55 research outputs found

    A novel mobile communication system using Pulse Position based Chirp Spread Spectrum modulation

    Get PDF
    The paper presents a new mobile communication system based on Chirp Spread Spectrum (CSS) transmission. The downlink modulation scheme is extended with Pulse Position Modulation (PPM) to carry data for multiple mobile terminals simultaneously. The described novel mechanism ensures reliable and robust communication between the parties, especially for terminals moving with high speeds or at long range. Furthermore, the proposed system take care of the uplink communication as well, where Closed-Loop Power Control (CLPC) is applied to handle the near-far problem and improve the performance of the system. Based on the attributes of the proposed system the application area covers sensor networks, IoT applications and Industry 4.0 as general field of LPWAN, however, mobility of terminals also considered.Analytical investigations for downlink communication are described focusing on the instantaneous symbol-error rate and average SER in Rayleigh fading channel. The results show that the proposed Pulse Position based Chirp Spread Spectrum technique for Multiple Access (shortly PP-CSS-MA) allows higher data rates that is used for the multiple access feature. In addition, numerical results are presented as well, and they point out the benefits of the applied CLPC mechanism. Finally, considerations regarding to the implementation of the proposed communication system are described

    A novel mobile communication system using Pulse Position based Chirp Spread Spectrum modulation

    Get PDF
    The paper presents a new mobile communication system based on Chirp Spread Spectrum (CSS) transmission. The downlink modulation scheme is extended with Pulse Position Modulation (PPM) to carry data for multiple mobile terminals simultaneously. The described novel mechanism ensures reliable and robust communication between the parties, especially for terminals moving with high speeds or at long range. Furthermore, the proposed system take care of the uplink communication as well, where Closed-Loop Power Control (CLPC) is applied to handle the near-far problem and improve the performance of the system. Based on the attributes of the proposed system the application area covers sensor networks, IoT applications and Industry 4.0 as general field of LPWAN, however, mobility of terminals also considered.Analytical investigations for downlink communication are described focusing on the instantaneous symbol-error rate and average SER in Rayleigh fading channel. The results show that the proposed Pulse Position based Chirp Spread Spectrum technique for Multiple Access (shortly PP-CSS-MA) allows higher data rates that is used for the multiple access feature. In addition, numerical results are presented as well, and they point out the benefits of the applied CLPC mechanism. Finally, considerations regarding to the implementation of the proposed communication system are described

    UWB Technology for WSN Applications

    Get PDF

    Analysis of the IEEE 802.15.4a ultra wideband physical layer through wireless sensor network simulations in OMNET++

    Get PDF
    Wireless Sensor Networks are the main representative of pervasive computing in large-scale physical environments. These networks consist of a large number of small, wireless devices embedded in the physical world to be used for surveillance, environmental monitoring or other data capture, processing and transfer applications. Ultra wideband has emerged as one of the newest and most promising concepts for wireless technology. Considering all its advantages it seems a likely communication technology candidate for future wireless sensor networks. This paper considers the viability of ultra wideband technology in wireless sensor networks by employing an IEEE 802.15.4a low-rate ultra wideband physical layer model in the OMNET++ simulation environment. An elaborate investigation into the inner workings of the IEEE 802.15.4a UWB physical layer is performed. Simulation experiments are used to provide a detailed analysis of the performance of the IEEE 802.15.4a UWB physical layer over several communication distances. A proposal for a cognitive, adaptive communication approach to optimize for speed and distance is also presented. AFRIKAANS : Draadlose Sensor Netwerke is die hoof verteenwoordiger vir deurdringende rekenarisering in groot skaal fisiese omgewings. Hierdie tipe netwerke bestaan uit ’n groot aantal klein, draadlose apparate wat in die fisiese wêreld ingesluit word vir die doel van bewaking, omgewings monitering en vele ander data opvang, verwerk en oordrag applikasies. Ultra wyeband het opgestaan as een van die nuutste en mees belowend konsepte vir draadlose kommunikasie tegnologie. As al die voordele van dié kommunikasie tegnologie in ag geneem word, blyk dit om ’n baie goeie kandidaat te wees vir gebruik in toekomstige draadlose sensor netwerke. Hierdie verhandeling oorweeg die vatbaarheid van die gebruik van die ultra wyeband tegnologie in draadlose sensor netwerke deur ’n IEEE 802.15.4a lae-tempo ultra wyeband fisiese laag model in die OMNET++ simulasie omgewing toe te pas. ’n Breedvoerige ondersoek word geloots om die fyn binneste werking van die IEEE 802.15.4a UWB fisiese laag te verstaan. Simulasie eksperimente word gebruik om ’n meer gedetaileerde analiese omtrent die werkverrigting van die IEEE 802.15.4a UWB fisiese laag te verkry oor verskillende kommunikasie afstande. ’n Voorstel vir ’n omgewings bewuste, aanpasbare kommunikasie tegniek word bespreek met die doel om die spoed en afstand van kommunikasie te optimiseer.Dissertation (MEng)--University of Pretoria, 2011.Electrical, Electronic and Computer Engineeringunrestricte

    A Three-Tiered Architecture for Large-Scale Wireless Hospital Sensor Networks

    Get PDF
    International audienceThe Utra Wide Band physical layer specified by the IEEE 802.15.4a standard [1] presents numerous advantages comparing with its original IEEE 802.15.4 standard, namely high accuracy positioning ability, high data rate up to 27 mbps, extended communication range, low power consumption and low complexity. Actually, many research and development activities focus on the design of UWB sensor nodes entities. However nodes interactions or network configuration are neglected. For that, we propose in this paper to investigate the use of UWB for large scale Wireless Hospital Sensor Networks (WHSNs) to benefit from the advantages offered by the UWB technology. This evolving networking paradigm promises to revolutionize healthcare by allowing inexpensive, non-invasive, pervasive and ubiquitous, ambulatory health monitoring. We present the design of new system architecture, based on IEEE 802.15.4a compliant sensors, suitable for health monitoring application in high dense hospital environment. The proposed system architecture is intended to support large-scale deployment and to improve the network performance in terms of energy efficiency, real-time guarantees and Quality-of-Service (QoS)

    Ultra Low Power Communication Protocols for UWB Impulse Radio Wireless Sensor Networks

    Get PDF
    This thesis evaluates the potential of Ultra Wideband Impulse Radio for wireless sensor network applications. Wireless sensor networks are collections of small electronic devices composed of one or more sensors to acquire information on their environment, an energy source (typically a battery), a microcontroller to control the measurements, process the information and communicate with its peers, and a radio transceiver to enable these communications. They are used to regularly collect information within their deployment area, often for very long periods of time (up to several years). The large number of devices often considered, as well as the long deployment durations, makes any manual intervention complex and costly. Therefore, these networks must self-configure, and automatically adapt to changes in their electromagnetic environment (channel variations, interferers) and network topology modifications: some nodes may run out of energy, or suffer from a hardware failure. Ultra Wideband Impulse Radio is a novel wireless technology that, thanks to its extremely large bandwidth, is more robust to frequency dependent propagation effects. Its impulsional nature makes it robust to multipath fading, as the short duration of the pulses leads most multipath components to arrive isolated. This technology should also enable high precision ranging through time of flight measurements, and operate at ultra low power levels. The main challenge is to design a system that reaches the same or higher degree of energy savings as existing narrowband systems considering all the protocol layers. As these radios are not yet widely available, the first part of this thesis presents Maximum Pulse Amplitude Estimation, a novel approach to symbol-level modeling of UWB-IR systems that enabled us to implement the first network simulator of devices compatible with the UWB physical layer of the IEEE 802.15.4A standard for wireless sensor networks. In the second part of this thesis, WideMac, a novel ultra low power MAC protocol specifically designed for UWB-IR devices is presented. It uses asynchronous duty cycling of the radio transceiver to minimize the power consumption, combined with periodic beacon emissions so that devices can learn each other's wake-up patterns and exchange packets. After an analytical study of the protocol, the network simulation tool presented in the first part of the thesis is used to evaluate the performance of WideMac in a medical body area network application. It is compared to two narrowband and an FM-UWB solutions. The protocol stack parameters are optimized for each solution, and it is observed that WideMac combined to UWB-IR is a credible technology for such applications. Similar simulations, considering this time a static multi-hop network are performed. It is found that WideMac and UWB-IR perform as well as a mature and highly optimized narrowband solution (based on the WiseMAC ULP MAC protocol), despite the lack of clear channel assessment functionality on the UWB radio. The last part of this thesis studies analytically a dual mode MAC protocol named WideMac-High Availability. It combines the Ultra Low PowerWideMac with the higher performance Aloha protocol, so that ultra low power consumption and hence long deployment times can be combined with high performance low latency communications when required by the application. The potential of this scheme is quantified, and it is proposed to adapt it to narrowband radio transceivers by combining WiseMAC and CSMA under the name WiseMAC-HA

    Performance enhancement of IEEE 802.15.4 by employing RTS/CTS and frame concatenation

    Get PDF
    IEEE 802.15.4 has been widely accepted as the de facto standard for wireless sensor networks (WSNs). However, as in their current solutions for medium access control (MAC) sub-layer protocols, channel efficiency has a margin for improvement, in this study, the authors evaluate the IEEE 802.15.4 MAC sub-layer performance by proposing to use the request-/clear-to-send (RTS/CTS) combined with frame concatenation and block acknowledgement (BACK) mechanism to optimise the channel use. The proposed solutions are studied in a distributed scenario with single-destination and single-rate frame aggregation. The throughput and delay performance is mathematically derived under channel environments without/with transmission errors for both the chirp spread spectrum and direct sequence spread spectrum physical layers for the 2.4 GHz Industrial, Scientific and Medical band. Simulation results successfully verify the authors’ proposed analytical model. For more than seven TX (aggregated frames) all the MAC sub-layer protocols employing RTS/CTS with frame concatenation (including sensor BACK MAC) allow for optimising channel use in WSNs, corresponding to 18–74% improvement in the maximum average throughput and minimum average delay, together with 3.3–14.1% decrease in energy consumption.info:eu-repo/semantics/publishedVersio

    Measurement-Based Modeling of Wireless Propagation Channels - MIMO and UWB

    Get PDF
    Future wireless systems envision higher speeds and more reliable services but at the same time face challenges in terms of bandwidth being a limited resource. Two promising techniques that can provide an increased throughput without requiring additional bandwidth allocation are multiple-input multiple-output (MIMO) systems and ultra-wideband (UWB) systems. However, the performance of such systems is highly dependent on the properties of the wireless propagation channel, and an understanding of the channel is therefore crucial in the design of future wireless systems. Examples of such systems covered by this thesis are wireless personal area networks (papers I and II), vehicle-to-vehicle communications (paper III), board-to-board communications inside computers (paper IV) and sensor networks for industrial applications (paper V). Typically, channel models are used to evaluate the performance of different transmission and reception schemes. Channel modeling is the focus of this thesis, which contains a collection of papers that analyze and model the behavior of MIMO and UWB propagation channels. Paper I investigates the fading characteristics of wireless personal area networks (PANs), networks that typically involve human influence close to the antenna terminals. Based on extensive channel measurements using irregular antenna arrays, typical properties of PAN propagation channels are discussed and a model for the complete fading of a single link is presented. Paper II extends the model from paper I to a complete MIMO channel model. The paper combines the classical LOS model for MIMO with results from paper I by prescribing different fading statistics and mean power at the different antenna elements. The model is verified against measurement data and the paper also provides a parameterization for an example of a PAN scenario. Paper III presents a geometry-based stochastic MIMO model for vehicle-to-vehicle communications. The most important propagation effects are discussed based on the results from extensive channel measurements, and the modeling approach is motivated by the non-stationary behavior of such channels. The model distinguishes between diffuse contributions and those stemming from interaction with significant objects in the propagation channel, and the observed fading characteristics of the latter are stochastically accounted for in the model. Paper IV gives a characterization of UWB propagation channels inside desktop computer chassis. By studying measurement results from two different computers, it is concluded that the propagation channel only shows minor differences for different computers and positions within the chassis. It is also found out that the interference power produced by the computer is limited to certain subbands, suggesting that multiband UWB systems are more suitable for this type of applications. Paper V describes a UWB channel model based on the first UWB measurements in an industrial environment. Analyzing results from two different factory halls, it is concluded that energy arrives at the receiver in clusters, which motivates the use of a classical multi-cluster model to describe the channel impulse response. Parts of the results from this paper were also used as input to the channel model in the IEEE 802.15.4a UWB standardization work. In summary, the work within this thesis leads to an increased understanding of the behavior of wireless propagation channels for MIMO and UWB systems. By providing three detailed simulation models, two for MIMO and one for UWB, it can thus contribute to a more efficient design of the wireless communications systems of tomorrow

    Design of linear regression based localization algorithms for wireless sensor networks

    Get PDF

    Whitepaper on New Localization Methods for 5G Wireless Systems and the Internet-of-Things

    Get PDF
    • …
    corecore