a practical problem. In this

paper, we do not address the P ¼NP mathematical problem,

but instead present the physical design for a computer that

has an exponential speedup over conventional computers on

NP complete problems.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20160990

3
2. Design of a non-deterministic universal
Turing machine

The state of a UTM is defined by a tuple of symbols [1,3]. In a

classical (deterministic) UTM, computation is a 1 : 1 relation

that takes an input state to an output state, with computing

halting if an accepting state is reached. A non-deterministic

UTM (NUTM) differs from a UTM in that from one input

state there may be multiple output states, i.e. computing is a

1 : n relation [2,3]. A now old-fashioned, but insightful, way

to define the NP class is through the use of NUTMs: the NP

class is the set of problems that a NUTM can solve in P time

[2]: NP ¼ <k [N NTIME(nkÞ:
The customary interpretation of how a NUTM solves a NP

problem in P time is through serendipity [7,10,11]: in each state it

correctly guesses which of the output states to choose so as to

reach the accepting state most quickly. Clearly, this interpret-

ation precludes the possibility of a physical NUTM, and one

reads that they are ‘magical’ [7], ‘hypothetical’ [10], ‘fictitious’

[11], etc. Our alternative replicative interpretation is that an

NUTM is a UTM that can reproduce itself, and thereby

follow all computational paths in parallel, with the compu-

tation ending when one path reaches the accepting state.

Such a machine is physically implementable.

The theory of computational complexity treats time and

space as fundamentally different: space is reusable while time

is not. The resource limitation in a physical NUTM is space.

The speed of an NUTM’s computation increases exponentially,

while the amount of space available is polynomially bound—

the light-cone is cubic, and the bound (holographic) on the

maximum amount of information in a volume of space is quad-

ratic [13,20]. Computation in a physical NUTM therefore

resembles an explosion. In contrast with an NUTM, the resource

limitation for physical classical and QUTMs is time. This

difference enables an NUTM to trade space for time.

When trading space for time it makes sense to use as

small processors as possible: molecules. However, although

molecules are very small (Avogadro’s number is approxi-

mately 6 � 1023) they are still of finite size, and this restricts

the size of NP problem that a molecular NUTM could practi-

cally solve before running out of space—the Earth has

approximately 1049 atoms, and the observable Universe

only approximately 1080. (This implies that what protects

cryptographic systems from being broken is not just a lack

of time, as is generally argued [11,13,18,19], but also a lack

of space.) Despite a physical NUTM’s restriction to using a

polynomial amount of space, space is currently used very

inefficiently in existing computers. It is therefore rational

to expect that a molecular NUTM, through trading space

for time, could outperform the world’s current fastest

supercomputer, while consuming a tiny fraction of its energy.

We use a Thue rewriting system to implement an NUTM.

Thue systems are a model of computation with equivalent

power to Turing machines [2,3,21–25]. Formally, a Thue

system is the presentation of a monoid [20]. Informally, a

Thue system is a set of rules of the form w$ u, where w, u

are strings in a finite alphabet of symbols. A string, for example,

v w v’ can be rewritten by the rule above to give v u v’. The

application of a Thue rule to a string therefore produces a

new string—equivalent to change of state in a UTM

(figure 2a). The starting state (program) is a specific string

as is the accepting state. The execution of a Thue program con-

sists of repeated application of Thue rewrite rules until an
accepting state is produced (figure 2b). It is possible to tran-

slate any Turing machine into a Thue system, and vice

versa [3,21]. We implement the Thue system shown in

(figure 2a), which is universal, i.e. it has undecidable (word)

problems [6,21–25].

Thue systems are similar to the more biologically familiar

L-systems [26]. The main differences are that in an L-system

there are no symboldeletions, andmultiplerules are applied sim-

ultaneously. These differences have important theoretical and

practical implications. Applying multiple rules simultaneously

is difficult to implement in molecular systems.

It is important to note two key features of Thue systems.

The first is that the order and position of application of Thue

rules is naturally non-deterministic: multiple Thue rules may

be applied to a string, and individual Thue rules may be

applied to multiple positions in a string (figure 2b). The

second feature is that all the computation is local: all that is

needed to implement a universal Thue system is the ability to

recognize a small number of local sub-strings and to locally

edit these sub-strings, there is therefore no need for communi-

cation. These two features enable the practical exponential

increase in speed in our NUTM design.

To solve any NP problem (e.g. integer factorization or 3SAT

problem) using our NUTM, one would first translate the pro-

blem into an initial string of Thue symbols (the program),

then determine the Thue string(s) that signals the accepting

state—such a translation is always possible as the Thue

system is universal. The program will then execute to produce

all possible computational paths from the program, until an

accepting state is found.
3. DNA computing
We use DNA computing to implement a Thue NUTM. Like

other forms of molecular computing, DNA computing trades

space for time: ‘there’s plenty of room at the bottom’ [27]. The

goal of building a molecular scale UTM has been pursued for

over 50 years [27], with the most common molecule suggested

being DNA [27–33], but protein has also been proposed [34].

DNA is an excellent medium for information processing and

storage [32,33]. It is very stable, as the sequencing of ancient

DNA demonstrates. It can also reliably be copied, and many

genes have remained virtually unchanged for billions of years.

These properties give DNA computing potential advantages

in speed, energy efficiency and information storage over elec-

tronics [27,28,32,33,35]: the number of operations for a desktop

DNA computer could plausibly be approximately 1020 s

(approx. 103 times faster than the fastest current supercomputer);

it could execute approximately 2 � 1019 operations per joule

(approx. 109 more than current supercomputers); and utilize

memory with an information density of approximately 1 bit

per nm3 (approx. 108 more dense than current memory). These

advantages mean that it is feasible that a DNA NUTM based

computer could potentially utilize more processors than all the

electronic computers in the world combined, and so outperform

all standard computers on significant practical problems [36].

The foundational work on DNA computing was that of

Leonard Adleman [28]. He demonstrated the solution of a

seven-point Hamiltonian path (an NP-complete problem)

by generating a set of random DNA sequences (possible

solutions), and selecting a solution from the set. This

generate-and-test approach is useful for certain types of

(b)

(a)

program

accepting-state

Figure 2. A universal Thue system. (a) A set of universal Thue rules: rules 1 – 4 require symbol transposition; rule 7 requires symbol insertion (forward) and deletion
(reverse); and rules 5 and 6 require transposition, insertion (forward) and deletion (reverse). (b) Part of trace of the execution of the universal Thue system (an NUTM): the
tree of all its possible computations. The root of the tree is the initial program. The child nodes of the root are the subsequent Thue sequences generated from the initial
program by application of one of the seven Thue rules: note that the antecedent of a rule (e.g. ca—the reverse of rule 1) may occur multiple times. Thue rules are
recursively applied until the accepting state is produced, thus execution of a program generates a potentially exponential number of states in P time.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20160990

4

combinatorial problems, but is not well suited for general-

purpose computation, as typically the (hardware) encoding

of the symbols needs to redesigned for each new problem. By

contrast, in a UTM only the software needs to be changed for

a new problem, and the hardware stays fixed. No working mol-

ecular UTM yet exists, but several designs have been proposed.

The most similar design to the one presented here is that of

Khodor & Gifford [29] who proposed the use of site-directed

mutagenesis (SDM) to implement a classical UTM. The authors

presented an abstract proof that a classical UTM could be

encoded using strings of DNA, and that SDM could be used

to change state. However, the coding scheme in the proof is

thermodynamically unrealistic, and they only physically

implemented a simple counting scheme.

The use of Thue systems overcomes many problems with

existing DNA computing designs. As Thue systems are non-

deterministic there is no need for a specific order of operations,

which is typically very difficult with molecular systems. The

necessary ordering of operations is essential in most previous

DNA computing designs, e.g. in direct implementations of
UTMs [29]. Another key design advantage of Thue systems is

that all the computation is local, a simple edit of a string,

which means that there is no need for communication and

the basic computational step takes a constant time. This con-

trasts with most previous DNA computing designs, where

there is the requirement for unique molecules to find each

other in solution, which takes time proportional to volume.

Most significantly our work is an advance on all previous

other work in that we present the first NUTM design. This is

important because NP complete problems are the most impor-

tant class of problem in computer science, and on these

problems NUTMs are theoretically exponentially faster than

both classical UTMs, and QUTMs.
4. Implementation of a DNA non-deterministic
universal Turing machine

In our NUTM starting states (programs) and accepting states

(read-outs) are sequences of DNA that encode strings of

Thue symbols

bases

physical DNA

category

Thue symbols

spacers

clamp

intermediate
symbols

delimiters

a

b

c

d

e

s

s¢

x

y

start

end TAAGGATCCGGCTGCTAAC

TCGAAGGTCG

AAA

CGG

GGAATGTCAACATGATA

GCG

GTG

CTG

ACG

TGG

GCT

TCT

symbol DNA sequence

(b)

(a)

Figure 3. DNA computing. (a) Three levels of symbol exist in our NUTM: physical DNA, bases, and Thue symbols. Note that molecular structure of single-stranded DNA is
asymmetric: one end is termed 30, the other 50 (these terms refer to the connectivity of the ribose sugars). When double-stranded DNA is formed the single strands bind
together in an anti-parallel manner. DNA polymerases (enzymes for copying DNA) can only copy DNA in the 50 to 30 direction. (b) We encode the five Thue system symbols
a, b, c, d, e using triplets of DNA. This length was found to provide the best balance between symbol specificity and the ability to mismatch—intriguingly the ‘genetic
code’ (cypher) is also based on triplets. The use of triplets helps ensure that when performing PCRs with an annealing temperature in the range of 50 – 608C only the
desired target sequences are amplified. A spacer symbol s (or s’) occurs between each Thue symbols to help enforce the specificity of desired mismatches. We require the
marker symbol clamp for rule recognition. We use the intermediate symbols x and y to help ensure that unwanted cross-hybridization of symbols does not occur. Finally,
the symbols start and end delimit the program. Physically, these delimiters are used as recognition site primers for PCRs.

program
distribute

MIX ?

.ac. .ca. .ad. .da. .cdca.

.ca. .ac. .da. .ad. .cdcae. .cdca.

.cdcae.

Figure 4. Implementation of a DNA NUTM. The physical NUTM consists of 14
paralleling executing processors (one each for both direction of the seven
Thue rules) and a mixing vessel. Each processor executes a microprogram
that implements a Thue rule in one direction. The resulting transformed
DNA sequences are added back to the mixing vessel, mixed, and then dis-
tributed to the processors to continue the computation. In this way, all
possible combinations of computational steps are executed. The mixing
vessel also contains a detection method for recognizing accepting states.
Such a system could be wholly automated, and work in continuous cycle.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20160990

5

Thue symbols (figure 3). The physical architecture of the com-

puter, with a mixing chamber, and editing chambers for each

different Thue rule/direction, ensures that every Thue rule is

applied to every NUTM state (figure 4). To physically

implement each Thue rewrite rule we have developed a

novel combination of polymerase chain reactions (PCRs) to

copy state, and SDM to change state [29]. This approach

ensures that all possible applications of a Thue rule are

made. In all stages in the process, well-formed strings can be

recognized by the presence of appropriate sequences
indicating the beginning and end of the well-formed string

(see electronic supplementary material).
The mechanism of the NUTM depends on the specificity of

molecular binding—as do living organisms. The Boltzmann

distribution determines the frequency of molecular states of

differing energies (E): higher energy states are exponentially

less likely to occur than lower energy ones. The energy of

DNA binding depends on sequence similarity [37,38], so the

probability of undesirable DNA bindings can be made expo-

nentially less likely through sequence design—although this

is constrained by upper limits on the temperature of DNA

duplexes, etc.

To write programs (initial states), we use DNA synthesis

technology. Accepting states are specific sequences of DNA

that contain identifying certificates, and corresponding

answers to the computation. We require that the accepting

states be recognized from among a potential exponential

number of other states generated by the NUTM (figure 2b).

This is feasible thanks to the Boltzmann distribution of binding

energies, and because PCRs enable an exponential amount of

complementary sequences to be produced in linear time. In

our development work, we read out accepting states directly

using DNA sequencing. Other techniques are applicable, for

example labelled complementary sequence to first identify

the certificate, then sequencing to determine the result of

the computation.

It is helpful to divide the task of applying a single Thue

rule/direction into two steps: recognition and rewriting. This

separates the more thermodynamically challenging step of rec-

ognition, from the technically more complex step of rewriting.

In rule recognition, all antecedent strings of a given Thue rule

are identified from among arbitrary complex strings of Thue

symbols, and marked with a ‘clamp’ sequence. This clamp

7000

EC CE AE BA

2000
1000
700

500

300

100

(a)

(b)

Figure 5. Thue rule recognition. (a) Sequence design of a DNA template
encoding a string of 10 symbols separated by spacers. The symbol combi-
nations ec (red), ce (green) and ae (blue) occurred once only within the
string, whereas ba (pink) occurred twice. The complementary DNA primers
consisted of a clamp sequence followed by the symbol combination and
flanking spacers. (b) Capillary electrophoresis analysis (measurement of mol-
ecular weight—Bioanalyser 2100, Agilent Technologies) of PCR products for
Thue rule recognition. Using the string template DNA described in (a), PCRs
were carried out to insert a clamp sequence prior to each Thue rule symbol
combination. For primers targeting the symbols ec, ce and ae, only one PCR
product is created, while for ba, two products occur.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20160990

6

sequence is designed to be distinct from any DNA sequence

encoded by Thue symbols, and thereby provide the specificity

of binding required for rewriting. To insert the clamp sequence,

we use DNA oligonucleotide primers: these have at their 30 ter-

minus a recognition sequence (the reverse complement of the

antecedent of the rewrite rule), and at their 50 end the clamp

sequence. The PCR products from these primers encode

the clamp sequence adjacent to the target symbol sequence.

This type of insertion procedure is a well-established SDM

technique [39,40].

We have established in vitro that this recognition

procedure works reliably. We have shown that we can recog-

nize specific symbol string combinations and insert clamp

sequences adjacent to them (ec, ce, ae, ba) in a Thue program

(DNA template) containing multiple symbol combinations

(figure 5). For the cases of ec, ce, ae, as expected, only one

molecular weight (MW) band was produced. Sequencing

demonstrated that the correct rule antecedent strings were

identified, i.e. with the clamp sequence inserted at their 50

ends. For the ba symbol string, which occurs twice in the

Thue program, as expected, we detected two different MW

bands, and sequencing revealed that both possible rule ante-

cedent strings were correctly identified (figure 5). We have

thus demonstrated non-deterministic rule recognition.

It would have been prohibitively expensive and time-con-

suming to physically demonstrate recognition against a

background of all possible mismatching strings. We therefore

applied computational modelling to demonstrate the specificity

of recognition. The Gibbs free energy (G) of the hybridization of

DNA sequences to each other can be modelled with good accu-

racy [37]. To calculate these estimates, we used the UNAFold

software [38]. For each rewrite rule plus clamp we computation-

ally verified that the binding that perfectly matches the rule

antecedent sequence is energetically favourable (lower DG)
compared with binding with any other possible string of Thue

mismatching symbols (see electronic supplementary material).

This modelling approach is conservative as it is not generally

the case for a Thue program that all Thue symbol strings may

be produced, and because PCR depends on 30 binding, so the

contribution of the 50 clamp is relatively unimportant.

We use SDM to make the changes of state required to

implement Thue rewriting rules. As it is difficult to directly

implement the complex DNA editing required for the universal

Thue rules, we decomposed the rules into basic operations that

can be directly implemented (see the electronic supplementary

material). These basic operations can then be arranged in

different ways (‘microprograms’) to execute arbitrary complex

Thue rules, and hence a variety of representations of an NUTM.

The microprograms use a combination of symmetric and asym-

metric PCRs to support the repeated targeting of multiple

positions simultaneously [41,42]. In physical terms, the basic

operations are DNA hybridizations, where the new sequence

(encoded by a DNA primer) mismatches and binds with an

existing template, with the products of primer extension encod-

ing the new sequence. Note that this current string edit design

process differs from an ideal Thue implementation in that the

PCR processing is not purely local.

All the microprograms follow a similar schema: a series of

mismatching symmetric and asymmetric PCR operations that

implement the designed DNA sequence changes. Each PCR

operation generates a specific intermediate sequence that is

either used as a template or megaprimer for subsequent oper-

ations. In all the microprograms, the first operation is insertion

of the clamp. The second operation is change of the spacer

sequence from s to s’, which serves to further mark the position

of rewriting and strengthen the binding of mismatching pri-

mers. (In our current in vitro implementation clamp, insertion

and spacer change are combined.) DNA edits (insertions/

deletions/swaps) are first made using symmetric PCRs to

generate double-stranded DNA products (using the corre-

sponding end (reverse) primer)—the edits being made to the

truncated clamped sequence. Asymmetric PCRs are then

used to generate megaprimers (single-stranded DNA product

(figure 6)) that retain the required sequence changes, but have

the clamp removed. Finally, the megaprimers are used to intro-

duce the edits into the full-length DNA sequence, using the

megaprimer and corresponding start (forward) primer.

There are three types of Thue rewriting edits: transposi-

tions, insertions and deletions (figure 2a). To demonstrate

that our SDM method is sufficient to implement transposi-

tions, we used as examples the microprograms: ce! ec

(figure 6a), and ec! ce (see the electronic supplementary

material); for both microprograms we show the in vitro
PCR steps, and the experimental evidence for the correct

transformations. The universal Thue rules 1–4 require such

transpositions (figure 2a).

To demonstrate insertions we used the microprogram ec!
eca (figure 6b), and for deletions the microprogram cea! ce

(figure 6c). The universal Thue rule 7 requires such insertions

and deletions (figure 2a). Insertion/deletion edits require that

the hybridized DNA ‘loops’, either in the template (for del-

etion), or the primer (for insertion). In all the microprograms,

the most difficult case occurs when there are repeats of the

Thue symbol to be swapped/inserted/deleted, as the primer

and template often hybridize in an incorrect conformation. To

overcome this a non-coding symbol (x or z) is inserted first

and is then changed to its new symbol combination.

PCR1
(string ce)

PCR1
(string ec)

clamp

clamp

clamp

c

x x

x x

e

c

c

c c

e

clamp

clamp

clamp

z
e

e

c ae

ce

c ae

e z a

e a

ce

ce

ce

ce

ce

PCR 2

PCR 2

PCR 3

PCR 1
(string eca)

PCR 2

PCR 3

PCR 4

PCR 5 (AS)

PCR 6 (MP)

string ec

PCR 4

PCR 5 (AS)

PCR 6 (MP)

string eca

PCR 3.1 (AS)
PCR 4.1

PCR: 1

PCR: 1 2 3 4 5 6

PCR: 1 2 3 4 5 6

2 3.1 3.2 4.1 4.2 5 6 7

PCR 4.2
(AS)

PCR 3.2
(MP)

PCR 5 (MP)

PCR 6 (AS)

PCR 7 (MP)

string ec
(spacers reverted)

7000
2000
1000
700
500

300

100

7000
2000
1000
700
500

300

100

string EC
PCR 1
PCR 2
PCR 3
PCR 4

string ECA

string CE
PCR 1
PCR 2

PCR 4.1
PCR 5
PCR 6

string ECA
PCR 1
PCR 2
PCR 3
PCR 4

string EC

7000
2000
1000

700
500

300

100

(b)

(a)
(i) (ii)

(iii)

(i)

(ii)

(i)

(ii)

(iii)

(iii)

(c)

Figure 6. (Caption overleaf.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20160990

7

The most complex universal Thue rules are 5 and 6, as these

involve transpositions, insertions and deletions (figure 2a).

To demonstrate that this form of universal rule can be

implemented using our methodology we used as an example

rule 5: ce$ eca (see the electronic supplementary material).
This rule can be implemented by integrating and adapting

the above microprograms: ce! ec! eca; eca! cea! ce

into a single workflow. Taken together, these results demon-

strate that all the Thue rules required for an NUTM can be

physically implemented using DNA mutagenesis.

Figure 6. (Overleaf.) Thue rule implementation. (a) Microprogram for swapping ce! ec. (i) The clamp sequence is first inserted and the outer s symbols changed to s’
(PCR1). This clamp and spacer sequence is then bound by the primer in PCR2, which replaces the ce symbols with an xx sequence. Asymmetric PCR (AS) is then used to
remove the clamp and create a megaprimer, which is used to replace ce with xx in the string (megaprimer PCR annotated ‘MP’, PCR 3.1 and 3.2). In parallel, the xx symbols
are changed to ec by symmetric PCR (PCR 4.1), and then a megaprimer produced removing the clamp (PCR 4.2). This megaprimer is then employed to replace the sequence
xx with ec in the string (PCR 5). Finally, the s’ symbols are returned to s to complete the microprogram (PCR 6 and 7). (ii) Capillary electrophoresis analysis of the PCR
products from each PCR step. (iii) Sequence alignment of DNA sequencing of the key steps in the microprogram. (b) Microprogram for the insertion ec! eca. (i) Following
the recognition of ec the clamp is inserted and outer spacers changed (s to s’, PCR 1). A non-coding symbol z is then inserted, which exploits the strong binding for the
existing e and c with the modified s’ spacers (PCR 2), which promotes a loop to occur during DNA hybridization. This symbol is then edited to c (PCR 3), and the other c
changed to a (PCR 4). Asymmetric PCR is then used to generate a megaprimer for the eca sequence (PCR 5), which is then used to insert this new sequence into the tape
(PCR 6). (ii) Capillary electrophoresis analysis of the PCR products from each PCR step. (iii) Sequence alignment of DNA sequencing of the key steps in the microprogram. (c)
Microprogram for the deletion eca! ec. (i) The clamp and altered spacers s’ are inserted upon recognition of eca in PCR 1. The middle symbol (c) is edited to a non-
coding z (PCR 2) before deletion of this symbol by recognition of ea in the subsequent step (PCR 3). As with the insertion microprogram, the strength of DNA hybridization
between the clamp, s’e and as’ promotes the PCR primer to loop over the z symbol to delete it. Following deletion the symbol sequence ec is created (PCR 4), and the
clamp removed by asymmetric PCR (PCR 5). Finally, the megaprimer is used to delete the original symbol a from the string. (ii) Capillary electrophoresis analysis of the PCR
products from the deletion microprogram. (iii) Alignment of sequencing data from the key PCR steps.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20160990

8

5. Discussion
Our design for an NUTM physically embodies an abstract

NUTM. We have demonstrated that the design works using

both computational modelling, and in vitro molecular biology

experimentation. We have shown the use of microprogramming

to encode arbitrary Thue rules, shown that all classes of Thue

rule can be implemented (reversible symbol transpositions,

insertions and deletions), and validated non-deterministic rule

implementation. However, we acknowledge that further exper-

imentation is required to complete the physical construction

of a fully working NUTM. Indeed, we are unaware of any

fully working molecular implementation of a UTM, far less an

NUTM. The key point about implementing a UTM compared

with special purpose hardware is that special purpose hardware

typically needs to be redesigned for each new problem. By con-

trast, in a UTM only the software needs to be changed for a new

problem, and the hardware stays fixed. The situation for mol-

ecular UTMs is currently similar to that of QUTMs where

hardware prototypes have executed significant computation,

but no full physical implementation of a QUTM exists.

Perhaps the greatest challenge in developing a working

NUTM is control of ‘noise’. Noise was a serious problem in

the early days of electronic computers [43]; however, the pro-

blem has now essentially been solved. Noise is also the most

serious hindrance to the physical implementation of QUTMs,

and may actually make QUTMs physically impossible [44].

By contrast, in an NUTM, well-understood classical approaches

can be employed to deal with noise. These classical methods

enable unreliable components to be combined together to

form extremely reliable overall systems.

Several promising approaches to noise reduction are

available for NUTMs:
— The use of error-correcting codes. Such codes are used ubi-

quitously in electronic computers, and are also essential

for QUTMs. Classical error-correcting code methods can

be directly ported to NUTMs.

— The repetition of computations. The most basic way to reduce

noise is to repeat computations, either spatially or tem-

porally. The use of a polynomial number of repetitions

does not affect the fundamental speed advantage of

NUTMs over classical UTMs or QUTMs.

— Kinetic proofreading. This utilizes irreversible reactions to

enable enzymes to discriminate between two possible reac-

tion pathways (to correct or incorrect products) with an
accuracy greater than expected based on the difference in

the activation energy between these two pathways [45].

— The use of restriction endonucleases and/or CRISPR/CAS9.

These DNA modification technologies (RNA/proteins)

are essentially little nano-machines that are able to cut

DNA at specific sequences. Restriction enzymes were the

technology that first ignited the biotechnology industry.

CRISPR/CAS9 is a recently discovered programmable

technology for cutting DNA at specific places. The ability

to cut DNA sequences is useful for NUTM error correction

as it enables the removal of non-grammatical (e.g. no Thue

symbol) sequences, i.e. sequences that have been produced

by noisy computations. Cutting a DNA strand stops an

NUTM process from executing as the resulting parts no

longer has both start and end symbols. Similarly, if con-

straints on the correct solution are known, these imply

constraints in the pattern of Thue symbol, and these

patterns can be cut and the processes removed.

— The use of labels. This approach is complementary to the use

of restriction enzymes and/or CRISPR. It uses special mol-

ecules with complementary sequences of patterns of Thue

sequences of interest, and a label that enables the identified

DNA strands to be fished out of the pool (figure 4). This

approach can be used to both remove unwanted sequences,

and identify desired sequences.

— Checking certificates. When a NP problem is putatively solved

by an NUTM, the answer can be efficiently checked using an

electronic computer in P time. This means that an NUTM is

required to succeed only with a small probability of success.

To compete effectively with existing electronic computer

hardware, one of the most successful technologies in history,

will require fabrication of a NUTM with approximately 1012 pro-

cessors executing in parallel—an order of magnitude more

processors than in all the computers in the rest of the world com-

bined. This would require the following plausible developments:

— Implementation of Thue rewriting rules using femtograms

of DNA.

— Implementation of the accurate recognition of NUTM

accepting states: precision of 1 2 1 � 10212 and a recall

of 1 2 1 � 10212.

— Implementation of Thue rewriting rule error correction

methods.

— A fluidic system capable of implementing multiple cycles

of a multiple Thue rule system with at least 25 rules.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20160990

9
— An NUTM programming language that compiles down to

Thue systems.

The molecular technology of CRISPR/CAS9 has the poten-

tial to rapidly advance the engineering of NUTMs. If the

CRISPR/CAS9 system could be modified to edit programmed

sequences of DNA, rather than just cut them this would be

close to ideal for implementing Thue rule NUTMs. A large

amount of research is being undertaken to achieve this rede-

sign of CRISPR/CAS9, so it is not unreasonable to expect

rapid progress in this area.

A major motivation for this work is to engineer a general-

purpose way of controlling cells. The natural way cells are con-

trolled is a very complex combination of DNA, RNA, protein

and small-molecule interactions (supplemented by epigenetics,

etc.) with multilevel control implemented through specific

chemical interactions. This makes cells very difficult to repro-

gramme. Synthetic biology has sought to control cells through

the design of simple switches, circuits, etc. and has some notable

successes (e.g. [46]). However, we argue that a more radical and

general approach is required: a DNA NUTM. This would in

principle enable arbitrary biological processes to be pro-

grammed and executed. The NUTM could receive

biological signals from the environment through interaction

with transcription factors, etc. It could also use as effectors

RNA/proteins generated using special sequences and RNA

polymerase, etc. Our current in vitro implementation of an

NUTM is not directly suitable for this. However, it would

seem possible to implement the core ideas in a biological sub-

strate. One way to do this would be to use plasmids as

programs, and employ rolling circle amplification.

Computation in a deterministic UTM is in principle

reversible, i.e. there is no lower bound on the amount of

energy required per operation [47]. It is unclear whether

NUTM computation is reversible in P time. This question is

of importance in relation to power constraints in NUTMs,

and to the P ¼ NP question.

Given the prospect of engineering an NUTM it is natural to

consider whether machines can be physically engineered for

other complexity classes. A problem is a member of the class

co-NP if and only if its complement is in the complexity class

NP (figure 1b). The definition of NP uses an existential mode of

computation: if any branch of the computation tree leads to an

accepting state, then the whole computation accepts. The defi-

nition of co-NP uses a universal mode of computation: if all

branches of the computation tree lead to an accepting state then

the whole computation accepts. It would therefore be straightfor-

ward to adapt our NUTM design to compute co-NP problems: all

accepting states are removed from the mixing vessel.

It would also be straightforward to add randomization

to a physical NUTM (through the use of thermal noise).

The class BPP (bounded-error probabilistic polynomial-time) is

the class of decision problems where there exists a P time ran-

domized algorithm [13]. Although the relationship between
BPP and NP is unknown, it would seem computationally

useful to generate an exponential number of randomized

UTMs in P time, for example for simulations.

The complexity class PSPACE consists of those problems

that can be solved by a Turing machine (deterministic or non-

deterministic) using a polynomial amount of space (figure 1b).

It is a superset of NP, but it is not known if this relation is

strict i.e. if NP = PSPACE. In an NUTM, all the computation

is in a sense local: forks with no communication between com-

putational paths. We hypothesize that a requirement for local

computation is a fundamental definition of the NP class. By con-

trast, a physical PSPACE computer would seem to require

highly efficient communication between computational paths,

which seems challenging. We therefore conjecture that it is phys-

ically impossible to build a computer that can efficiently solve

PSPACE complete problems.

Most effort on non-standard computation has focused on

developing QUTMs [5,13,47]. Steady progress is being made

in theory and implementation, but no QUTM currently exists.

Although abstract QUTMs have not been proven to outper-

form classical UTMs, they are thought to be faster for certain

problems [5,13,46]. The best evidence for this is Shor’s integer

factoring algorithm, which is exponentially faster than the cur-

rent best classical algorithm [48]. While integer factoring is in

NP, it is not thought to be NP complete [11], and it is generally

believed that the class of problems solvable in P time by a

QUTM (BQP) is not a superset of NP [13].

NUTMs and QUTMs both utilize exponential parallelism,

but their advantages and disadvantages seem distinct.

NUTMs utilize general parallelism, but this takes up physical

space. In a QUTM, the parallelism is restricted, but does not

occupy physical space (at least in our Universe). In principle

therefore, it would seem to be possible to engineer an NUTM

capable of utilizing an exponential number of QCs in P time.

Advocates of the many-worlds interpretation of quantum

mechanics argue that QUTMs work through exploitation of

the hypothesized parallel universes [8,13,49]. Intriguingly,

if the multiverse were an NUTM this would explain the

profligacy of worlds.

Authors’ contributions. R.D.K. conceived and led the project, he also
directed writing of the manuscript. A.C. devised the DNA editing
methodology, and led the in vitro molecular biology experiments.
K.K. suggested the use of Thue systems, and carried out the DNA
modelling experiments. M.A. and K.R. carried out the in vitro mol-
ecular biology experiments. P.J.D. and D.B.K. advised on the in
vitro molecular biology experiments. All the authors contributed to
discussions and commented on the manuscript

Competing interests. We declare we have no competing interests.

Funding. A.C. and D.B.K. thank the Biotechnology and Biological
Sciences Research Council (BBSRC) for support (BB/M017702/1).
K.K. would like to thank the Royal Society for their support provided
by a URF Fellowship.

Acknowledgements. R.D.K. would like to thank Steve Oliver for helpful
discussions. He would also like to thank the ERC for the spur he
received by their non-award of grant no. ERC-2013-AdG 339781.
References
1. Turing AM. 1936 Computable numbers, with an
application to the Entscheidungsproblem. Proc.
Lond. Math. Soc. 42, 230 – 265.
2. Lewis HR, Papadimitriou CH. 1981 Elements of the
theory of computation. Upper Saddle River, NJ:
Prentice Hall.
3. Davis M. 1983 Computability and
unsolvability. Mineola, NY: Dover
Publications Inc.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20160990

10
4. Sommerhalder R, van Westrhenen SC. 1987 The
theory of computability. Boston, MA: Addison-
Wesley.

5. Deutsch D. 1985 Quantum theory, the Church-
Turing principle and the universal quantum
computer. Proc. R. Soc. Lond. A 400, 97 – 117.
(doi:10.1098/rspa.1985.0070)

6. Penrose R. 1989 The emperor’s new mind. Oxford,
UK: Oxford University Press.

7. Harel D. 1992 Algorithmics. Boston, MA: Addison-
Wesley.

8. Deutsch D. 1997 The fabric of reality. London, UK:
Penguin.

9. DeLong HA. 2004 Profile of mathematical logic.
Mineola, NY: Dover Publications Inc.

10. Reilly ED. 2004 Concise encyclopedia of computer
science. New York, NY: Wiley.

11. Gowers T. 2008 The Princeton companion to
mathematics. Princeton, NJ: Princeton University
Press.

12. Homer S, Selman AL. 2011 Computability and
complexity theory. Berlin, Germany: Springer.

13. Aaronson S. 2013 Quantum computing since
democritus. Cambridge, UK: Cambridge University
Press.

14. Cook SA. 1971 The complexity of theorem
proving procedures. In Proc. 3rd Annual ACM Symp.
on Theory of Computing, pp. 151 – 158.

15. Cook SA. 2000 The P Versus NP Problem. (Official
Problem Description Clay Math Institute. Millennium
prize problems.) http://www.claymath.org/
millenium-problems/p-vs-np-problem.

16. Trakhtenbrot BA. 1984 A survey of Russian
approaches to perebor (brute-force searches)
algorithms. Ann. History Comput. 6, 384 – 400.
(doi:10.1109/MAHC.1984.10036)

17. Wigderson AP. 2006 NP and mathematics—a
computational complexity perspective. In Proc.
2006 Int. Congress of Mathematicians,
pp. 665 – 712.

18. Fortnow L. 2009 The status of the P versus NP
problem. Commun. ACM 52, 78 – 86. (doi:10.1145/
1562164.1562186)

19. Katz J, Lindell Y. 2014 Introduction to modern
cryptography. London, UK: Chapman & Hall.

20. Bousso R. 2002 The holographic principle. Rev.
Mod. Phys. 4, 825 – 874. (doi:10.1103/RevModPhys.
74.825)

21. Post EL. 1947 Recursive unsolvability of a problem
of Thue. J. Symbolic Logic 12, 1 – 11. (doi:10.2307/
2267170)
22. Tseitin GS. 1956 Associative calculus with insoluble
equivalence problem. Dokl. Akad. Nauk SSSR 107,
370 – 371.

23. Scott D. 1956 A short recursively unsolvable
problem (abstract). J. Symbolic Logic 21. 111 – 112.

24. Matiyasevich YV. 1967 Simple examples of
unsolvable canonical calculi. Trudy Mat. Inst. Steklov
93, 50 – 88.

25. Miller CF. 2014 Turing machines to word problems.
In Turing’s legacy: developments from Turing’s ideas
in logic (ed. R Downey). Cambridge, UK: Cambridge
University Press.

26. Lindenmayer A. 1968 Mathematical models
for cellular interaction in development. J. Theoret.
Biol. 18, 280 – 315. (doi:10.1016/0022-5193(68)
90079-9)

27. Feynman RP. 1960 There’s plenty of room at the
bottom. Caltech Eng. Sci. 23, 22 – 36.

28. Adleman LM. 1994 Molecular computation of
solutions to combinatorial problems. Science 266,
1021 – 1024. (doi:10.1126/science.7973651)

29. Khodor J, Gifford DK. 2002 Programmed
mutagenesis is universal. Theory Comput. Syst. 35,
483 – 499. (doi:10.1007/s00224-002-1044-8)

30. Qian L, Winfree E. 2011 Scaling up digital circuit
computation with DNA strand displacement
cascades. Science 332, 1196 – 1201. (doi:10.1126/
science.1200520)

31. Hagiya M, Kobayashi S, Komiya K, Tanaka F, Yokomori
T. 2012 Molecular computing machineries—
computing models and wet implementations. In
Handbook of natural computing (eds G Rozenberg,
J Kok, T Bäck). Berlin, Germany: Springer.

32. Goldman N, Bertone P, Chen S, Dessimoz C,
LeProust EM, Sipos B, Birney E. 2013 Towards
practical, high-capacity, low-maintenance
information storage in synthesized DNA. Nature
494, 77 – 80. (doi:10.1038/nature11875)

33. Yazdi SMHT, Kiah HM, Garcia ER, Ma J, Zhao H,
Milenkovic O. 2015 DNA-based storage: trends and
methods. IEEE Trans. Mol. Biol. Multi-Scale Commun.
1, 230 – 248. (doi:10.1109/TMBMC.2016.2537305)

34. Nicolau Jr DV et al. 2016 Parallel computation with
molecular-motor-propelled agents in nanofabricated
networks. Proc. Natl Acad. Sci. USA 113, 2591 –
2596. (doi:10.1073/pnas.1510825113)

35. Kari L. 1997 DNA computing based on insertions
and deletions. COENOSES 12, 89 – 96.

36. Markov IL. 2014 Limits on fundamental limits to
computation. Nature 512, 147 – 154. (doi:10.1038/
nature13570)
37. SantaLucia Jr J, Hicks D. 2004 The thermodynamics
of DNA structural motifs. Annu. Rev. Biophys.
Biomol. Struct. 33, 415 – 440. (doi:10.1146/annurev.
biophys.32.110601.141800)

38. Markham NR, Zuker M. 2008 UNAFold: software for
nucleic acid folding and hybridization. In
Bioinformatics: structure, function and applications
(ed. JM Keith). Methods in Molecular Biology,
vol. 453, pp. 3 – 31. Totowa, NJ: Humana Press.
(doi:10.1007/978-1-60327-429-6_1)

39. Qi D, Scholthof KB. 2008 A one-step PCR-based
method for rapid and efficient site-directed
fragment deletion, insertion, and substitution
mutagenesis. J. Virol. Methods 149, 85 – 90.
(doi:10.1016/j.jviromet.2008.01.002)

40. Liu H, Naismith JH. 2008 An efficient one-step site-
directed deletion, insertion, single and multiple-site
plasmid mutagenesis protocol. BMC Biotechnol. 8,
91. (doi:10.1186/1472-6750-8-91)

41. Perrin S, Gilliland G. 1990 Site-specific mutagenesis
using asymmetric polymerase chain reaction and
a single mutant primer. Nucleic Acids Res. 18,
7433 – 7438. (doi:10.1093/nar/18.24.7433)

42. Ke SH, Madison EL. 1997 Rapid and efficient site-
directed mutagenesis by single-tube ‘megaprimer’
PCR method. Nucleic Acids Res. 25, 3371 – 3372.
(doi:10.1093/nar/25.16.3371)

43. Taub AH, von Neumann J. 1961 Collected works
volume V: design of computers, theory of automata
and numerical analysis. Oxford, UK: Pergamon Press.

44. Levin LA. 2003 The tale of one-way functions. Prob.
Info. Trans. 39, 92 – 103. (doi:10.1023/
A:1023634616182)

45. Hopfield JJ. 1974 Kinetic proofreading: a new
mechanism for reducing errors in biosynthetic
processes requiring high specificity. Proc. Natl Acad.
Sci. USA 71, 4135 – 4139. (doi:10.1073/pnas.
71.10.4135)

46. Schukur L, Geering B, Charpin-El Hamri G,
Fussenegger M. 2015 Implantable synthetic
cytokine converter cells with AND-gate logic treat
experimental psoriasis. Sci. Transl. Med. 7,
318ra201. (doi:10.1126/scitranslmed.aac4964)

47. Bennett CH. 1982 The thermodynamics of
computation. Int. J. Theor. Phys. 21, 905 – 940.
(doi:10.1007/BF02084158)

48. Nielsen MA, Chuang IL. 2000 Quantum computation
and quantum information. Cambridge, UK:
Cambridge University Press.

49. Saunders S, Barrett J, Kent A, Wallace D. 2009 Many
worlds? Oxford, UK: Oxford University Press.

http://dx.doi.org/10.1098/rspa.1985.0070
http://www.claymath.org/millenium-problems/p-vs-np-problem
http://www.claymath.org/millenium-problems/p-vs-np-problem
http://www.claymath.org/millenium-problems/p-vs-np-problem
http://dx.doi.org/10.1109/MAHC.1984.10036
http://dx.doi.org/10.1145/1562164.1562186
http://dx.doi.org/10.1145/1562164.1562186
http://dx.doi.org/10.1103/RevModPhys.74.825
http://dx.doi.org/10.1103/RevModPhys.74.825
http://dx.doi.org/10.2307/2267170
http://dx.doi.org/10.2307/2267170
http://dx.doi.org/10.1016/0022-5193(68)90079-9
http://dx.doi.org/10.1016/0022-5193(68)90079-9
http://dx.doi.org/10.1126/science.7973651
http://dx.doi.org/10.1007/s00224-002-1044-8
http://dx.doi.org/10.1126/science.1200520
http://dx.doi.org/10.1126/science.1200520
http://dx.doi.org/10.1038/nature11875
http://dx.doi.org/10.1109/TMBMC.2016.2537305
http://dx.doi.org/10.1073/pnas.1510825113
http://dx.doi.org/10.1038/nature13570
http://dx.doi.org/10.1038/nature13570
http://dx.doi.org/10.1146/annurev.biophys.32.110601.141800
http://dx.doi.org/10.1146/annurev.biophys.32.110601.141800
http://dx.doi.org/10.1007/978-1-60327-429-6_1
http://dx.doi.org/10.1016/j.jviromet.2008.01.002
http://dx.doi.org/10.1186/1472-6750-8-91
http://dx.doi.org/10.1093/nar/18.24.7433
http://dx.doi.org/10.1093/nar/25.16.3371
http://dx.doi.org/10.1023/A:1023634616182
http://dx.doi.org/10.1023/A:1023634616182
http://dx.doi.org/10.1073/pnas.71.10.4135
http://dx.doi.org/10.1073/pnas.71.10.4135
http://dx.doi.org/10.1126/scitranslmed.aac4964
http://dx.doi.org/10.1007/BF02084158

	Computing exponentially faster: implementing a non-deterministic universal Turing machine using DNA
	Introduction
	Design of a non-deterministic universal Turing machine
	DNA computing
	Implementation of a DNA non-deterministic universal Turing machine
	Discussion
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References

