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Nederlandstalige samenvatting
–Summary in Dutch–

Voor het enorm potentieel aan locatie-gebaseerde Internet toepassingen in over-
dekte omgevingen, zijn er andere technologieën dan GPS nodig. Het is dan ook
niet verwonderlijk dat zo veel draadloze technologieën, zoals ultrasoon, infra-
rood, Bluetooth, RFID, Wi-Fi, ToF (Time-of-Flight) met IEEE 802.15.4 DSSS,
AoA (Angle-of Arrival) met IEEE 802.15.4 DSSS, IEEE 802.15.4a UWB, IEEE
802.15.4a CCS (Chirp Spread Spectrum) en experimentele 60 GHz concurreren
om de ‘ideale oplossing’ te bieden voor contextbewuste toepassingen. Voor een
definitieve doorbraak moeten de lokalisatie-algoritmen nauwkeurig, robuust, een-
voudig, energie efficiënt, goedkoop en schaalbaar zijn. Bovendien moeten deze
algoritmen een groot gebied bestrijken.

De IEEE 802.15.4 standaard is speciaal ontworpen voor een eenvoudig, low-
cost communicatienetwerk, dat draadloze connectiviteit toelaat in toepassingen
met beperkt vermogen. De belangrijkste doelstellingen zijn gemak van installatie,
betrouwbare gegevensoverdracht, extreem lage kosten en een behoorlijke batte-
rijautonomie, waarbij het protocol toch eenvoudig en flexibel moet blijven. Met
64-bits adressen schaalt de standaard bovendien zeer goed. In vergelijking met
Bluetooth, UWB en Wi-Fi, heeft IEEE 802.15.4 DSSS dus niet alleen de laag-
ste protocol complexiteit, maar ook het laagste energieverbruik. Met behulp van
complexe timing technieken, presteren IEEE 802.15.4a UWB systemen beter dan
IEEE 802.15.4 DSSS systemen op het vlak van nauwkeurigheid. Maar de IEEE
802.15.4 DSSS overtreft de andere technieken in de andere ontwerpdoelstellingen.

Bij het onderzoek van bestaande lokalisatie-algoritmen merkt men een grote
discrepantie tussen simulatoren en real-life situaties. Een beter begrip van de fy-
sische laag resulteert bovendien in betere lokalisatie-algoritmen. Er is helaas een
tekort aan experimentele resultaten, verkregen uit echte binnenhuistestbedden.

Ons werk focust daarom op experimenteel algoritmeontwerp met een RSSI-
gebaseerd (Receiver Strength Signal Indication) draadloos sensor netwerk, op ba-
sis van de validatie in het iMinds w-ilab.t real-life test bed. Dit is een uitgebreide
draadloze mesh en sensor netwerkinfrastructuur geı̈nstalleerd in het iMinds kan-
toorterrein in Gent, met inbegrip van vergaderruimten, klaslokalen, kantoren en
gangen. Op de vaste knooppunten hebben we RadioPerf, een specifieke softwa-
retool, qua functionaliteit vergelijkbaar met de hulpprogramma’s iperf, netperf en
nuttcp. Voor ons onderzoek zijn deze w-ilab.t proefbank en RadioPerf onmisbaar.

Dit werk presenteert een bottom-up benadering, gericht op het in het ontwerp
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houden van de fysische aspecten. Een hoofdstuk gewijd aan de fysische laag is
daarom een hebbeding voor dit boek. Het negeren van het specifieke karakter van
RSSI-metingen binnen een gebouw resulteert immers niet in goede lokalisatie-
algoritmen. De belangrijkste uitdagingen bij deze metingen zijn snelle fading,
interferentie, stralingsdiagram van de antenne en multipath fading.

Het gebruik van RadioPerf laat gelukkig een snelle uitmiddeling van de RSSI-
metingen toe, zodat het effect van snelle fading effecten genivelleerd wordt. De
IEEE 802.15.4 standaard biedt bovendien vele mogelijkheden om interferentie te
vermijden. Een zeer breed verontrustende frequentieband wordt echter aangetrof-
fen bij een magnetron oven: deze vult bijna de volledige 2.4 GHz ISM-band. De
conventionele voeding van een magnetron oven, zoals de Primo-MG1-B, bestaat
gelukkig uit een step-up transformator en een spanningsverdubbelaar met een di-
ode gelijkrichter. Dit soort magnetron straalt alleen op de positieve pieken van
netvoeding. Onze experimenten tonen aan dat er geen emissie plaatsgrijpt op de
negatieve pieken van de netvoeding. Korte pakketten die op deze ogenblikken
verzonden worden, leveren dus altijd de juiste RSSI op.

Uitgebreid experimenteel werk presenteert verder de vereiste minimum afstan-
den tussen een stoorbron en een IEEE 802.15.4 DSSS-ontvanger. Wanneer twee
verschillende technologieën ondergebracht zijn in dezelfde behuizing, kan interfe-
rentie enkel worden vermeden met behulp van een vermindering van het zendver-
mogen van de stoorbron en een soort van CCA (clear channel assessment).

De paar dips in het stralingspatroon van de PIFA (planar inverted-F antenne)
krijgen onze volledige aandacht. Uit een ander experiment blijkt evenwel dat mul-
tipath fading veruit de meest irritante factor is voor binnenhuis lokalisatie.

Deze dips in het antenne stralingspatroon en, nog belangrijker, de constructieve
en destructieve multipath fading zijn dus de belangrijkste oorzaken voor de aanwe-
zigheid van uitschieters in de RSSI-metingen. De eerste stap van een lokalisatie-
algoritme converteert deze RSSI-metingen naar afstanden. Deze afstandsuitschie-
ters resulteren in een snelle degeneratie van het lokalisatie-algoritme. Het verwij-
deren van uitschieters is bij lokalisatie helaas zelden aangepakt. Dit eindwerk
richt zich dus op de veerkracht tegen uitschieters in veel gebruikte technieken
die de individuele berekende afstanden naar een positie converteren. Geometri-
sche multilateratie, statistische multilateratie, maximum likelihood en een min-
max lokalisatie-algoritme worden hier onder dezelfde (extreme) multipath fading
voorwaarden vergeleken. Uit onze simulaties blijkt dat er een trade-off bestaat
tussen complexiteit, nauwkeurigheid en robuustheid tegen uitschieters. Zoals ver-
wacht zijn alle algoritmen kwetsbaar voor de aanwezigheid van uitschieters. Een
goede pre-processing techniek is dus nodig om deze uitschieters te elimineren.

In het tweede deel van dit boek, worden eenvoudige lokalisatie-algoritmen ont-
wikkeld. Extra aandacht wordt besteed om valkuilen te vermijden door het in
rekening te brengen van de fysische aspecten, door het opnemen van een goede
preprocessing en door met statistische een geometrische hulpmiddelen het effect
van uitschieters te verminderen.

Het w-ilab.t real-life test bed is een reeds uitgerold sensor-netwerk met een
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groot aantal knooppunten, dat een groot datavolume kan genereren. Het is gang-
baar om statistiek te gebruiken voor de analyse van deze (random) gegevens.

Deze thesis maakt geen uitzondering op deze efficiënte manier van werken,
die goede resultaten oplevert. Daarom maakt dit werk overvloedig gebruik van
waarschijnlijkheidsverdeling, gemiddelde waarden en medianen, lineaire regres-
sie, parametrische en niet-parametrische statistische tests.

Er wordt eerst een statistisch lineair regressiemodel geconstrueerd. Dit een-
voudig model houdt de onderliggende fysische aspecten transparant om foute im-
plementaties te voorkomen. In een eerste stap wordt het model gebruikt om de
beste beschikbare ankers dynamisch te selecteren en kalibreren. Een eerste selec-
tiecriterium is de lineariteit van propagatiemodel: de knooppunten met hoogste
correlatie tussen de RSSI een de logaritmische afstand worden gepromoveerd tot
ankers. Deze ankers worden in de uiteinden van het gebouw aangetroffen, niet in
de wandelgangen.

Vervolgens introduceren we de Error on Distance parameter en we baseren
het tweede criterium hierop. Centrale nodes met de kleinste Error on Distance
vervolledigen de ankerselectie. De Error on Distance wordt gedefinieerd als
twee keer de geschatte standaarddeviatie van de logaritmische afstand frequentie-
verdeling en wordt verkregen na een verwisselen van de RSSI-as en de logarit-
mische afstand-as. De regressielijn tussen de RSSS en de logaritmische afstand
tussen het anker en alle andere knooppunten bepaalt de (individuele) kalibratie
van het anker.

Dan volgt de preprocessing. Eerst worden alle metingen waarbij de berekende
afstand groter is dan een limiet (die bepaald wordt door de gevoeligheid van de ont-
vanger en het zendende energieniveau) als uitschieters beschouwd en verwijderd.
De nauwkeurigheid van het model wordt vervolgens gebruikt om slechte RSSI-
metingen te elimineren. Na het opschonen van de gegevens kan een snel maxi-
mum likelihood algoritme (gebaseerd op Error on Distance) gebruikt worden
om afstandsramingen uit te middelen.

Nu worden verschillende lokalisatie-algoritmen voorgesteld. Het eerste algo-
ritme LiReFLoA gebruikt snelle geometrische principes, die gebaseerd zijn op
Error on Distance en de nauwkeurigheid van het model om een positie te ver-
krijgen. Nogmaals is er zorg besteed aan het verwijderen van uitschieters die ver-
oorzaakt worden door constructieve multipath fading.

Het tweede nieuwe lokalisatie-algoritme heet LiReCoFuL (Linear Regression
based Cost Function for Localization) omdat het een kostenfunctie gebruikt die
op lineaire regressie steunt. LiReCoFuL grijpt immers terug naar de basis van
een lineair regressiemodel. Net zoals bij de meeste kostenfuncties wordt hierbij
homoscedasticiteit verondersteld. Voor LiReCoFuL betekent dit concreet dat de
standaarddeviaties van de fouttermen op de logaritmische afstand constant zijn en
dus niet afhangen van de RSSI-waarde. Dit is een realistisch uitgangspunt voor de
kwaliteitsvolle (zeer goed gecorreleerde) ankers. LiReCoFuL respecteert verder
het onderliggende propagatiemodel en maakt gebruik van Error on Distance
om de kostenfunctie op te bouwen.

Deze thesis eindigt met de uitbreiding van 2DLiReFLoA (tweedimensionale
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LiReFLoA) tot een pseudo-driedimensionaal lokalisatie-algoritme. Dit algoritme
P3DLiReFLoA maakt gebruik van tweedimensionale projectie technieken om een
object te vinden in een driedimensionale ruimte. 2DLiReFLoA en P3LiReFLoA
delen dezelfde geautomatiseerde tweedimensionale selectie van de ankers.

Voor P3DLiReFLoA is alleen een nieuwe kalibratie nodig om de regressie-
parameters en Error on Distance te bekomen. Deze kalibratie kan worden
geı̈nitieerd door de persoon die moet gelokaliseerd worden: onder de geselecteerde
ankers triggert hij de gezochte mobiele node. Daarna kan deze persoon overal in
het gebouw gevonden worden.



English Summary

As there is a huge potential for location-based Future Internet applications in in-
door environments, other technologies than GPS are needed. No wonder that so
many wireless technologies, like ultrasonic, infrared, Bluetooth, RFID (Radio-
Frequency IDentification), Wi-Fi, ToF (Time-of-Flight) with IEEE 802.15.4 DSSS,
Angle-of-Arrival (AoA) with IEEE 802.15.4 DSSS, IEEE 802.15.4a UWB, IEEE
802.15.4a Chirp Spread Spectrum (CSS) and experimental 60 GHz compete to of-
fer the “ideal solution” for context-aware applications. For a final breakthrough,
the localization algorithms need to be accurate, robust, simple, energy efficient,
cheap and scalable. Furthermore, these algorithms should cover a large area.

The IEEE 802.15.4 standard is designed for a simple, low-cost communica-
tion network that allows wireless connectivity in applications with limited power
and relaxed throughput requirements. The main objectives are ease of installation,
reliable data transfer, short-range operation, extremely low cost, and a reasonable
battery life, while maintaining a simple and flexible protocol. Having 64-bit ex-
tended addresses, the standard scales extremely well. Furthermore, compared to
Bluetooth, UWB and Wi-Fi, IEEE 802.15.4 DSSS has not only the lowest protocol
complexity, but also the lowest power consumption. Using complex timing tech-
niques, IEEE 802.15.4a UWB systems perform better than IEEE 802.15.4 DSSS
systems on accuracy. The IEEE 802.15.4 DSSS ranging technique, however, defi-
nitely outperforms the other techniques in the other design goals.

In present algorithm design, there is a large discrepancy between simulators
and real-life situations. Furthermore, a better understanding of the physical layer
results in better localization algorithms. Unfortunately, there is a shortage of ex-
perimental results, obtained from real indoor test beds.

Therefore, our work focuses on experimental Receiver Strength Signal Indica-
tion (RSSI-based) Wireless Sensor Network (WSN) indoor localization based on
the validation in the iMinds w-ilab.t real-life test bed. This is an extensive wire-
less mesh and sensor network infrastructure installed at iMinds office premises
in Ghent (Belgium), including meeting rooms, classrooms, offices and corridors.
On the fixed nodes we have RadioPerf, a specific software tool, in terms of func-
tionalities very similar to the iperf, netperf and nuttcp tools. For our research this
w-ilab.t test bed and RadioPerf have been indispensable.

This works presents a bottom-up approach, aimed at keeping the physical as-
pects into the design. Therefore, a chapter dedicated to the physical layer is a must-
have for this book. Ignoring the specific character of indoor RSSI-measurements
does not result in good localization algorithms. The major challenges with in-
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door RSSI are fast fading, interference, antenna radiation pattern and multipath
fading. Fortunately, the usage of RadioPerf enables a fast averaging of the RSSI-
measurements, leveling out the short-time fading effects. The IEEE 802.15.4 stan-
dard offers many possibilities to deal with interference. A very wide disturbing
frequency band is encountered from a microwave oven, almost filling the com-
plete 2.4 GHz ISM band. The conventional power supply of a microwave oven,
like the Primo-MG1-B, consists of a step-up transformer and a diode rectified volt-
age doubler. This kind of microwave only radiates on the positive peaks of mains
supply. Our experiments show that there is no emission on the negative peaks of
the mains supply. Therefore, short beacons always deliver the correct RSSI, when
transmitted at these instants. Extended experimental work further presents mini-
mum required distances between an interferer and a IEEE 802.15.4 DSS receiver.
When two different technologies are housed in the same package, interference can
only be avoided using a power reduction of the interferer and a kind of clear chan-
nel assessment. The few radiation dips in the inverted-F antenna pattern get our
full attention. Another experiment, however reveals that multipath fading is a very
annoying factor for indoor localization.

The few antenna radiation pattern dips and, more importantly, the construc-
tive and destructive multipath fading are very important causes for the presence
of outliers in the RSSI-measurement. The first step of a localization algorithm
converts these RSSI-measurements to distances. These distance outliers results in
a quick degeneration of the localization algorithm. Unfortunately, the mitigation
of measurement outliers in localization has seldom been addressed. Therefore,
this dissertation focuses on the resilience to outliers in widely used techniques
that convert the individual calculated distances (ranges) to a position. Geometric
multilateration, statistical multilateration, maximum likelihood and a min-max lo-
calization algorithm are compared here under the same (extreme) multipath fading
conditions. Our simulations show that there is a trade-off between complexity, ac-
curacy, and robustness to outliers. As expected, all algorithms are vulnerable to
the presence of outliers. Therefore a good preprocessing technique is needed to
eliminate these outliers.

In the second part of this book, simple localization algorithms are developed.
Special care is taken to avoid the pitfalls by keeping the physical aspects into the
design, by incorporating a good preprocessing and by using statistical an geometric
tools in order to decrease the effect of outliers.

The w-ilab.t real-life test bed is a pre-existing sensor network with a large
number of nodes, able to generate a large data volume. It is a common practice
to use statistical procedures to study this (random) data. This thesis makes no
exception on this efficient way of work with good results. Therefore, throughout
this work, there is abundant use of probability density functions, mean and median
values, linear regression, parametric and non-parametric statistical tests.

First, a statistical model, based on linear regression is constructed. This simple
model keeps the underlying physical aspects transparent in order to avoid faulty
implementations. In a first step, it is used to dynamically select and calibrate the
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best available anchors at a certain time. A first selection criterion is the linearity
of the path loss model: the nodes with highest correlation between the RSSI and
the logarithmic distance are promoted to anchors. These anchors are found in the
extremities of the building, not in the corridors.

Next, we present the Error on Distance parameter and base the second cri-
terion on it. The Error on Distance is defined as twice the estimated standard
deviation of the logarithmic distance frequency distribution, obtained after an axis
swap of the RSSI-axis and the logarithmic distance-axis. The linear regression line
between the RSSS and the logarithmic distance between the anchor and all other
nodes determines the (individual) calibration of that anchor.

Next, the preprocessing follows. First, all measurements where the calculated
distance is greater than a limit (determined by the receiver sensitivity and the send-
ing power level) are considered outliers and dropped. Furthermore, the model
accuracy is used to eliminate bad RSSI-measurements. After this data cleaning,
a fast maximum likelihood algorithm based on Error on Distance is used for
leveling out the same distance estimates.

Next, different localization algorithms are presented. The first algorithm LiRe-
FLoA (Linear Regression based Fast Localization Algorithm) further uses fast ge-
ometric principles, based on the model accuracy and Error on Distance to ob-
tain a position. Again, care is taken to avoid the presence of the outliers, caused
by constructive multipath fading.

The second new localization algorithm is called LiReCoFuL (Linear Regres-
sion based Cost Function Localization) because it uses a linear regression based
cost function in a maximum likelihood algorithm. LiReCoFuL gets back to the ba-
sics of a linear regression model. A basic assumption is homoscedasticity, meaning
that the standard deviations of the error terms on the logarithmic distance are con-
stant and do not depend on the RSSI-value. This is a realistic assumption for the
high-quality (highly correlated) anchors. LiReCoFuL further respects the underly-
ing physics of the propagation model, and uses Error on Distance to build the
cost function.

This thesis ends with the expansion of 2DLiReFLoA (two-dimensional LiRe-
FLoA) to a pseudo-three-dimensional localization algorithm. P3DLiReFLoA uses
two-dimensional projection techniques to find an object in a three-dimensional
space. 2DLiReFLoA and P3LiReFLoA share the same automated two-dimensional
selection of the anchors. For the P3DLiReFLoA, only a new calibration is needed
to obtain the new regression parameters and Error on Distance. This calibra-
tion can be initiated by the person to be located: beneath the selected anchors,
he triggers the mobile target. After this calibration, this person can be located
anywhere in the building.
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1
Introduction

1.1 Importance of indoor localization

A huge part of the emerging Future Internet applications can significantly benefit
from or even is directly dependent on context awareness, in particular location
awareness. This information might pertain to the location of the user, to the loca-
tion of devices / appliances or both of them and hence, enable a lot of powerful
applications. Table 1.1 provides an overview of applications (ranging from mil-
itary to consumer) in which localization and tracking capability would provide a
key advantage, partially based on [1]. This table illustrates the huge market po-
tential for localization systems. The emergence of satellite navigation systems
has triggered a significant progress in terms of location-based services. Table 1.2
shows an overview of these existing or planned systems. The usage of these ser-
vices, however, has important limitations with respect to applicability (GPS only
works well outdoor), cost, and energy consumption. As there is a huge poten-
tial for location-based Future Internet applications in indoor environments, other
technologies than GPS are needed. Our work focuses on experimental Receiver
Strength Signal Indication (RSSI-based) Wireless Sensor Network (WSN) indoor
localization.
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User type Application
Military Urban combat

Building clearing
Ship boarding
Safe navigation

Law enforcement Hostage rescue
Ship boarding
Crowd control
Traffic control

Firefighting Residential and apartment building fires
Complex building fires
Ship fires
Forest fires
Subterranean rescue operations
Volcanic eruption detection

Medical Tracking doctors
Tracking equipment
Localization of elderly

Industrial Tracking and tracing persons
Production control
Entrance admittance
Warehouse management

Civilian users Detention facilities
Private security guards
Transportation of hazardous materials
Museum guidance

Consumer Geocaching
City games (e.g. The Target)
Social networks (e.g. Foursquare)
Hiking safety
Automated Enforcement System detectors

Table 1.1: Common applications in which localization and tracking would provide a key
advantage

1.2 State of the art

A good starting point of the study of localization algorithms can be found in [2–6].
There are three interacting phases towards realization of accurate location-based
applications: hardware design, ranging and location estimation. Ranging involves
the process of the estimation of the distances to a target. Once the distances are
known, a position estimation is calculated.
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Acronym Name Operated for
GPS Global Position System USA
(NAVSTAR)
GLONASS GLObal NAvigation Satellite System Russia
Galileo (after Italian astronomer) European Union
Beidou (after Big Dipper constellation) China
CNSS Compass Navigation Satellite System China
IRNNS Indian Regional Navigational Satellite

System India
QZSS Quasi-Zenith Satellite System Japan

Table 1.2: Existing or planned satellite navigation systems

This section presents the state-of-the-art (indoor) localization systems. First,
an overview is given of state-of-the-art ranging techniques and location estima-
tion methods. Next, we discuss how ranging techniques and location estimation
methods are applied in combination with different wireless technologies. In the
remainder of this chapter, it is shown how this book will advance the highest level
of development in localization.

1.2.1 State-of-the-art ranging techniques

Localization methods can be divided into two categories [7]: range-based and
range-free. The former is defined by protocols that use absolute point-to-point
distance estimates (range) or angle estimates for calculating location. The latter
makes no assumption about the availability or validity of such distance or angle
information. Range-free methods are found in rather theoretical, not empirical
work. [8] compares two range-free localization algorithms. In environments with
obstacles, many range-free techniques that have been proposed to improve the lo-
calization accuracy are useless [9].

There are different wireless technologies and measurement concepts for range-
based indoor localization (see Table 1.4). Commonly proposed techniques to per-
form ranging are:

• RSSI (Received Signal Strength Indication) is an indication of the power
level received by a receiver expressed in dBm. This value is then used to
estimate the distance between transmitter and receiver. The physics behind
this technology are the power level decay with distance. RSSI is available
in most RF receivers.

• ToA (Time of Arrival), also called ToF (Time of Flight) uses the travel time
of a radio frequency wave from one transmitter to one receiver. With the
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speed of light, the distance is calculated. ToA requires precise synchroniza-
tion of timers at both transmitter and receiver.

• TDoA (Time Difference of Arrival) is also based on the speed of light. Usu-
ally, a multilateration is performed. Here, the position is calculated with at
least three spatially separated receiver sites (and one transmitter, being the
object to be localized). The difference of the time of arrival at two receivers
will narrow the possible position to one half of a two-sheeted hyperboloid.
The knowledge of the time of arrival at the third receiver is needed to calcu-
late the unknown position. TDoA only requires precise synchronization at
the receivers. In many wireless sensor networks, TDoA is based on the time
difference between simultaneously transmitted radio and ultrasound pulses
as in the Cricket system [10], as typical WSN clocks are too slow for apply-
ing the first approach only.

• AoA (Angle of Arrival) determines the angle of an incident RF wave, which
requires directional antennas. An overview of these antennas is given in
table 1.3. As can be seen in the first column, there are two main antenna
categories: antennas with one driven element and antennas with multiple
driven elements.

In the first category there are three principles. A first subcategory is based
on the antenna gain. Yagi antennas, parabolic antennas and short backfire
antennas are examples of this antenna type. A second subcategory is based
on the antenna dip in the radiation pattern. Examples include the loop an-
tenna and the quad antenna. In the third subcategory an antenna consists
of a monopole, surrounded by passive elements, which can be individually
switched between ground, working as reflectors, or isolation, working as
beam directors [11]. An example of this kind of antenna is SPIDA (SICS
Parasitic Interference Directional Antenna).

The second category, which has multiple driven elements, consists of two
subcategories. In the first subcategory, each driven element has its own re-
ceiver. A typical example is a phased array (using the phase between the
elements). In the second subcategory, the same receiver is shared between
the driven elements. Examples include the Pseudo-Doppler shift antenna,
the Watson-Watt antenna and the Correlative interferometer antenna.

• DTDoA (Differential Time Differences of Arrival) uses the difference of
TDoA-measurements. This is done to overcome the time synchronization
of both transmitter and receivers. This is accomplished by introducing a
fourth anchor which is responsible for initiating the TDoA-measurement by
transmitting a special message. In this way the anchors time offsets can be
computed [12].
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#Driven elements Working on Example
Single Gain Yagi

Parabola
Short backfire

Single Dip Loop antenna
Quad antenna

Single Switched parasitics SPIDA [11]
Multiple Phase Phased array
(with multiple
receivers)
Multiple Amplitude and/or Phase Pseudo-Doppler shift
(with single Watson-Watt
receiver) Correlative interferometer

Table 1.3: Overview of directional antennas

• Proximity uses a very weak sending power, if a message is received, the
receiver knows it is the vicinity of the sender. We cannot infer anything, if
the message is not received.

• Hybrid techniques: the combination of any of the previous techniques

An unobstructed path between sending and receiving antennas is called a LOS-
path. Conversely, when the direct path is blocked, there is a NLOS condition. The
latter may result in diffraction, refraction, absorption, scattering or multipath re-
flection, creating different paths to the receiver. The multiple signals arrive at a
receiver at different times and different amplitudes. Therefore, all existing rang-
ing techniques are affected. ToA-based systems, however, seem to be extremely
vulnerable to NLOS conditions [13, 14].

1.2.2 State-of-the-art location estimators

Once the ranging measurements between the fixed anchor points (whose positions
are already known) and the (mobile) object to be located (whose position is un-
known) are available, it is possible to utilize several methods for the estimation of
the location of the object:

• Fingerprinting versus non-fingerprinting methods:

– Typical for a fingerprinting is the use of a large database. During
the time consuming (in the order of several days) off-line phase (also
called training phase), this database is filled with measurements (e.g.
the RSSI-values recorded by nodes knowing their own position). The
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online phase is the positioning of a target: here, a new measurement is
compared to the values in the database. The stored measurement that
is closest to the measurement of the target gives the estimated position.
A drawback of this method is that the database needs to be filled with
new measurements if the environment changes (e.g. adding a new bed
in a hospital localization system) [15, 16].

– Non-fingerprinting methods do not require a database, and these meth-
ods are faster. When the environment doesn’t change, fingerprinting
methods usually give a better accuracy.

• Geometric versus statistical methods.

– Geometric techniques use geometry to calculate the position from at
least three ranging (RSSI/distance, time, angle) measurements. An
example is geometric multilateration [17].

– The use of statistics is widely accepted in location estimation. Here,
the frequency distribution of the distances is considered for making
an estimation of the position. Mainly, there are three different meth-
ods: statistical multilateration [17], maximum likelihood estimators
and Bayesian estimators.

∗ In its simplest form statistical multilateration minimizes the sum
of the square of the ranging errors (e.g. distance errors). There
also exists a weighted least square approach, like in [18]. Here
the measured values are first weighted, before the minimization:
e.g. high RSSI-values are given a higher weight. In indoor en-
vironments this leads to the unjust preference of the paths with
the most constructive multipath fading according to our recently
performed study [19].

∗ Maximum likelihood methods make use of a cost function. De-
pendent on the kind of cost function, it needs to be minimized or
maximized to find the most likely position. Several cost functions
exist. In [20] the simplest and most widely accepted method (min-
imum mean square error) is presented. Some more cost functions,
not only for RSSI but also for ToA-measurements, are presented
in [21]. A linear regression based cost function is introduced in
previous work [22]. This cost function has less local extremes
than the other cost functions. There are two approaches for find-
ing the extremes of a cost function. The first method uses an an-
alytical method, like in [23]. Another method is the grid method
where the cost function is calculated in each point of the grid, like
in [24]. The first method is faster, but there is a greater chance to
get stuck in a local extreme.
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∗ Bayesian localization methods are based on Bayes’ theorem [25]
and therefore incorporate some prior knowledge in the estimator.
Extensively used methods are Kalman filters, Particle filters [26,
27] and hidden Markov models (HMM) [28]. Another example of
a Bayesian method can be found in [29].

1.2.3 State-of-the-art wireless technologies

Ranging techniques and location estimation methods all have their advantages, but
also their shortcomings and can be applied to different wireless technologies. A
short overview by wireless technology is listed below:

• Ultrasonic localization [30] measures the time difference between an emit-
ted acoustic wave and its reflection. Because ultrasonic waves can’t propa-
gate through walls, the infrastructure needs to be deployed in every room.
These systems have low coverage. Furthermore, ultrasonic network rout-
ing is hard to implement, resulting in the use of combination of ultrasonic
and another technology (like IEEE 802.15.4 in [31]). In [4] three ultrasonic
positioning systems are reported:

– Active bats [32] developed by AT&T, whereby a quite sensitive align-
ment of the large number of receivers is needed.

– Cricket [10] developed by MIT Laboratories. The system uses both
ultrasonic and RF to calculate the distance from the difference in time
of arrival between the ultrasonic and RF waves. This system is very
sensitive to multipath fading [33]: if the direct path is obstructed, the
ultrasonic reflection is used. This results in a too long distance.

– DOLPHIN [34]. This system has a RF backbone network.

Another problem with ultrasonic systems is that the speed of ultrasound is
highly correlated with temperature [33, 35].

• Infrared localization [36] detects a beacon that is sent in the infrared spec-
trum. Because these signals cannot travel through walls (like ultrasonic
signals), infrared systems need room deployment and have low coverage.
Furthermore, this coverage is affected by sunlight [37]. An example of an
indoor infrared positioning system is Active Badge, developed by AT&T
Cambridge [4, 37]. To overcome a complex network routing capability in
the infrared region, a telephone line is used here to centralize the different
measurements.

• A first example of RF-based localization technology is based on the Blue-
tooth technology [36]. An example of a Bluetooth system is BlipTrack
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(Bluetooth Local Infotainment Point Tracking), developed by Ericsson [38].
Bluetooth not only has a limited range, but also a restricted number of de-
vices [39]. The systems use the received signal strength indication (RSSI)
for localization. Installation and deployment require calibration, special
hardware, tags, beacons, and previously selected access points to serve as
anchors; operation and maintenance can be an issue, as well as cost and scal-
ability of the system and recalibration [17]. A disadvantage of a Bluetooth-
based positioning system is that the system can only provide accuracy from
2 m to 3 m with a delay of about 20 s [5]. Furthermore, Bluetooth is power-
consuming due to the frequency-hopping spread spectrum technology em-
ployed on the physical layer [40]. The upcoming Bluetooth 4.0 standard
will have built-in support for indoor positioning [41], but this is still experi-
mental and not available in products yet. Actually, the Bluetooth 4.0 version
aims at becoming a low energy wireless technology [42], featuring

– Ultra-low peak, average and idle mode power consumption

– Ability to run for years on standard coin-cell batteries

– Low cost

– Multi-vendor interoperability

– Enhanced ranging

These features have already been found in IEEE 802.15.4 based ZigBee
devices for many years.

• Another RF-based technology is RFID localization [36, 43]. RFID localiza-
tion generally uses RSSI signals. Examples are: SPOT-ON [44] and LAND-
MARC [45]. The latter system is revisited by [46]. A more sophisticated
RFID system may use the Differential Time of Arrival (DToA) concept. An
example is WHERENET [47]. All RFID systems need numerous infrastruc-
ture components installed and maintained in the working area of an RFID
positioning system [5].

• Most Wi-Fi localization [48–50] systems use RSSI signals, such as EKA-
HAU [51], RADAR [15] COMPASS [52] and Aeroscout [53], while fewer
Wi-Fi systems apply the Time (Difference) of Arrival (ToA/TDoA) con-
cept [54]. RSSI-measurements on Wi-Fi are tricky since the absolute ac-
curacy on the RSSI is not specified in the standard, making the RSSI spec-
ification manufacturer dependent. In addition, due to complex indoor en-
vironments (presence of multipath fading and various interfering sources),
the performance of the positioning systems is not very accurate (typical
accuracies of several meters are reported). Many RSSI-based localization
techniques use propagation models for distance estimation, others rely on
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fingerprinting techniques in combination with large databases to store the
fingerprint information versus location. Consequently, location estimations
are complex, costly, and not scalable. The calculation time increases signif-
icantly with the number of users [5].

• Instead of Wi-Fi, the cheaper IEEE 802.15.4 DSSS [55] (the original version
of IEEE 802.15.4 has been defined in 2003 [56], and revised in 2006 [57]
and in 2011 [58]) technology is often used for RSSI-based indoor localiza-
tion, e.g. Freescales MC13224V ZigBee Platform in Package (PiP) [59].
Unlike Wi-Fi, the RSSI is specified in the IEEE 802.15.4 standard. This
is the most widely used radio on today’s sensor node platforms. ZigBee,
WirelessHART, 6LoWPAN and Glowbal all use IEEE 802.15.4 [60–63].
Most devices use the CC2420 chip from Chipcon with a dynamic range of
100 dB and the datasheet specifies the RSSI linearity (the relationship be-
tween RSSI and received input power) within the limits of +/- 3 dB [19].
Besides the problems with multipath fading and interfering sources, some
authors conclude that the large amount of characterization will make the use
of signal strength approaches with low power radios practically impossi-
ble [64]. Compared to Bluetooth, UWB and Wi-Fi, however, IEEE 802.15.4
DSSS has not only the lowest protocol complexity, but also the lowest power
consumption [65]. Motetrack [66] uses a fingerprinting method: in a time
consuming training phase a database is filled with RSSI-measurements, and
in the online phase a measurement is matched with these previously stored
measurements. In a dynamically changing environment (e.g. changing the
position of furniture), the time consuming training phase needs to be redone
in order to get accurate results. In [19] we present a fast linear regression
based localization method with a fast calibration process. Other statisti-
cal methods for indoor localization like maximum likelihood and Bayesian
estimators are described in [67]. In [68] a maximum likelihood localiza-
tion algorithm is presented. Bayesian localization algorithms are presented
in [29, 69, 70].

• Time-of-Flight (ToF) with IEEE 802.15.4 DSSS. Time-of-flight based ap-
proaches use the round trip time between two nodes to estimate the distance.
Many of these efforts rely on special hardware in terms of FPGAs for ad-
vanced signal processing or the simultaneous reception of signals on several
channels, e.g. those by Lanzisera et al. [71], Pichler et al. [72] and Karalar
and Rabaey [73]. Localization using ToF is more accurate with UWB ra-
dios due to the physical properties of UWB signals, in particular the large
bandwidth (see further). Mazomenos et al. were the first to demonstrate ToF
based ranging for sensor networks using CoTS hardware, i.e., standard IEEE
802.15.4 [74]. One of the challenges with using ToF is that one clock tick
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of a 8 MHz clock typically found on sensor nodes corresponds to a distance
of almost 20 m. (Indeed, during the 125ns clock-pulse an electromagnetic
wave travels 37.5 m. This distance needs to be halved, because TOF uses
the round trip time, back and forth to the transmitter.) Therefore, one needs
to take a lot of measurements and average the clock-ticks to achieve higher
accuracy. Mazomenos et al. achieved very good results outside with nodes
placed in line-of-sight. Under NLOS conditions, the multipath effect can be
substantial which can lead to longer ToF-measurements than required for the
actual distance between sender and receiver. SICS researchers presented an
estimation method, which compensates for this effect by using the variance
between measurements from different channels [75]. This way, they signif-
icantly improve the results of Mazomenos in scenarios where nodes are not
in line-of-sight.

• Angle-of-Arrival (AoA) with IEEE 802.15.4 DSSS. By measuring the angle
of arrival of incoming packets, it is possible to triangulate a receiver’s posi-
tion. This method requires directional antennas such as the SICS Parasitic
Interference Directional Antenna (SPIDA) [11, 76]. SPIDA is a cheap di-
rectional antenna that can be attached to standard sensor nodes such as the
TMote Sky from where it can be directed via simple APIs [77]. In contrast
to antenna arrays, SPIDA determines the direction of arrival by computing
the amplitude (power) of the incoming signal. For positioning nodes based
on AoA, [11] also presented a method based on recursive estimation that
computes a new position estimate using a (linear) Kalman filter. Please note
that AoA localization algorithms rely on a good orientation of the antennas.

• IEEE 802.15.4a UWB [78–81] is a new RF technology following the IEEE
802.15.4a standard. The previously used UWB IEEE 802.15.3a standard
has been redrawn [82]. The IEEE 802.15.4a standard [83] is an amend-
ment to the IEEE 802.15.4-2006 standard [57] and describes two additional
physical layers (UWB and CSS). Since 2011 this addendum is included in
the IEEE 802.15.4 standard [58]. Only few UWB devices are available
(at reasonable cost). At this very moment, only PulsOn 410 is available
in large quantities. This device has been released on 28 June 2012, costs
around $2000 and consumes 4.2 Watt [84]. The UWB systems use Angle
of Arrival, (AoA), RSSI or Time (Difference) of Arrival (ToA/TDoA) [85].
Examples include Ubisense RTLS [86]. This system uses both DToA and
AoA and is also quite expensive [5]. There is a number of approaches using
ToF, including those by Gezici et al. and Alsindi et al. [87]. The main prob-
lems with UWB localization are: time synchronization, power consumption,
and the efficient use of bandwidth [85]. Another main problem of UWB is
that the receivers are expensive; the complexity has moved from transmitters



INTRODUCTION 11

to receivers. This is especially bad for sensor networks which only trans-
mit intermittently. DToA uses the difference of ToA between two different
technologies, e.g. UWB and ultrasonic. In realistic crowded environments,
DToA localization systems do not perform as well as with RSSI localization
systems due to shadowing by walking people [88]. Current state-of-the-
art UWB algorithms using cooperation are able to achieve very high accu-
racy (around 10 cm) but unfortunately suffer from very high complexity and
therefore cannot work real-time [89, 90].

• Another new radio of the IEEE 802.15.4a standard is Chirp Spread Spectrum
(CSS) [58, 83]. Nanotron RLTS is an example [91]. Here, localization is
performed with ToA. When the direct path is obstructed, as in many indoors
environments, this results in large errors [92, 93].

• Interest in the utilization of the 60 GHz portion of electromagnetic spectrum
was originated by a need for wide bandwidth and interference free frequency
bands. The higher attenuation at high frequencies makes this technology
ideal for high-density short-range links [94]. Although localization algo-
rithms need to span large ranges and do not need high throughput, there are
some initial reports on experimental localization in the 60 GHz band [12].
Complete systems do not exist yet. The quality of the link between the trans-
mitter and the receiver is strongly influenced by the openings (open or closed
door) between adjacent rooms. Also the presence of people is important: a
human body can easily shadow the significant path [95].

• Finally, previous technologies may be combined [96, 97]. These combina-
tions exploit the synergy between two separate positioning systems, which
degrade in different ways. However, this comes at a higher complexity and
higher computational cost. [96] is an example where the UWB technology
combines the different measuring techniques RSSI and ToA. Also two dif-
ferent technologies are combined in COCKTAIL [97], which is a combina-
tion of RFID and RSSI.

Table 1.4 gives an overview of the wireless technologies for indoor localization
versus the ranging technologies.
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1.2.4 Statistical tools

Observed data representing a physical phenomenon can be classified as being ei-
ther deterministic or random. Deterministic data are those that can be described by
an explicit mathematical relationship. Data representing a random physical phe-
nomenon cannot be described by an explicit mathematical relationship, because
each observation is a unique sample of this data [98]. Due to fading in a propa-
gation path, RSSI-measurements belong to the random data category: no explicit
mathematical expression can be written for the time histories produced by this ran-
dom phenomenon. It is a common practice to use statistical procedures to study
the properties of random data. This thesis makes no exception on this efficient
way of work with good results. Therefore, throughout this work, there is abundant
use of probability density functions, mean and median values, linear regression,
parametric and non-parametric statistical tests.

In statistics, an outlier is a measurement that is well outside of the expected
range of values, and which is often discarded from the data set. Mainly due
to indoor multipath fading, RSSI-measurements deviate from their ideal values.
However, the physical aspects behind this deviation cannot be denied! Therefore,
outliers will not be discarded in our work. We use statistical and geometric tools to
detect the unexpected RSSI-measurements. The main goal is to design localization
algorithms dealing with outliers that are due to the underlying physical aspects.

In the robust regression technique [99], the measurements away from the re-
gression line are given a lower weight. This pushes the robust regression line away
from the outliers. With robust regression line calibration, the errors will be higher
for the outliers (compared to the least squares regression calibration). Therefore,
robust regression is not used in this work.

1.3 Design goals for localization algorithms
This section describes a wish list of a perfect localization algorithm. The ideal
localization system needs to be accurate, covering a large area, robust, simple,
energy efficient, low cost and scalable.

1. Accuracy (and precision).

Accuracy is defined as the degree of closeness of measurements of a quantity
to that quantity’s actual value. In scientific work on localization, this param-
eter gets so much attention, that one could assume it is the only criterion of
today’s localization solutions.

2. Extended range.

An excellent extended range means that the localization algorithm is able
to cover a large (maximum) distance. Because range-based systems rely on
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the physical principles, all these systems are more or less susceptible to the
distance limits of these underlying physics. This parameter complements
the accuracy: the accuracy needs to be met in the area of interest.

3. Robustness.

Robustness is the resilience of the system, especially when under stress or
when confronted with invalid input. Localization systems are jeopardized
by failing anchors (which are nodes knowing their own position), interfer-
ence, fading (both slow and fast fading, both constructive and destructive
multipath fading, delay spread), Doppler effect, thermal fade and even mala
fide attacks. We want to offer accurate localization solutions, not only in
quasi-ideal circumstances, but also in various real-life environments under
uncontrolled circumstances.

4. Simplicity.

In view of future deployment in commercial applications, localization so-
lutions should be simple, hereby avoiding complex calibration procedures.
Many solutions today rely on manual and time-consuming fingerprinting
processes during the set-up phase. Such solutions cannot deal with fading
and the high dynamics of wireless environments (mobility of people, ob-
jects and furniture, changing density of people), requiring a recalibration
each time the wireless setting changes. In our work, we focus on quasi
real-time approaches that can handle the dynamics the wireless indoor envi-
ronment. With those approaches set-up time is minimized and recalibration
is avoided.

5. Energy efficiency.

This work will pay sufficient attention to the energy efficiency of localization
solutions, as the algorithms should also run on resource-constrained devices.

6. Low cost.

In view of commercial deployment, cost is a very important criterion that
cannot be neglected, when designing a localization solution. While energy
efficient systems help to reduce the total cost of ownership, also cheap, read-
ily available commercial wireless devices are desirable.

7. Scalability.

Scalability is the ability of a system, network, or process, to handle grow-
ing amount of work in a capable manner or its ability to be enlarged to
accommodate that growth. Scalable localization systems result in a high
performance. Indeed, the accuracy of the underlying statistical procedures
increases when more nodes are encountered. Furthermore, in a larger scaled
network more targets can be localized simultaneously.



INTRODUCTION 15

In the next section a suitable ranging technique will be chosen based on the con-
straints of these design goals.

1.4 Why Wireless Sensor Networks (WSN)
In section 1.2 an overview of ranging and location techniques has been presented.
This has been supplemented with an overview of wireless technologies. Section
1.3 has added an overview of the design goals of a localization system . These
characteristics are combined in table 1.5. This table gives an overview of how the
ranging techniques meet the design goals. Ultrasound systems need a high den-
sity of sensors to compensate for the poor radio range of ultrasonic signals [100].
Time-based ranging techniques, like IEEE 802.15.4a UWB and IEEE 802.15.4a
CSS have the highest accuracy. These systems, however, require complex infras-
tructure, expensive and energy consuming embedded hardware [100]. Like IEEE
802.11 devices, the IEEE 802.15.4 DSSS based systems have an excellent ex-
tended range. This topic will be further discussed in section 3.2.1.



16 INTRODUCTION

A
cc

ur
ac

y
E

xt
en

de
d

R
ob

us
tn

es
s

Si
m

pl
ic

ity
E

ne
rg

y
L

ow
co

st
Sc

al
ab

ili
ty

R
an

ge
ef

fic
ie

nc
y

U
ltr

as
on

ic

In
fr

ar
ed

IE
E

E
80

2.
15

.1

R
FI

D

IE
E

E
80

2.
11

IE
E

E
80

2.
15

.4
D

SS
S

IE
E

E
80

2.
15

.4
a

U
W

B

IE
E

E
80

2.
15

.4
a

C
C

S

60
G

H
z

Ta
bl

e
1.

5:
R

an
gi

ng
te

ch
ni

qu
es

ve
rs

us
de

si
gn

go
al

s



INTRODUCTION 17

Compared to Bluetooth, UWB and Wi-Fi, IEEE 802.15.4 DSSS has not only
the lowest protocol complexity, but also the lowest power consumption [65]. Fur-
thermore, the IEEE 802.15.4 standard is designed for “... a simple, low-cost com-
munication network that allows wireless connectivity in applications with limited
power and relaxed throughput requirements. The main objectives are ease of in-
stallation, reliable data transfer, short-range operation, extremely low cost, and a
reasonable battery life, while maintaining a simple and flexible protocol.” [57].
Having 64-bit extended addresses, the standard scales extremely well. Using com-
plex timing techniques, IEEE 802.15.4a UWB systems perform better than IEEE
802.15.4 DSSS systems on accuracy and robustness. The IEEE 802.15.4 DSSS
ranging technique definitely outperforms the other techniques in the other design
goals and therefore, it is chosen for.

1.5 Outline and research contributions

In this introduction, it was stated that there is a huge potential for localization-
based services. Indeed, the applications range from military to consumer (e.g.
tracking and tracing of persons and objects, indoor guiding of persons in com-
plex buildings, offering location-based information, etc.). Furthermore, it has been
shown that wireless sensor networks are a valuable candidate to fulfill this need.
The main advantage of the usage of WSN is that they are scalable, low cost, energy
efficient and simple. For a final breakthrough, however, the following problems
need to be solved

• In present algorithm design, there is a large discrepancy between simulators
and real-life situations. Therefore, this work presents a new approach for
developing a localization algorithm based on the validation in a real-life test
bed. Furthermore, this work goes back to the basics and fully exploits the
underlying physics of the propagation channel in a realistic model.

• The shortage of experimental results, obtained from real indoor test beds
(as outlined in [101]), is well known. Therefore, a large test bed is used
throughout this thesis for generating a large data volume. Simple statistical
methods are employed to efficiently analyze this data.

• A main requirement for mass deployment of wireless sensor networks and
corresponding services is the easy installation and configuration, which is
realized by the introduction of self-organizing and auto-configuration mech-
anisms. For location-based services, the same requirements are valid: the
presented approach is based on the automatic selection of anchor nodes
for RSSI-based indoor localization and hence avoids complex and time-
consuming manual configuration and calibration procedures.
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• Table 1.5 shows that the accuracy and the robustness of WSN need to be
ameliorated. In chapter 4 we will take special care to improve these two
characteristics by the design of preprocessing steps in general and, more
specifically, the elimination of outliers.

This thesis is structured as follows.

• A better understanding of the physical layer results in better localization al-
gorithms. Therefore, chapter 2 is dedicated to the hardware and the physical
layer. Furthermore, the technological challenges are discussed thoroughly.

• A next step is the presentation of the principles of some existing simple
localization algorithms. This is done in chapter 3. Attention is paid to the
pitfalls of these common localization algorithms.

• Chapter 4 follows with the design of two-dimensional localization algo-
rithms. In a first step, the best available anchors at a certain time are selected
and calibrated. Next, a preprocessing algorithm is presented. The design of
two different localization algorithms completes this section.

• Chapter 5 extends a two-dimensional localization algorithm to a pseudo-
three-dimensional localization algorithm. Execution times barely change.

• In chapter 6 overall conclusions are drawn.

1.6 Scope of this thesis

A thesis on localization algorithms cannot reasonably cover the whole field. There-
fore, this section draws the borders of the scope of this thesis.

• In this thesis we focus on RSSI based IEEE 802.15.4 DSSS WSN. As dis-
cussed in section 1.4, this standard fulfills the extended range, simplicity,
energy efficiency, low cost and scalability design goals.

• Table 1.5 shows that the accuracy and the robustness of WSN need to be
ameliorated. Therefore, we focus on simple preprocessing techniques, based
on linear regression.

• This work avoids complex mathematical calculations, the underlying phys-
ical aspects are explained using distance circles. Here, we focus on “vi-
sualizing” the electromagnetic waves. Bayesian estimators, Fingerprinting
methods, Hidden Markov models and Artificial Neural Networks are men-
tioned, but not implemented because they are computationally complex.
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• We assume a deployed sensor network with a large number of nodes (which
is a realistic scenario for future dynamic wireless indoor environments) and
concentrate on the lower OSI-layers. The data is collected over the wired
network part of our real-life test bed. Therefore, the centralized and dis-
tributed aspects of the algorithms are not studied.

• Furthermore, this thesis presents new concepts for localization algorithms
using the iMinds w-ilab.t test bed.

– This test bed is synchronized. Furthermore, RSSI is less vulnerable to
synchronization errors than time based algorithms. Therefore, there is
no in depth study of synchronization.

– The test bed collects the data. This data is processed on a PC. There-
fore, our work does not focus on resource optimization of the mobile
node.

1.7 Publications

The research results obtained during this PhD research have been published in
scientific journals and presented at a series of international conferences. The fol-
lowing list provides an overview of the publications during my PhD research.

1.7.1 A1: Publications in International Journals

[1] F. Vanheel, J. Verhaevert, E. Laermans, I. Moerman and P. Demeester,
“Pseudo-3D RSSI-based WSN Localization Algorithm using Linear Regres-
sion”, Journal on Wireless Communication and Mobile Computing, Article
first published online: 23 August 2013. DOI: 10.1002/wcm.2416

[2] F. Vanheel, J. Verhaevert, E. Laermans, I. Moerman and P. Demeester, “Au-
tomated Linear Regression Tools Improve RSSI WSN Localization in Mul-
tipath Indoor Environment”, Eurasip Journal on Wireless Communications
and Networks, special issue on Localization in Mobile Wireless and Sensor
Networks, Vol. 2011:38, 2011.

1.7.2 P1: Publications indexed by the ISI Web of Science “Con-
ference Proceedings Citation Index”

[1] F. Vanheel, J. Verhaevert and I. Moerman, “Study on Distance of Inter-
ference Sources on Wireless Sensor Network,” European Microwave Con-
ference (EuMC), Amsterdam, The Netherlands, pp. EuMC10-1.1-4, 27-31
October 2008.
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1.7.3 C1: Articles in other conference proceedings

[1] F. Vanheel, J. Verhaevert, E. Laermans, I. Moerman and P. Demeester, “A
Linear Regression based Cost Function for WSN Localization,” 19th Inter-
national Conference on Software Telecommunications and Computer Net-
works (SoftCom 2011), Split - Hvar - Dubrovnik, Croatia, 5 pp., 15-17
September 2011.

[2] J. Verhaevert, F. Vanheel and P. Van Torre, “On the Design of Software
and Hardware for a WSN Transmitter”, 16th Annual Symposium of the
IEEE/CVT, Louvain-La-Neuve, Belgium, p. 11.1-6, 19 November 2009.

1.7.4 C3: Abstracts in conference proceedings

[1] F. Vanheel, J. Verhaevert, E. Laermans and I. Moerman,“Comparison of
2D RSSI based WSN Multipath Faded Indoor Localization Algorithms,”
Ghent University Faculty of Engineering and Architecture PhD Symposium,
Ghent, Belgium, pp. 212, 1 December 2010.

[2] F. Vanheel, J. Verhaevert and I. Moerman,“On the Concept of RSSI based
Indoor WSN Localization using Statistical Tools,” URSI Forum 2010, Brus-
sels, 18 May 2010.

[3] F. Vanheel, J. Verhaevert and I. Moerman, “Study on Calculating 2D Lo-
cation using WSN in Multipath Environment”, Ghent University Faculty of
Engineering and Architecture PhD Symposium, Ghent, Belgium, 9 Decem-
ber 2009.

[4] F. Vanheel, J. Verhaevert and I. Moerman, “Spectral Interference Study of
Wi-Fi on Wireless Sensor Networks”, Ghent University Faculty of Engi-
neering and Architecture PhD Symposium, Ghent, Belgium, pp. 108, 5
December 2007.
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quirements for Localization and Tracking Technology: A Survey of Mission-
specific Needs and Constraints. In IPIN 2010: Proceedings of the Interna-
tional Conference on Indoor Positioning and Indoor Navigation, pages 1–9,
Zurich, Switzerland, September 2010.

[2] M. Bal, W. Shen, and H. Ghenniwa. Collaborative Signal and Information
Processing in Wireless Sensor Networks: a Review. In SMC 2009: IEEE
International Conference on Systems, Man and Cybernetics, pages 3151–
3156, San Antonio, TX, USA, October 11–14 2009.

[3] H. Liu, H. Darabi, P. Banerjee, and J. Liu. Accuracy of RSS-Based Centroid
Localization Algorithms in an Indoor Environment. Survey of Wireless In-
door Positioning Techniques and Systems. IEEE Transactions on Systems,
Man and Cybernetics, – Part C: Applications and Reviews 2007, 37:1067–
1080, 2007.

[4] H. Koyuncu and S. H. Yang. A Survey of Indoor Positioning and Object
Locating Systems. IJCSNS International Journal of Computer Science and
Network Security, 10:5:121–128, May 2010.

[5] Y Gu, A. Lo, and I. Niemegeers. A Survey of Indoor Positioning Systems for
Wireless Personal Networks. IEEE Communications Surveys & Tutorials,
11:1:13–31, 2009.

[6] S. Pandey and P. Agrawal. A Survey on Localization Techniques for Wireless
Networks. Journal of the Chinese Institute of Engineers, 29:7:1125–1148,
2007.

[7] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher. Range-
Free Localization Schemes for Large Scale Sensor Networks. In MobiCom
2003, San Diego, CA, USA, September 14–19 2003.

[8] M. Keshtgary, M. Fasihy, and Z. Ronaghi. Performance Evaluation of Hop-
based Range-free Localization Methods in Wireless Sensor Networks. In-
ternational Scholarly Research Network ISRN Communications and Net-
working, 2011, 2011.

[9] S. Zhang, Y. Zeng, L. Chen, D. Chen, and Li Xie. Performance Evalu-
ation of Localization Algorithms for Mobile Sensor Networks. Journal of
Software 2011, 22:7:1597–1611, 2011.

[10] N.B. Priyantha. The Cricket Indoor Location System. PhD thesis, Mas-
sachusetts Institute of Technology, June 2005.



22 INTRODUCTION

[11] M. Nilsson. Localization using Directional Antennas and Recursive Esti-
mation. In WPNC: Fifth Workshop on Positioning, Navigation and Com-
munication, Hannover, Germany, March 2008.

[12] F. Winkler, E. Fischer, E. Grass, and G. Fischer. A 60 GHz OFDM Indoor
Localization System Based on DTDOA. In 14th IST Mobile & Wireless
Communications Summit, Dresden, Germany, June 2005.

[13] W. Wang, J. Y. Xiong, and Z. L. Zhu. A New NLOS Error Mitigation Algo-
rithm in Location Estimation. IEEE Transactions on Vehicular Technology,
54:6:2048–2053, November 2005.

[14] A. Maali, A. Ouldali, H. Mimoun, and G. Baudoin. Evaluation of UWB Lo-
calization under Non Line-Of-Sight (NLOS) Propagation. In ISWPC 2008:
Third International Symposium on Wireless Pervasive Computing, pages
379–382, Santorini, Greece, May 7–9 2008.

[15] P. Bahl and V. Padmanabhan. RADAR: An In–building RF–based User Lo-
cation and Tracking System. In Proceedings of the IEEE INFOCOM, vol-
ume 2, pages 775–784, Tel-Aviv, Israel, March 2000.

[16] M. Azizyan, I. Constandache, and R. R. Choudhury. SurroundSense: Mo-
bile Phone Localization via Ambience Fingerprinting. In MobiCom 2009,
Beijing, China, September 20–25 2009.

[17] D. Munoz, F. Bouchereau, C. Vargas, and R. Enriquez. Position Loca-
tion Techniques and Applications. Academic Press, Burlington, MA, USA,
2009.

[18] X. An, J. Wang, V. R. Prasad, and I. G. M. M. Niemegeers. OPT: Online
Person Tracking for Context–awareness in Wireless Personal Network. In
Proceedings of the Second International Workshop on Multihop Ad hoc
Networks: from theory to reality, pages 47–54, Florence, Italy, May 2006.

[19] F. Vanheel, J. Verhaevert, E. Laermans, I. Moerman, and P. Demeester. Au-
tomated Linear Regression Tools Improve RSSI WSN Localization in Multi-
path Indoor Environment. EURASIP Journal on Wireless Communications
and Networking 2011, Special Issue: Localization in Mobile Wireless and
Sensor Networks, 2011:38, July 2011.

[20] Y. M. Kwon, K. Mechitoch, S. Sundresh, W. Kim, and G. Agha. Resilient
Localization for Sensor Networks in Outdoor Environments. In ICDCS
2005: Proceedings of the 25th IEEE International Conference on Dis-
tributed Computing Systems, pages 643–652, Columbus, OH, USA, June
2005.



INTRODUCTION 23

[21] N. Patwari, A. O. Hero, M. Perkins, N. S. Correal, and R. J. O’Dea. Relative
Location Estimation in Wireless Sensor Networks. IEEE Transactions on
Signal Processing, 51:2137–2248, 2003.

[22] F. Vanheel, J. Verhaevert, E. Laermans, I. Moerman, and P. Demeester.
A Linear Regression Based Cost Function for WSN Localization. In
SOFTCOM: Proceedings of the 19th International Conference on Software,
Telecommunications and Computer Networks, Split, Croatia, September
15–17 2011.

[23] J. L. Nazareth. Conjugate–gradient Methods. Wiley Interdisciplinary Re-
views: Computational Statistics, 1:348–353, 2009.

[24] S. M. Kay. Fundamentals of Statistical Signal Processing, Volume 1: Esti-
mation theory. Prentice Hall, Upper Saddle River, NJ, USA, 1993.

[25] N.J. Gordon, D.J. Salmon, and A.F.M. Smith. Novel Approach to Nonlinear
non-Gaussian Bayesian State Estimation. IEE proceedings–F, 140:2:107–
113, April 1993.

[26] R.E. Kalman. A New Approach to Linear Filtering and Prediction Prob-
lems. Transactions of the ASME-Journal of Basic Engineering, 82:D:35–
45, 1960.

[27] J. Biagioni, T. Gerlich, T. Merrifield, and J. Eriksson. EasyTracker: Auto-
matic Transit Tracking, Mapping, and Arrival Time Prediction Using Smart-
phones. In SenSys 2011, Seattle, WA, USA, November 1–4 2011.

[28] C. Morelli, M. Nicoli, V. Rampa, and U. Spagnolini. Hidden Markov Mod-
els for Radio Localization in Mixed LOS/NLOS Conditions. IEEE Transac-
tions on Signal Processing, 55:4:1525–1542, April 2007.

[29] D. Madigan, E. Elnahrawy, R. P. Martin, W.-H. Ju, P. Krishnan, and A. S.
Krishnakumar. Bayesian Indoor Positioning Systems. In Proceedings of
IEEE Infocom, Miami, FL, USA, March 2005.

[30] E. O. Dijk. Indoor Ultrasonic Position Estimation Using a Single Base
Station. PhD thesis, Technische Universiteit Eindhoven, 2004.

[31] S.J. Kim and B. K. Kim. Accurate Hybrid Global Self-Localization Al-
gorithm for Indoor Mobile Robots With Two-Dimensional Isotropic Ultra-
sonic Receivers. IEEE Transactions on Instrumentation and Measurement,
60:10:3391–3404, 2011.

[32] M. Hazas and A. Hopper. Broadband Ultrasonic Location System for
Improved Indoor Positioning. IEEE Transactions on mobile Computing,
5:5:536–547, May 2006.



24 INTRODUCTION

[33] R. Mautz. The Challenges of Indoor Environments and Specification on
some Alternative Positioning Systems. In WPNC 2009: Proceedings of the
6th Workshop on Positioning, Navigation and Communication, Hannover,
Germany, March 2009.

[34] Y. Fukuju, M. Minami, H. Morikawa, and T. Aoyama. DOLPHIN: an
Autonomous Indoor Positioning System in Ubiquitous Computing Environ-
ment. In IEEE Workshop on Software Technologies for Future Embedded
Systems, pages 53–56, Hakodate, Japan, May 2003.

[35] Howard W Sams & Co Engineers. Reference Data for Radio Engineers.
Sams, Indianapolis, IN, USA, 1975.

[36] J. Hallberg and M. Nilsson. Positioning with Bluetooth, IrDA and RFID.
Master’s thesis, Lulea University of Technology, Sweden, March 2002.

[37] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The Active Badge Location
System. ACM Transactions on Information systems, 40:1:91–102, January
1992.

[38] Bluetooth Technology & Products: BlipTrack Traffic. http:
//www.bliptrack.com/traffic/area-of-operations/
bluetooth-technology-privacy/.

[39] IEEE Standard for Information Technology – Telecommunications and
Information Exchange between Systems – Local and Metropolitan Area
Networks – Specific Requirements – Part 15.1: Wireless Medium Ac-
cess Control (MAC) and Physical Layer (PHY) Specifications for Wire-
less Personal Area Networks (WPANs). http://standards.ieee.
org/getieee802/download/802.15.1-2005.pdf, 2005. IEEE
802.15.1 Std.

[40] M. S. Obaidat, A. Anpalagan, and I. Woungan. Handbook of Green Infor-
mation and Communication Systems. Academic Press, Oxford, UK, 2012.

[41] M. Guim. Nokia Research Shows off Indoor Map-
ping. http://thenokiablog.com/2011/11/29/
nokia-research-indoor-mapping/.

[42] Bluetooth SIG opens Qualification Program for Bluetooth Core Spec-
ification Version 4.0. http://www.bluetooth.com/Pages/
Press-Releases-Detail.aspx?ItemID=106, 2010. Press Re-
lease.

http://www.bliptrack.com/traffic/area-of-operations/bluetooth-technology-privacy/
http://www.bliptrack.com/traffic/area-of-operations/bluetooth-technology-privacy/
http://www.bliptrack.com/traffic/area-of-operations/bluetooth-technology-privacy/
http://standards.ieee.org/getieee802/download/802.15.1-2005.pdf
http://standards.ieee.org/getieee802/download/802.15.1-2005.pdf
http://thenokiablog.com/2011/11/29/nokia-research-indoor-mapping/
http://thenokiablog.com/2011/11/29/nokia-research-indoor-mapping/
http://www.bluetooth.com/Pages/Press-Releases-Detail.aspx?ItemID=106
http://www.bluetooth.com/Pages/Press-Releases-Detail.aspx?ItemID=106


INTRODUCTION 25

[43] B.F. Rolfe, S.W. Ekanayake, P.N. Pathirana, and M. Palaniswami. Localiza-
tion with Orientation using RSSI Measurements: RF Map Based Approach.
In ISSNIP: Proceedings of the Third International Conference on Intelligent
Sensors, Sensor Networks and Information, pages 311–316, Melbourne,
Australia, December 2007.

[44] J. Hightower, R. Want, and G. Borriello. SpotON: An indoor 3D Location
Sensing Technology Based on RF Signal Strength. Technical Report UW
CSE00-02-02, University of Washington, February 2000.

[45] L. M. Ni, Y. Liu, I. C. Lau, and A. P. Patil. LANDMARC: Indoor Location
Sensing Using Active RFID. In Proceedings of the First IEEE International
Conference on Pervasive Computing and Communications, pages 407–416,
Forth Worth, USA, 2003.

[46] X. Yinggang, K. JiaoLi, W. ZhiLiang, and Z. Shanshan. Indoor Location
Technology and its Applications Base on Improved LANDMARC Algorithm.
In CCDC 2011: Control and Decision Conference, Mianyang, China, May
23–25 2011.

[47] WhereNet Technology ISO/IEC 24730-2. http://www.zebra.com/
us/en/solutions/technology-need/wherenet.html.

[48] S. Mazuelas, A. Bahillo, R. M. Lorenzo, P. Fernandez, F. A. Lago, E. Gar-
cia, J. Blas, and E. J. Abril. Robust Indoor Positioning Provided by Real-
time RSSI Values in Unmodified WLAN Networks. IEEE Journal of Selected
Topics in Signal Processing, 3: 5:821–831, October 2009.

[49] C. Tseng and S. Cheng. Location Management Scheme with WLAN Posi-
tioning Algorithm for Integrated Wireless Networks. COMCOM: Computer
Communications, 31:18:4304–4311, December 2008.

[50] A. Kushki, K. N. Plataniotis, and A. N. Venetsanopoulos. Indoor Position-
ing with Wireless Local Area Networks (WLAN), 2008.

[51] Ekahau. http://www.ekahau.com/.

[52] T. King, S. Kopf, T. Haenselmann, C. Lubberger, and W. Effelsberg. COM-
PASS: A Probabilistic Indoor Positioning System Based on 802.11 and Dig-
ital Compasses. In WinTECH: Proceedings First ACM Intl Workshop on
Wireless Network Testbeds, Experimental evaluation and CHaracterization,
Los Angeles, CA, USA, September 2006.

[53] Infrastructure. http://www.aeroscout.com/infrastructure.

http://www.zebra.com/us/en/solutions/technology-need/wherenet.html
http://www.zebra.com/us/en/solutions/technology-need/wherenet.html
http://www.ekahau.com/
http://www.aeroscout.com/infrastructure


26 INTRODUCTION

[54] X. Li, K. Pahlavan, M. Latva-aho, and M. Ylianttila. Comparison of Indoor
Geolocation Methods in DSSS and OFDM Wireless LAN Systems. In VTC
2000 Fall: Proceedings of the 52th Vehicular Technology Conference, pages
3015–3020, Boston, MA, USA, 2000.

[55] M. Sugano, T. Kawazoe, Y. Ohta, and M. Murate. Indoor Localization
System Using RSSI Measurements of Wireless Sensor Network Based on
the ZigBee Standard. In Proceedings of the Sixth Lasted International
Multi-Conference on Wireless and Optical Communications, pages 503–
508, Banff, Canada, July 2006.

[56] IEEE Standard for Information Technology – Telecommunications and
Information Exchange between Systems – Local and Metropolitan Area
Networks – Specific Requirements – Part 15.4: Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate
Wireless Personal Area Networks (LR-WPANs). http://standards.
ieee.org/getieee802/download/802.15.4-2003.pdf,
2003. IEEE802.15.4-2003 Std.

[57] IEEE Standard for Information Technology – Telecommunications and
Information Exchange between Systems – Local and Metropolitan Area
Networks – Specific Requirements – Part 15.4: Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate
Wireless Personal Area Networks (WPANs). http://standards.
ieee.org/getieee802/download/802.15.4-2006.pdf,
2006. IEEE802.15.4-2006 Std.

[58] IEEE Standard for Local and Metropolitan Area Networks – Part
15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs).
http://standards.ieee.org/getieee802/download/
802.15.4-2011.pdf, 2011. IEEE802.15.4-2011 Std.

[59] O. Hernandez, V. Jain, S. Chakravarty, and P. Bhargava. Posi-
tion Location Monitoring Using IEEE802.15.4 ZigBee Technology.
http://www.freescale.com/files/microcontrollers/
doc/brochure/PositionLocationMonitoring.pdf.

[60] ZigBee Specification Overview. http://zigbee.org/
Specifications/ZigBee/Overview.aspx.

[61] WirelessHart Overview. http://www.hartcomm.org/protocol/
wihart/wireless_overview.html.

[62] IPv6 over Low Power WPAN. http://datatracker.ietf.org/
wg/6lowpan/charter/.

http://standards.ieee.org/getieee802/download/802.15.4-2003.pdf
http://standards.ieee.org/getieee802/download/802.15.4-2003.pdf
http://standards.ieee.org/getieee802/download/802.15.4-2006.pdf
http://standards.ieee.org/getieee802/download/802.15.4-2006.pdf
http://standards.ieee.org/getieee802/download/802.15.4-2011.pdf
http://standards.ieee.org/getieee802/download/802.15.4-2011.pdf
http://www.freescale.com/files/microcontrollers/doc/brochure/PositionLocationMonitoring.pdf
http://www.freescale.com/files/microcontrollers/doc/brochure/PositionLocationMonitoring.pdf
http://zigbee.org/Specifications/ZigBee/Overview.aspx 
http://zigbee.org/Specifications/ZigBee/Overview.aspx 
http://www.hartcomm.org/protocol/wihart/wireless_overview.html
http://www.hartcomm.org/protocol/wihart/wireless_overview.html
http://datatracker.ietf.org/wg/6lowpan/charter/
http://datatracker.ietf.org/wg/6lowpan/charter/


INTRODUCTION 27

[63] Glowbal IP: An Adaptive and Transparent IPv6 Integration in the In-
ternet of Things. http://iospress.metapress.com/content/
x611r3t20n171102.

[64] D. Lymberopoulos, Q. Lindsey, and A. Savvides. An Empirical Characteri-
zation of Radio Signal Strength Variability in 3-D IEEE 802.15.4 Networks
Using Monopole Antennas. In Proceedings of the Third European Work-
shop on Wireless Sensor Networks, pages 326–341, Zurich, Switzerland,
February 2006.

[65] J. S. Lee, Y. W. Su, and C. C. Shen. A Comparative Study of Wireless
Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. IECON 2007: Proceedings
of the 33rd Annual Conference of the IEEE Industrial Electronics Society,
1-3:46–51, 2007.

[66] K. Lorincz and M. Welsh. MoteTrack: A Robust, Decentralized Approach
to RF-Based Location Tracking. In LoCA 2005: Proceedings of the Inter-
national Workshop on Location and Context-Awareness, Oberpfaffenhofen,
Germany, May 2005.

[67] F. Seco, A. R. Jimenez, C. Prieto, J. Roa, and K. Koutsou. A Survey of
Mathematical Methods for Indoor Localization. In WISP 2009: 6th IEEE
International Symposium on Intelligent Signal Processing, pages 9–14, Bu-
dapest, Hungary, August 26–28 2009.

[68] T. Roos, P. Myllymaki, and H. Tirri. A Statistical Modeling Approach to
Location Estimation. IEEE Transactions on Mobile Computing, 1: 1:59–
69, January–March 2002.

[69] G. Chandrasekaran, M. A. Ergin, J. Yang, Y. Chen S. Liu, M. Gruteser,
and R. P. Martin. Empirical Evaluation of the Limits on Localization Us-
ing Signal Strength. In SECON 2009: Proceedings of the 6th Annual IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc Com-
munications and Networks, pages 333–341, Rome, Italy, June 2009.

[70] M. Nicoli, C. Morelli, V. Rampa, and U. Spagnolini. HMM-based Track-
ing of Moving Terminals in Dense Multipath Indoor Environments. In EU-
SIPCO 2005: Proceedings of the EURASIP European Signal Processing
Conference, Antalya, Turkey, September 2005.

[71] S. Lanzisera, D.T. Lin, and K.S.J. Pister. RF Time of Flight Ranging for
Wireless Sensor Network Localization. In International Workshop on Intel-
ligent Solutions in Embedded Systems, pages 1–12, Vienna, Austria, June
2006.

http://iospress.metapress.com/content/x611r3t20n171102
http://iospress.metapress.com/content/x611r3t20n171102


28 INTRODUCTION

[72] M. Pichler, S. Schwarzer, A. Stelzer, and M. Vossiek. Multi-channel Dis-
tance Measurement with IEEE802.15.4 (ZigBee) Devices. IEEE JSAC,
3:5:845–859, 2009.

[73] T.C. Karalar and J. Rabaey. An RF TOF Based Ranging Implementation for
Sensor Networks. In IEEE ICC 2006: IEEE International Conference on
Communication, Istanbul, Turkey, June 2006.

[74] E. Mazomenos, D. De Jager, J. Reeve, and N. White. A Two-Way Time of
Flight Ranging Scheme for Wireless Sensor Networks. In European Confer-
ence on Wireless Sensor Networks, Bonn, Germany, February 2011.

[75] P. Pettinato, N. Wirström, J. Eriksson, and T. Voigt. Multi-Channel Two-
way Time of Flight Sensor Network Ranging. In European Conference on
Wireless Sensor Networks, Trento, Italy, February 2012.

[76] M. Nilsson. Directional Antennas for Wireless Sensor Networks. In Ninth
Scandinavian Workshop on Wireless Adhoc Networks, pages 1–4, Uppsala,
Sweden, May 4–5 2009.
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2
Physical Layer

2.1 Introduction

A better understanding of the physical layer results in better localization algo-
rithms. Therefore, a chapter dedicated to the hardware is a must-have for this
book. Section 1.4 revealed that the combination of RSSI as a ranging technique
and WSN as a wireless technology possesses the highest potential to meet the de-
sign goals for localization that were outlined in section 1.3. This chapter starts
with the presentation of a RSSI-based WSN test bed and continues with a study
on the RSSI-based technological challenges. It further describes the design of a
software designed transmitter, in order to access the physical layer and understand
the IEEE 802.15.4 DSSS standard better. This knowledge is needed to develop
good localization algorithms.

2.2 The test bed: WSN and RadioPerf

The iMinds iLab.t Wireless Lab or w-ilab.t is an extensive wireless mesh and sen-
sor network infrastructure installed at iMinds office premises in Ghent (Belgium),
including meeting rooms, classrooms, offices and corridors. The w-ilab.t is inte-
grated in the CREW platform [1], which is an open federated test platform that
facilitates experimentally-driven research on advanced spectrum sensing, cogni-
tive radio and cognitive networking strategies in view of horizontal and vertical
spectrum sharing in licensed and unlicensed bands. The w-ilab.t has more than
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(a) (b)

Figure 2.1: Position of sensor nodes on the third floor (a) and second floor (b) of the iMinds
office building. Drywall walls are presented by dark green solid lines. The solid
gray lines are concrete wall. The black squares and black circles are the selected
anchors (see section 4).
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200 TMote Sky nodes equipped with a Chipcon CC2420 radio chip operating in
the 2.4 GHz frequency band. The nodes are spread over three floors on a grid
measuring 12 m by 80 m. The dimensions of the third floor are 16.8 m by 90.0
m or 1512 m2. On the third floor there are 56 nodes. All nodes are mounted at
the same height (0.15 m beneath a highly conducting ceiling). The central internal
walls are constructed of drywall, while walls in the vicinity of the staircases and
elevator are made of concrete. There is a microwave oven in each of these concrete
zones. At the elevator a lot of metal is used. One side of the longest corridors is
concrete and the other drywall. In figure 2.1 (a) this third floor is shown with the
position of the nodes and its four narrow but long corridors. On the second floor,
there are 58 nodes. The floor plan and the position of the nodes can be found in
figure 2.1 (b). The floor is rectangular shaped, but in the center of the floor, there
are also outside walls, almost cutting the floor in two smaller rectangles. There
is a red brick external wall in front of the concrete outside bearing walls. In this
construction, there are many coated aluminium framed windows.

Every node is connected to a corresponding environment emulator (EE). This
component can measure real-time energy consumption, emulate battery depletion
and generate artificial sensor data, hence emulating real-world application scenar-
ios. The EE is connected to an intermediate node or iNode. The iNodes are further
connected to a central management server via Ethernet and are responsible for the
configuration and control of the sensor nodes. The iNodes are also connected with
2 IEEE 802.11 (a/b/g) radios and allow Wi-Fi testing. In this work we will only
focus on the sensor nodes. Power is fed over Ethernet through Power over Ethernet
(PoE) network switches. The control software supports both Tiny OS 1 and Tiny
OS 2. The iNodes can be synchronized with a time server. A time accuracy of
2µs is obtained and used for data logging. More about our test bed can be found
in [2, 3], more about the environment emulator can be found in [4, 5].

On the iNode we have a software tool called RadioPerf which is in terms of
functionalities very similar to the iperf, netperf and nuttcp tools [6, 7]. This tool
includes a packet generator and Java based configuration and visualization of mea-
surements reported to the central data server. For this study the following items are
collected in a log file: the number of packets sent, the number of packets sent with
an error, the minimum estimated noise floor, the average estimated noise floor, the
maximum estimated noise floor, an identifier of the node generating the packets,
the number of packets received, the number of packets lost, the minimum link
quality indication (LQI), the average LQI, the maximum LQI, the minimum RSSI,
the average RSSI, the maximum RSSI, a time stamp, the node reporting these val-
ues and a report sequence number. A screenshot of the RadioPerf tool is presented
in figure 2.2. At the upper left-hand side the configuration is set. The highlighted
ConfigRadio tab shows the selection of channel 26 (2480 MHz) and the power
level of 0 dBm. The lower left-hand side offers a selection of the items to be dis-
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played. These items appear at the right-hand side. The highlighted tab represents
the number of packets received. This example starts with a good reception of the
packets. At the time stamp A the microwave oven is switched on, resulting in
a disturbed reception. At the time stamp B the oven is switched off and a good
reception follows again.

For our research this w-ilab.t test bed has been indispensable.

Figure 2.2: RadioPerf with its configuration tabs, selection region and display area.

2.3 Challenges with indoor RSSI
Table 1.4 revealed that both the accuracy and the robustness of IEEE 802.15.4
DSSS (RSSI-based WSN) localization systems can be improved. For achieving
these goals, this chapter goes back to the underlying physical aspects to consider.
In a first subsection the effect fading is categorized. Next, multipath fading is
treated empirically with the help of the iMinds w-ilab.t test bed. It is shown that
multipath fading is a very annoying factor for indoor localization. This section
finishes with an extended study on spectral interference.

2.3.1 Slow fading versus Fast fading

Using radio waves as the network medium poses several challenges. A first chal-
lenge is fading: this is a gradual appearance (or disappearance) of the radio signal.
A complete discussion of this topic is beyond the scope of this book. This can be
found in [8, 9]. Depending on the coherence time of the channel, one can observe
either slow fading or fast fading. The fast fading can be averaged out.
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In order to study the effect of time fading in an indoor environment, a test was
set up using the w-ilab.t test bed, including all nodes on the third floor. Every
node broadcasts 240 packets. Every packet consists of 100 bytes, the inter packet
delay is 25 ms. This brief recovery time between packets allows devices to prepare
for reception of the next packet. The transmission of one broadcast takes 25 ms
times 240 or 6 seconds. Every second, available data was sent to our log file.
This implies that some averaging of RSSI-measurements is already done on the
mobile nodes. This is done for limiting the amount of reports, while still obtaining
a sufficient long measuring time: the receiver of the 240 packets typically needs to
send 6 (averaged) RSSI reports. (It could be less if many packets are lost. It could
also be one more if sender and receiver are not completely synchronized.) These
RSSI-measurements are now read and processed in Matlab on the positioning PC.
First, an overall average RSSI is calculated for each sending-receiving pair. Next,
this average is abstracted from the minimum value in the corresponding packet
group.

Figure 2.3: Cumulative distribution function plots for the error on the average RSSI.

The black line in figure 2.3 represents the cumulative distribution frequency
(cdf)plot of the minimum values minus the corresponding mean for all sending-
receiving pairs. It shows that in 40% of the cases the minimum is equal to the
mean. When this occurs, all corresponding sending-receiver measurements have
the same RSSI-values. The minimum difference equals -4.1 dB. Likewise, the red
line represents the cdfplot of the maximum values minus the corresponding mean
for all sending-receiving pairs. Again, in 40% of the measurements, there is no
difference between the RSSI-measurements in the packet group. The maximum
difference is 3.9 dB. The blue line in figure 2.3 represents the cdfplot of the maxi-
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mum plus minimum RSSI-values in the inter packet group for all sending-receiver
pairs. Almost all values are between plus and minus 1 dB. This illustrates the fact
that in our environment a too large inter packet group reading will be accompa-
nied by a too small inter packet group reading. Averaging will further increase the
precision to less than +/- 1 dB.

Shadowing (occurring when the signal path between the transmitter and re-
ceiver is obstructed), is usually modeled as a slowly time varying random pro-
cess [10]. Averaging now needs to be performed over a larger time. Furthermore,
if the data has zero bias, it is interesting to use “truncated” averaging [11]. This
is an averaging where the extreme values of the RSSI-measurements (both the
smallest and the highest) are ignored. (Please note the median is an example of the
truncated mean. Here all, but the most central values are ignored.) Filtering, e.g.
with a Kalman filter (see future work in section or an unscented particle filter [12]
efficiently polish up corrupted data. Because we measure an (averaged) accuracy
of +/- 1 dB in our data, we keep this filtering as future work.

2.3.2 Multipath fading

Multipath fading is the result of radio waves reaching the receiver by two or more
signal paths, each with its own time-delay. Depending on the relative phase shift
of the waves, these waves either reinforce or undermine each other. This results in
a constructive or destructive multipath fading respectively. Causes for multipath
fading include refractions and reflections [13].

In order to study the effect of multipath fading in an indoor environment, a
test was set up using the w-ilab.t test bed, consisting of nodes 2, 5, 8, 12, 15, 20
and 21 (see the upper part of figure 2.1 (a)). These nodes are collinear and a clear
line of sight exists. Every node broadcasts 240 packets. Every packet consists
of 100 bytes, the inter packet delay is 25 ms. This brief recovery time between
packets allows devices to prepare for reception of the next packet. Transmission
is at channel 26 in order to avoid Wi-Fi interference (see further in section 2.3.3).
Upon swapping sending nodes, the test bed is idle for 3.5 s. The test is repeated for
transmit power levels of 0, -1, -3, -5, -7, -10 and -25 dBm. Every second available
data was sent to our log file.

Figure 2.4 shows the RSSI in function of the distance on a semi-logarithmic
scale between node 2 and the others at different transmit power levels. The graph
also contains the RSSI predicted by the model for a sender transmitting at 0 dBm
according to the IEEE 802.15.4 standard [14]. The measured RSSI does not de-
crease monotonously with distance: e.g. for a transmit power of 0 dBm around a
distance of 20 m, a RSSI of -35 dBm is measured and at the shorter distance of
about 10 m a RSSI of -47 dBm is observed. Furthermore, at the distance of 20 m
the model in the IEEE 802.15.4 expects a RSSI of -70 dBm, giving a difference
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Figure 2.4: Capricious line of sight (LOS) RSSI multipath fading in corridors for node 2 at
different power levels.

of 35 dB with the measurement. The measured signal is much too strong, even
at small distances. This effect occurs in all corridors and cannot be explained by
many theories:

1 Walls have attenuation and what we notice is a stronger signal.

2 The standard deviation on measurements due to time-fading is only a few
dB [15] and what we see is a very large spread.

3 The RSSI accuracy in the CC2420 datasheet is much better than the mea-
sured spread [16].

4 Fluctuations in transmit power are not an issue because figure 2.4 only con-
siders one transmitter (node2).

5 The spread on receiver sensitivity of the CC2420 also does not exceed a few
dB and is therefore less than the observed spread.

The shape in figure 2.4 with minima and maxima is also found in other practi-
cal experiments in corridors [17] and can only be justified with diffraction and the
many constructive scatterings and reflections by the conductive metal ceiling and
nearby walls in these corridors, acting as “street canyons” [18].

In indoor environment, multipath fading is a very disturbing factor for local-
ization.
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2.3.3 Interference

Electromagnetic interference is the disturbance that affects an electrical circuit due
to electromagnetic radiation emitted from an external source. Our sensor nodes
work in the 2.4 GHz ISM frequency band, as outlined in section 1.4 and discussed
in section 2.2. The disturbing sources in this frequency band include:

• Bluetooth (IEEE 802.15.1)

• Wireless USB version 2 (IEEE 802.15.3)

• Wi-Fi (IEEE 802.11)

• microwave ovens

• other sources, like some cordless phones and RF motion detectors

2.3.3.1 Study of interference in the IEEE 802.15.4 standard

The interference problem is recognized by the IEEE, giving rise to a dedicated
standard on the interference in the ISM-band [19]. The IEEE 802.15.4 stan-
dard [14] provides several mechanisms that enhance coexistence with other wire-
less devices operating in the 800 MHz, 900 MHz, and 2.4 GHz bands. These
mechanisms include

• CCA (Clear Channel Assessment)

The standard [14] provides at least one of the following three CCA methods:
energy detection (ED) over a certain threshold, detection of a signal with
IEEE 802.15.4 characteristics, or a combination of these methods [20]. The
use of the ED option improves coexistence by allowing transmission backoff
if the channel is occupied by any device, regardless of the communication
protocol it may use.

In [21] coexistence aware clear channel assessment between different stan-
dards has also been studied in depth.

• Dynamic channel selection

The same standard provides a “ChannelList” parameter. Out of this list the
allowable channels are chosen from. For 2400 MHz band IEEE 802.15.4
networks that are installed in areas known to have high IEEE 802.11b/g
activity, the ChannelList parameter can be adjusted in order to enhance the
coexistence of the networks.

• Modulation
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This standard uses a quasi-orthogonal modulation scheme, where each sym-
bol is represented by one of 16 nearly orthogonal pseudo-random noise se-
quences. This is a power-efficient modulation method that achieves low
signal-to-noise ratio (SNR) and signal-to-interference ratio (SIR) require-
ments at the expense of a signal bandwidth that is significantly larger than
the symbol rate. [10, 14]

Relatively wideband interference would appear like white noise to an IEEE
802.15.4 receiver. The detector performance in this case is similar to noise
performance, but the overall SIR requirement is lower because only a frac-
tion of the wideband interferer signal power falls within the IEEE 802.15.4
receiver bandwidth [14].

DSSS is an effective processing tool to deal with interferers whose band-
width is smaller than the bandwidth of this standard. For example, this pro-
cessing helps to reduce the impact of an IEEE 802.15.1 interferer [14].

• ED and LQI (Energy Detection and Link Quality Indication)

The LQI is a measurement of the received energy level (signal strength) and
the SNR (quality) for each received packet [14, 16]. When energy level and
SNR data are combined, they can indicate whether a corrupt packet resulted
from low signal strength or from high signal strength plus interference [14].

• Low duty cycle

The IEEE 802.15.4 DSSS is a low power and low data rates standard. A lo-
calization algorithm runs on low duty cycles. This will make IEEE 802.15.4
devices less likely to cause interference to other standards.

• Channel alignment

The IEEE 802.11b/g standard [22] recommends non overlapping sets of both
European an USA channels. It is possible to use IEEE 802.15.4 DSSS chan-
nels that fall in the guard bands between (or above) the three recommended
IEEE 802.11b/g channels. While the energy in this guard space will not be
zero, it will be lower than the energy within the channels; and operating an
IEEE 802.15.4 network on one of these channels will minimize interference
between systems [14]. There are 14 IEEE 802.11 channels designated in
the 2.4 GHz range spaced 5 MHz apart (with the exception of a 12 MHz
spacing between channel 13 and channel 14, the latter channel is only used
in Japan). Channel 12 and channel 13 are not used in North-America. As
the protocol requires 25 MHz of channel separation, adjacent channels over-
lap and will interfere with each other. Consequently, using only channels 1,
6, 11 is recommended in the US to avoid interference by the IEEE 802.11
channels [22].
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IEEE 802.11b/g Center frequency fmin − fmax Recommended
Channel MHz MHz USA Europe

1 2412 2401 – 2423 x x
2 2417 2406 – 2428 - -
3 2422 2411 – 2433 - -
4 2427 2416 – 2438 - -
5 2432 2421 – 2443 - -
6 2437 2426 – 2448 x -
7 2442 2431 – 2453 - x
8 2447 2436 – 2458 - -
9 2452 2441 – 2463 - -
10 2457 2446 – 2468 - -
11 2462 2451 –2473 x -
12 2468 2456 – 2478 - -
13 2472 2461 – 2483 - x
14 2484 2473 – 2495 - -

Table 2.1: IEEE 802.11b/g channels

IEEE 802.15.4 Center frequency fmin − fmax Recommended
Channel MHz MHz USA Europe

11 2405 2404 – 2406 - -
12 2410 2409 – 2411 - -
13 2415 2414 – 2416 - -
14 2420 2419 – 2421 - -
15 2425 2424 – 2426 x x
16 2430 2429 – 2431 - x
17 2435 2434 – 2436 - -
18 2440 2439 – 2441 - -
19 2445 2444 – 2446 - -
20 2450 2449 – 2451 x -
21 2455 2454 –2456 - x
22 2460 2459 – 2461 - x
23 2465 2464 – 2466 - -
24 2470 2469 – 2471 - -
25 2475 2474 – 2476 x -
26 2480 2479 – 2481 x -

Table 2.2: IEEE 802.15.4 channels

Figure 2.5 shows that the additional selection of the IEEE 802.15.4 channels
15, 20, 25 and 26 results in a minimum interference system for America.
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Likewise, the IEEE 802.11 standard [22] recommends the use of channels
1, 7 and 13 for Europe and IEEE 802.15.4 could benefit from the selection
of channels 15, 16, 21 and 22 (see figure 2.6). The effort of the IEEE orga-
nization to minimize the interference is shaded by the wild growth of other
IEEE 802.11 channel suggestions, like in [23, 24].

• Low transmit power

First, this item is illustrated with spectral measurements of a Ubiwave UW-
CM-06 device with both full and reduced output power. Finally, the transmit
power is discussed.

1 IEEE 802.15.4 Ubiwave UW-CM-06 spectrum
A Targa 1800 Visionary laptop is equipped with Windows 2003 Server
and National Instrument LabVIEW 8. Figure 2.7 illustrates this setup.
We use this graphical development environment to control the Rohde
& Schwarz Spectrum Analyzer model FSP, accessed through an Ag-
ilent 82357A USB to GPIB interface and retrieve the spectrum data
in .csv format (the virtual instrument RSFSP getting startedApp.vi is
adapted to our needs). We conductively connect the antenna output
connector of the UW-CM-06 with the spectrum analyzer. Through the
JTAG the UW-CM-06 receives the correct software: the external an-
tenna is enabled, the power level is set to -7 dBm (TXCTRL-register
= 0xA0EF), the frequency is changed progressively from channel 11
to channel 13. Further the antenna connector is connected conduc-
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Figure 2.5: USA minimal interference systems consist of Wi-Fi channels 1, 6 and 11, com-
bined with IEEE 802.15.4 channels 15, 20, 25 and 26.



42 PHYSICAL LAYER

2400 2410 2420 2430 2440 2450 2460 2470 2480 2490 2500
−60

−50

−40

−30

−20

−10

0

10

Frequency (MHz)

Output
power
(dBm)

 

 
Wi−Fi ch1
Wi−Fi ch7 
Wi−Fi ch13
802.15.4 ch16
802.15.4 ch15
802.15.4 ch21
802.15.4 ch22

Figure 2.6: European minimal interference systems consist of Wi-Fi channels 1, 7 and 13,
combined with IEEE 802.15.4 channels 15, 16, 21 and 22.

Figure 2.7: Test setup for Ubiwave UW-CM-06 spectrum and power control measurements

tively to the spectrum analyzer and with new GPIB commands the RS-
FSP getting startedApp.vi is extended to: accepting the Agilent adap-
tor, a resolution bandwidth of 100 kHz, a viewing bandwidth of 300
kHz, a frequency span of 10 MHz, a RF-level of +10 dBm and reading
the spectrum analyzer data in .csv format. The trace of spectrum an-
alyzer is set to MAX HOLD and measurements are captured through
the GPIB interface and processed. On figure 2.8 it is shown that IEEE
802.15.4 channel spacing is 5 MHz and that the output power is higher
than expected. This is because the internal amplifier is enabled. Also
the output power is relatively constant for each channel; it is like the
Fourier transform of a raised cosine: the first dip is approximately 1.5
MHz away from the carrier, more dips follow at 1 MHz each (2/3 of
this distance), side lobes are at 2, 3, 4, 5 ... MHz away from the carrier.
Side lobes are at less than -20, -28, -32, -38 dBc. This device meets the
relative 802.15.4 adjacent power specification ( < -20 dBc for |f-fc|>
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Figure 2.8: IEEE 802.15.4 adjacent channels. Channel spacing is 5 MHz. For these devices,
the output level is too high, due to the presence of an internal amplifier.

3.5 MHz ) but it does not meet the absolute adjacent power specifica-
tion (< -30 dBm for |f-fc|> 3.5 MHz ) for high output power, because
the internal amplifier also shifts the side lobes.

2 IEEE 802.15.4 Ubiwave UW-CM-06 power control.
For channel 12 the output power of the CC2420 chip is respectively set
to

– 0 dBm ( TXCTRL-register = 0xA0FF)
– -7 dBm ( TXCTRL-register = 0xA0EF)
– -15 dBm ( TXCTRL-register = 0xA0E7 )
– -25 dBm ( TXCTRL-register = 0xA0E3)

Figure 2.9 illustrates the measured output power for the different power
levels and the corresponding power spectral density (PSD) masks.

– The shape of the curves is very similar for all power levels, ex-
cept for the highest power. A saturation effect is observed. At
this point it is not clear whether the CC2420 or the external am-
plifier is saturating. Another test on a Silicon Laboratories 2.4
GHz transmitter board [25] without an internal amplifier shows
very comparable saturation effects. (Please note this obsolete kit
has been replaced by the Silicon Laboratories Ember kit [26].)
Therefore, it can be concluded that this saturation is due to the
(common) CC2420 radio chip.

– For non-saturation output it is like the Fourier transform of a raised
cosine.
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(a) the first dip is approximately 1,5 MHz away from the carrier,
more dips follow at 1 MHz each (2/3 of this distance).

(b) side lobes are at 2, 3, 4, 5 ... MHz away from the carrier. Side
lobes are at less than minus 20, 28, 32, 38 dBc.

(c) this device meets the relative 802.15.4 adjacent power speci-
fication ( < -20 dBr for |f-fc| > 3.5 MHz )

(d) this device does not meet the absolute adjacent power spec-
ification ( < -30 dBm for |f-fc| > 3.5 MHz for high output
power, because the internal amplifier also shifts the side lobes.

– When saturating channel broadens: this is a worst case situation
(a) the passband is flatter
(b) the first dip disappears

Figure 2.9: IEEE 802.15.4 DSSS power control. When saturating the CC2420 radio chip,
the passband widens and some frequency dips disappear.

3 Discussion
The majority of IEEE 802.15.4 devices are expected to operate with
transmit powers between -3 dBm and 10 dBm, with 0 dBm being typ-
ical. Transmitting at a higher power level results in a higher cost of
the low-cost system on chip devices. Furthermore, these higher power
levels require expensive filtering in order to meet the regulations for
out-of-band emissions. The typical current consumption for a CC2420
chip for an output power of 0 dBm equals 17.4 mA [16]. A very much
lower power output of -25 dBm needs a comparable 8.5 mA. At this
level, actual transmit power represents a small fraction of the overall
power consumed by the transmitter, so there is little benefit in terms
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of energy savings to operate below a level of -3 dBm [14]. Please
also note that an IEEE 802.15.4 DSSS communication with transmit-
ting power levels of less than -3 dBm is more vulnerable to an IEEE
802.11b/g interferer. The IEEE 802.15.4 DSSS receiver gets a lower
signal from the IEEE 802.15.4 transmitter and IEEE 802.11b/g devices
transmit at higher power levels than IEEE 802.15.4 transmitters. The
CC2420 consumes 18.8 mA [16] in receiving mode. This is slightly
above the consumption for transmitting at full power. This further jus-
tifies the choice for transmitting at the higher power levels.

Subsection 2.3.3.3 includes a further study of power from an IEEE
802.11b/g interferer received in IEEE 802.15.4 DSSS channels.

• Neighbor piconet capability

A collection of devices occupying a shared physical channel where one of
the devices is the piconet master and the remaining devices are connected to
it, is called a piconet. Piconets are more associated with Bluetooth [27], but
they can also be found in IEEE 802.15.4. This standard offers the possibility
to use guaranteed time slots (GTSs). Please note GTSs are situated on the
MAC-layer, for a fully treat of the interference, they are also mentioned
here. The personal area network coordinator can set aside GTSs specifically
for use by other systems. This type of neighbor piconet support capability
may further alleviate interference with other systems [14]

2.3.3.2 Frequency spectra of an IEEE 802.11 3-Com wireless Wi-Fi NIC

The quality of localization algorithms increases when physical layer aspects are
taken into account. Therefore, this section continues with the study of frequency
spectra of a 3-Com wireless Wi-Fi NIC (madwifi drivers already in Kernel) This
card is housed in a 600 MHz PC with Scientific Linux (SL04) (CERN, Red Hat
based), wireless extensions, and Click-1.5.0 user level. The antenna of the 3-Com
NIC is replaced with a connector and conductively connected with the spectrum
analyzer. The wireless extensions of the PC are controlled: an IP number is as-
signed, ad-hoc mode is selected and an ESSID is given. Next, default transmit
power (=18 dBm) is set and the frequency is forced to channel 6 (which equals
2437 MHz, see table 2.1). Then a decision on the b or g mode has to be taken:
iwpriv mode 2 forces the NIC to IEEE 802.11b and mode 3 is reserved for IEEE
802.11g. Next, the rate is set to 11 Mbps for the IEEE 802.11b and changed from
6 Mbps to 54 Mbps within the IEEE 802.11g. With new GPIB commands the
RSFSP Getting Started App.vi is extended to: accepting the Agilent adaptor, a
resolution bandwidth of 100 kHz, a viewing bandwidth of 300 kHz, a frequency
span 50 MHz, a RF-level of +10 dBm and reading the spectrum analyzer data in
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.csv format. The trace of spectrum analyzer is set to MAX HOLD and measure-
ments are captured through the GPIB interface and processed.

Figure 2.10: The Wi-Fi transmitted power as function of the frequency. All measured spec-
tra fulfill its respective frequency masks.

In figure 2.10 the typical DSSS waveform for IEEE 802.11b modulated at 11
Mbps and the more rectangular spectrum for IEEE 802.11g, modulated with 6
Mbps and 54 Mbps is observed. The two upper curves give the very important
transmit power spectral density (PSD) masks for IEEE 802.11g and IEEE 802.11b
respectively. Except for distances from the carrier between 9 and 11 MHz, the
IEEE 802.11b mask is more restrictive than that of IEEE 802.11g. As discussed
in [28] and theoretically confirmed in [29] the widest spectrum is for IEEE 802.11g
modulated with 6 Mbps. An important conclusion of figure 2.10 is that all mea-
sured spectra fulfill their respective frequency masks.

2.3.3.3 Power measurement of Wi-Fi into IEEE 802.15.4 channels

Power from a single Wi-Fi channel is spread over multiple IEEE 802.15.4 channels
and increases its noise floor. With the spectrum analyzer the power in a 2 MHz
bandwidth on each IEEE 802.15.4 channel is measured: with a central frequency
of 2405, 2410, 2415 ... 2480 MHz. The frequency span is set to 10 MHz, the ref-
erence level is 10 dBm, the resolution bandwidth equals 100 kHz and the viewing
bandwidth 300 kHz. The NIC is forced to channel 6 and transmits at full power
at 11 Mbps (IEEE 802.11b DSSS), and 6 Mbps or 54 Mbps (both IEEE 802.11g
OFDM). The results are shown in Table 2.3. In the second column of it, the fre-
quency offset between the central frequency of the IEEE 802.15.4 and the Wi-Fi
channel is given. Between round brackets we find the ranking within the same fre-
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quency offset: i.e. IEEE 802.15.4 channel 20 at 2450 MHz is 13 MHz away from
the Wi-Fi channel 6 and within a 2 MHz bandwidth the least power is for 11 Mbps
DSSS, then follows 54 Mbps and finally 6 Mbps OFDM. Due to noise limitations
of the measuring equipment, values at high frequency offsets cannot be measured.
Please note this ranking could also be previewed on the spectrum of figure 2.10.

2.3.3.4 Minimum distance Wi-Fi transmitter and IEEE 802.15.4 receiver

The IEEE 802.15.4 standard [14] also presents simulated graphs for the minimum
separation between an IEEE 802.15.4 (DSSS) receiver and different interferers
using another IEEE standard under the simulation conditions of table 2.4. Table
2.5 summarizes these graphs for a Packet Error Rate (PER) of 10%.

The first column displays the channel offset (in MHz) between the IEEE in-
terferer and the IEEE 802.15.4 receiver. Because IEEE 802.15.1 (Bluetooth) uses
frequency hopping in the complete ISM-band, no channel separation can be given.
The minimum required separation is 19 m. For devices following the other IEEE
standards, the minimum required distance increases with decreasing channel off-
set. The worst result is for the IEEE 802.11b interferer, where a separation of 57
m is needed at a channel offset of 3 MHz. Please note that the minimum of the
minimum required distances equals 1.3 m. This implies that interference cannot be
avoided, even at the highest channel separation. When two different wireless tech-

IEEE 802.15.4 F offset 6 Mbps 54 Mbps 11 Mbps
Channel MHz OFDM OFDM DSSS

2405 -32 -40.6 (3) -45.5 (2) -47.0 (1)
2410 -27 -39.3 (3) -44.9 (2) -47.0 (1)
2415 -22 -30.6 (3) -36.7 (2) -43.0 (1)
2420 -17 -21.7 (3) -28.2 (2) -28.3 (1)
2425 -12 -14.6 (3) -20.2 (2) -26.4 (1)
2430 -7 9.9 (3) 6.7 (2) 5.9 (1)
2435 -2 11.8 (2) 11.7 (1) 12.5 (3)
2440 3 12.1 (2) 11.4 (1) 12.7 (3)
2445 8 9.3 (3) 6.4 (2) 1.8 (1)
2450 13 -13.9 (3) -21.7 (2) -24.5 (1)
2455 18 -21.0 (3) -28.8 (1) -28.4 (2)
2460 23 -30.9 (3) -37.8 (2) -41.0 (1)
2465 28 -38.8 (3) -42.1 (1) -41.6 (2)
2470 33 -42.0 (3) -44.9 (2) -45.0 (1)
2475 38 - - -

Table 2.3: Power measurement in 2MHz bandwidth (in dBm) of a Wi-Fi transmitter (chan-
nel 6) into IEEE 802.15.4 channels
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IEEE 802.15.4 communication link
channel model d = 10(Pt−Pr−40.2)/20 for d < 8m

d = 8 · 10(Pt−Pr−58.5)/33 for d > 8m
receiver sensitivity -85 dBm

transmit power 0 dBm
transmit mask see figure 2.9

packets 22 bytes
Bit error rate 8

15 ·
1
16 ·

∑16
k=2(−1)k

(
16
k

)
e20·SINR·(

1
k−1)

desired signal 10 dB above receiver sensitivity (-75 dBm)
receiver bandwidth 2 MHz

Interferers
transmit power IEEE 802.15.1 0 dBm
transmit power IEEE 802.15.3 8 dBm
transmit power IEEE 802.11b +14 dBm
transmit mask IEEE 802.15.1 see section 7.2.3.1 in Standard [27]
transmit mask IEEE 802.15.3 see section 11.5.3 in Standard [30]
transmit mask IEEE 802.11b see figure 2.10

packets IEEE 802.15.1 1024 bytes
packets IEEE 802.15.3 1024 bytes
packets IEEE 802.11b 1024 bytes

Table 2.4: Overview of simulation conditions

F offset (MHz) IEEE 802.15.1 IEEE 802.15.3 IEEE 802.11b
NA to IEEE 802.15.1 19

2 42
3 57

17 7.8
22 6.4
27 1.3
47 2.5

Table 2.5: Simulated minimum required distance in meter between an IEEE 802.15.4 DSSS
receiver and different IEEE interferers (PER=0.10)

nologies are housed in the same package, the only solution is a power reduction of
the interferer and a kind of channel access control, as discussed in section 2.3.3.1.
Two network interface cards that are housed in the same personal computer face
the same problem [31]. The upper part of table 2.4 presents the characteristics of
the IEEE 802.15.4 communication link, the lower part shows data on the interferer.
Please note that there is only one expression for the bit error rate. This is explained
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by the fact that there is only one allowed constellation diagram (O-QPSK) in the
2.4 GHz IEEE 802.15.4 DSSS standard. The calculation of this bit error rate fol-
lows the approach outlined in section C.3.2 of the IEEE 802.15.2 standard [19].
The higher distance separation for an IEEE 802.11b interferer (compared to an
IEEE 802.15.3 interferer) in table 2.5 can be explained by the higher transmit
power of the former (see table 2.4). The IEEE 802.15.4 standard doesn’t provide
data for an IEEE 802.11g interferer. The remainder of this section begins with an
empirical study to deal with this problem, and the minimum distance between an
IEEE 802.11b/g interferer and an IEEE 802.15.4 receiver is presented. Figure 2.11
shows the test setup.

A 3-Com wireless Wi-Fi NIC (madwifi drivers already in Kernel) is housed
in a 600 MHz PC with Scientific Linux (SL04) (CERN, Red Hat based), wireless
extensions, Click-1.5.0 user level and a wired NIC with VNC server to control the
wireless card out of the Qosmotec box. These perfectly shielded metal boxes are
used to completely annihilate the influence of interferences, meanwhile giving the
opportunity to optically connect to the equipment placed inside. An IEEE 802.15.4
connection with two TMote Sky modules housed in other Qosmotec boxes will be
set up. A TMote connect gateway interfaces the TinyOS 2.0 TMote Sky IEEE
802.15.4 modules to Ethernet.

A Targa 1800 Visionary laptop is equipped with Windows 2003 Server, a wired
NIC with a VNC client and National Instrument LabVIEW 8. We use this graphi-
cal development environment to control the Rohde & Schwarz Spectrum analyzer
model FSP, accessed through an Agilent 82357A USB to GPIB interface and take
back the spectrum data in .csv format (RSFSP getting startedApp.vi is adapted to
our needs). We supervise the emissions with a D-Link wireless NIC and Wild-
packets Airopeek sniffer. To exclude unwanted radiation the devices under test
are sealed within a shielded Qosmotec box. The laptop also holds Netbeans IDE
6.0 and the Radioperf tool [32] . This tool is a Java interface application, where
the designers made it possible to remotely control and interrogate the TMote Sky
modules. First we will use Radioperf to set the number of bytes per packets and
number of packets per second of the IEEE 802.15.4 transmitter and then Radiop-
erf reads the total received and lost packets. Finally the laptop will also be used to
remotely connect to the Qosmotec Air Interface Simulator (AIS). This simulation
tool for lab usage does away with imprecise manual attenuators and allows for
controlled, repeatable, yet easy-to-use simulation [33]. Here, the Qosmotec sys-
tem is used to control the attenuation between the devices under test and control
the distances in absence of interference.

The experiment continues with the setup of the system of figure 2.12 using
Qosmotec splitters and attenuators. All devices under test are put in a separate
Qosmotec box. The power of the IEEE 802.15.4 transmitter is split and conducted
to two attenuators. The first attenuation path leads to the IEEE 802.15.4 receivers
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Figure 2.11: Test setup with shielded QOSMOTEC boxes for testing interference of a Wi-Fi
interferer on an IEEE 802.15.4 link.

with an Air Interface Simulator fixed attenuation of 68 dB. The second attenuation
path leads to the splitter/combiner of the Wi-Fi transmitter. Its AIS attenuation is
set to the maximum (92 dB). At this level both transmitters will not cease transmit-
ting packets. The other leg of the splitted Wi-Fi power is sent to an AIS variable
attenuator, representing the variable distance between Wi-Fi interferer and IEEE
802.15.4 receiver. The IEEE 802.15.4 receiver combiner adds the attenuated sig-
nals from the IEEE 802.15.4 and Wi-Fi transmitters.

Table 2.6 gives an overview of how the measurement conditions relate to the
simulation conditions of the IEEE 802.15.4 standard [14]. Both measurement and
simulation use the same channel model. Our measurement conditions are more
stringent than the simulations in the standard: our receiver is more sensitive and in
analogy with analog receiver measurements we only went 3 dB above the sensitiv-
ity level. Furthermore, a more powerful interferer produces higher side lobes and
more out of band noise. It is also easily verified that with the given packet sizes
and packet repetition rates an IEEE 802.11 packet with sufficient power cannot
find a time slot between two IEEE 802.15.4 packets and will therefore always cor-
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Figure 2.12: Equivalent test setup for determining the minimum required distance separa-
tion.

rupt an IEEE 802.15.4 packet. The PER is larger for bigger packet sizes because
the larger packets are more prone to errors than the smaller ones [34]. As already
mentioned, the standard does not provide data for an IEEE 802.11g interferer.

The wireless extensions force the NIC at full power to channel 1 (2412 MHz)
and change the modulation rate from 11 Mbps, 6 Mbps and 54 Mbps. The Click
software creates 4000 packets per second with a length of 100 bytes each. With
the help of the earlier described Radioperf tool an IEEE 802.15.4 communication
is set up at frequency offsets of 3, 8, 13, 18, 48 and 68 MHz away from the Wi-
Fi transmitter. Each 30 ms the IEEE 802.15.4 transmitter sends a packet of 100
bytes and the receiver logs the number of received valid IEEE 802.15.4 packets in
.csv format. For each modulation rate and each frequency offset the attenuation is
changed and its corresponding number of received packets is logged. Obtaining
one attenuation-received packets pair takes a 5 minutes measurement of 10000
sent IEEE 802.15.4 packets.

Basically the equivalent of the measurements is given in figure 2.13. All other
equipment between the IEEE 802.15.4 transmitter and receiver gives an additional
and fixed attenuation of 21 dB and with the 68 dB of the attenuator, this results in a
total attenuation of 89 dB. Using the channel model of Table 2.6 we find a distance
of 75 m. This model is also the basis to correlate the minimum required separa-
tion of the Wi-Fi transmitter and the IEEE 802.15.4 receiver out of the difference
between the AIS attenuations.
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measurement conditions simulation in
IEEE 802.15.4

standard
channel model

for d < 8m d = 10(Pt−Pr−40.2)/20 idem
for d > 8m d = 8 · 10(Pt−Pr−58.5)/33 idem

receiver sensitivity -92 dBm -85 dBm
desired signal

absolute -89 dBm -75 dBm
above receiver sensitivity 3 dB 10 dB

transmit power
IEEE 802.11g +20.1 dBm (6 Mbps) n/a
IEEE 802.11b +20.8 dBm +14 dBm
IEEE 802.15.4 0 dBm 0 dBm

receiver bandwidth not measured 2 MHz
transmit mask
IEEE 802.11b see figure 2.10 see figure 2.10
IEEE 802.11g see figure 2.10 n/a

packets IEEE 802.11b 100 bytes, 4000packets/s 1024 bytes
packets IEEE 802.11g 100 bytes, 4000packets/s n/a
packets IEEE 802.15.4 100 bytes, 30packets/s 22 bytes

Table 2.6: Overview of measurement conditions

Figure 2.13: Equivalent distance measurement setup.

The results of the post processing is given in figure 2.14 for frequency offsets
of 3, 18 and 48 MHz and figure 2.15 for 8, 13 and 68 MHz.

Table 2.7 gives the minimum required distance in meter between a Wi-Fi inter-
ferer and an IEEE 802.15.4 receiver at a PER of 0.10 for modulation rates of 6, 54
and 11 Mbps under the measurement conditions of table 2.6. In the first column
we find the frequency offset in MHz. At a frequency offset of 18 MHz i.e. a 6
Mbps (OFDM) modulated Wi-Fi needs to be more than 26 m away from the IEEE
802.15.4 receiver in order to obtain a PER of maximum 0.10. When changing
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Figure 2.14: Worst case distance required between LAN interferer and IEEE 802.15.4 re-
ceiver for frequency offsets of 3, 18 and 48 MHz.

Figure 2.15: Worst case distance required between LAN interferer and IEEE 802.15.4 re-
ceiver for frequency offsets of 8, 13 and 68 MHz.

the modulation to 54 Mbps (OFDM) the interferer can come closer (13 m) for the
same PER. Please note the 11 Mbps (DSSS) (IEEE 802.11b) performs worse than
the 54 Mbps (OFDM) (IEEE 802.11g). This is in accordance to [35]. Furthermore,
increasing the frequency offset will have a positive effect on the immunity to in-
terference. For the same channel separation, the values of the last column of table
2.7 are higher than those of the last column of table 2.5. This can be explained
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by the fact that the measuring conditions are more stringent than the simulation
conditions.

F offset 6 Mbps 54 Mbps 11 Mbps
(MHz) OFDM OFDM DSSS

IEEE 802.11g IEEE 802.11g IEEE 802.11b
3 240 180 220
8 190 140 105

13 30 20 23
18 26 13 16
38 4 2 3
43 3 1.9 2.3

Table 2.7: Minimum required distance in meter between a Wi-Fi interferer and an IEEE
802.15.4 receiver (PER=0.10)

2.3.3.5 Interference from microwave oven

Figure 2.16 shows the measured frequency spectrum of a 800W Primo-MG1-B mi-
crowave oven when boiling two cups of water. The trace of the Rohde & Schwarz
FSP spectrum analyzer is set to MAX HOLD. The right-hand side of the figure
shows narrowband signals, coming from the free running magnetron. At the left-
hand side of the figure these peaks are much closer to each other. This can be
explained by the fact that the sizes of the magnetron cavities determine the reso-
nant frequency, and thereby the frequency of emitted microwaves. The frequency
is not precisely controllable. The operating frequency varies with changes in load
impedance [36], with changes in the supply current, and with the temperature of
the tube. Therefore, a very wide disturbing frequency band is encountered, almost
filling the complete 2.4 GHz ISM band [37]. The conventional power supply of a
microwave oven, like the Primo-MG1-B, consists of a step-up transformer and a
diode rectified voltage doubler [38]. This kind of microwave only radiates on the
positive peaks of mains supply [39].

In order to study the effect of microwave interference, a test was set up us-
ing the RadioPerf tool (see section 2.2). Two IEEE 802.15.4 nodes are put on a
table at a distance of 1.4 m and a communication was set up. One node contin-
uously transmits packets of 100 bytes at full power, the inter packet delay is 30
ms. The receiver was put a few centimeters aside the door of the microwave oven.
Transmission is at channel 22 (2460 MHz) in order to capture much microwave in-
terference (see figure 2.16). During the experiment, the microwave was switched
off and on. Every second available data was sent to our log file.

In figure 2.17 a screenshot of RadioPerf is given: the upper and the lower graph



PHYSICAL LAYER 55

present the received and the lost packets, respectively.
Up to a time of -255.100 ms there is very little packet loss. Then, switching on

the microwave results in a decreased number of received packets and an increased
number of lost packets. However, there is no situation where all packets are lost.
This can be explained by the facts that the microwave actually uses a kind of
frequency hopping and that there is no emission on negative peaks of mains supply.

An example where Clear Channel Assessment is used to improve the resilience
to microwave oven interference is given in [40]. Furthermore, when all microwave
ovens are fed from the same single-phase electrical power lines (which is usually
the case), one could detect the phase of that power supply and design a wireless
sensor network that avoids sending packets on the peak of the mains supply.

Figure 2.16: The spectrum of a microwave oven almost spans the whole ISM 2.4 GHz fre-
quency band and reaches maximum output around 2.46 GHz.

2.3.4 Radiation pattern

This section discusses the radiation pattern of the w-ilab.t T-mote Sky modules.
These modules embody a microstrip planar inverted-F antenna (PIFA). This name
refers to the ground faced F-shape of the antenna (see figure 2.18). The feed of the
antenna accesses two open transmission lines (TML). The inductance of the first
TML resonates with its capacitance to the ground, like in an open dipole. The other
open transmission line, TML2, is capacitive loaded at the top with a shorted stub,
also forming a resonant structure. This capacitive loading reduces the size of the
antenna, making it suitable for mounting on portable equipment. More about the
design of a 2.4 GHz PIFA can be found in [41]. The PIFA is currently being used
in many radiotelephone handsets, because it is small and has a low profile [42, 43].
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Figure 2.17: A microwave oven with a conventional power supply does not completely
block an IEEE 802.15.4 link, because the microwave only causes interference
on the positive peaks of the mains supply.

Furthermore, it deals with the shortfalls of the λ
4 monopole antenna in mobile com-

munication applications and the antenna can reduce the possible electromagnetic
energy absorption by the mobile handset users head, because of relatively smaller
backward radiation toward the user [44].

Figure 2.19 represents the radiation pattern in het horizontal plane, retrieved
from the TMote Sky datasheet [45]. The corresponding position of the TMote
is printed on top of the radiation pattern. Please note that the TMote module is
presented with a top view, like in [46]. In our w-ilab.t test bed, the nodes are
mounted with the top of the printed circuit board down, and the pattern needs to
be flipped horizontally. The pattern is quite omnidirectional, except for two dips.
The first is at 180 degrees and hence in the direction of the USB connector and
antenna-feed (see figure 2.18). This dip is about 24 dB deep, but very narrow.
It is also encountered in measurements of a freestanding PIFA, like in [41, 47],
therefore, it is attributed to the antenna feed. The second and less deep dip comes
at approximately 260 degrees (or 80 degrees if mounted as in our w-ilab.t test
bed). Some authors define a Degree of Irregularity (DOI) as the maximum range
variation per unit degree change in the direction of radio propagation to model the
radiation of the antenna [48]. With this DOI the emitted directional power varies
between two values. Others refine this model and present Radio Irregularity Model
(RIM), based on parametric data fitting of a Weibull distribution. A method that
is more direct, however, measures the antenna pattern in an anechoic chamber and
uses this pattern in a localization algorithm, like in [46].
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Figure 2.18: Principle of a F-shape antenna: it consists of one open and one stubbed trans-
mission line. The parasitic capacitances to the ground plane are also shown.

2.4 Design of a WSN transmitter

2.4.1 Introduction

Our test bed uses cheap and small TMote Sky modules, as already explained in
section 2.2. These modules are adequate and fairly convenient for existing local-
ization algorithms. A major drawback, however, is that they are not designed for a
profound study on the physical (and MAC) layer of the OSI model. The CC2420,
i.e. directly outputs the modulated RF signal. The inphase signal (I-signal) and
quadrature signal (Q-signal) of the O-QPSK modulator are only available in the
interior of the chip. This work aims at improving localization algorithms by a bet-
ter understanding of the physical layer of the IEEE 802.15.4 DSSS standard [14].
How can we comprehend a standard better than by actually building a transmitter
that meets the requirements of this standard? This section therefore focuses on
an implementation of the IEEE 802.15.4 DSSS standard and describes the design
of hardware and software for a WSN transmitter. To be most flexible, the prin-
ciples of Software Defined Radio (SDR) are used here. SDR is not only a good
answer, but also a versatile and efficient solution for future upcoming standards.
In SDR, some hardware components are replaced by software, such as mixers, fil-
ters, modulators and amplifiers. Other components are impossible to be realized
in software, for example some parts of the physical layer, and are therefore imple-
mented in hardware. Existing SDR, like the GNU open source radio project [49],
is versatile, but the available hardware is expensive. We decided to build our own
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Figure 2.19: Radiation pattern of the T-mote Sky module (top view) with horizontal mount-
ing [45].

hardware and hence also own software. Necessary design tips are described. Here,
we build the transmitter pushing both the software and the hardware to their limits.
This section is organized as follows. A first subsection will describe the hardware
used, whereas the following subsection will give indications for the implementa-
tion of the IEEE 802.15.4 protocol in software. In a next subsection, results will be
described showing that our design meets the IEEE 802.15.4 DSSS physical layer
specifications. Finally, in the last subsection conclusions will be drawn. More
about this design can be found in [50, 51].

2.4.2 Hardware

The hardware is based on three main parts: a standard PC, a data acquisition
(DAQ) card and a self-made up-converter printed circuit board (PCB). Figure 2.20
gives a schematic view. The PC (with LabVIEW [52] as programming language)
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Figure 2.20: The block scheme of the hardware used.

Figure 2.21: The DAQmx card contains both analog and digital inputs and outputs.

generates baseband signals, which are converted via the PCI-bus of the PC through
the DAQ card into analog signals. In this work, a National Instruments PCI 6110
(or DAQmx card, shown in figure 2.21 [53]) has been chosen, which contains both
analog and digital inputs and outputs. If two analog outputs were used, a sample
rate of 2.5 MS/s could be achieved. The up-converter is used to shift these sig-
nals to the 2.45 GHz ISM frequency band, tunable by the software and generated
with a classical digital Phased Locked Loop (PLL) (which will be explained later).
The PCB also contains a quadrature modulator, responsible for the mixing of the
I- and Q-signal and for the frequency shift to an RF signal. In this design, an
AD8349 [54] is used. This high performance quadrature modulator is used as a
single-stage up-converter with a high output power and very low noise floor. Be-
cause the modulator requires differential signals, whereas the output of the DAQ
card is single ended, two additional differential amplifiers are integrated. A picture
of the design can be found in figure 2.22, where most of the connectors are used
for debugging purposes.

Like already said, the PCB also contains a classical digital PLL, which is pro-
grammed via the digital outputs of the DAQ card. This Phase Locked Loop is a
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Figure 2.22: The transmitting PCB contains the up-convertor, and can easily be debugged.

tuning system with a closed loop that generates an output signal as function of the
frequency and the phase of the input signal. Usually, this is done automatically by
changing the frequency of a Voltage Controlled Oscillator (VCO), resulting in a
signal with the same frequency and phase as the input signal [55]. In the follow-

Figure 2.23: The block scheme of the classical digital PLL.

ing paragraphs the design and the operation of the PLL are described, following
the design rules suggested in [56]. As can be seen in figure 2.23, the input sig-
nal is a clock signal which is a crystal oscillator in this design. This input signal
will be compared with the divided output signal in the phase comparator (which
is part of the frequency synthesizer). In order to generate high frequencies, this
division is necessary. When the phase and/or the frequency of both signals differs,
the frequency synthesizer generates an output signal. It will be higher if the fre-
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quency/phase is too small and lower if frequency/phase is too large. In order to
reduce the jitter coming from glitches of the charge pump in the frequency synthe-
sizer, this signal is also filtered with a low pass filter. The high frequencies of the
glitches are hence cut off with the filter. The input signal changes pass rather fast
through a filter with a large bandwidth, resulting in an unstable PLL. A trade off
between a fast and a stable PLL should be made. For our application, a fast PLL
is not necessary (it is only used to change the carrier frequency), and hence a sec-
ond order filter with a limited bandwidth of 144 Hz is selected. After filtering this
signal in the loop filter, the Voltage Controlled Oscillator (VCO) gives the output
signal. The chosen VCO is the CVCO55BE-2400-2670 [57], where a frequency
of 2.3 GHz to 2.67 GHz can be obtained using a tuning voltage of 0 V to 15 V.
In fact, ADF4113HV [58] is the frequency synthesizer used here. It is a chip with
several programmable counters, a phase detector and a charge pump. The counters
are programmed by the integrated serial interface, via the LabVIEW software and
the digital outputs of the DAQ card. This solution gives us the possibility to highly
accurately generate a frequency in a wide range. Therefore, the frequency synthe-
sizer requires an as stable as possible oscillation frequency of 5 MHz to 150 MHz.
Hence, a standard crystal oscillator of 10 MHz is selected. An external reference
signal is also possible, but this is a less flexible solution. The final electronic de-

Figure 2.24: The electronic design of the PLL including frequency synthesizer, loop filter
and VCO.

sign of the PLL with all necessary peripheral components is shown in figure 2.24.
This is also realized in a part of the transmitting PCB in figure 2.22.

2.4.3 Software

Also in the software some additional design steps should be taken, which are de-
scribed in this paragraph. As already said in the introduction, we are focusing
here on the IEEE 802.15.4 standard in the 2.45 GHz frequency band. The binary
information to be transmitted is in a first step translated into different symbols (as
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indicated in figure 2.25) and in a next step into chips (chip length 32) with prede-
fined pseudo-random noise sequences. The standard also describes for every chip
bit a half-sine pulse shaping, in order to reduce the effective bandwidth. A side
effect is the additional side lobes, which need to be filtered in the final signal in
order to lower the power in the other frequency bands. Finally, the modulation
scheme is O-QPSK (Offset Quadrature Phase Shift Keying), where the offset is
necessary to reduce the amplitude fluctuations between the 4 different phases and
hence 4 different symbols. The offset is realized by an additional time shift of
a half symbol length between the I- and Q-signal, resulting in the fact that both
signals cannot change in the same time slot and hence reduces the maximal phase
transitions to 90. All those steps are implemented in LabVIEW and fed into the
DAQ card. The outcome of the software is two signals (I and Q) and serves as input
for the transmitting PCB. In order to validate the already taken design steps, the

Bit to

symbol

Symbol

to chip

Binary data

Chip to half 

sine pulse

Modulator

RF signal

Figure 2.25: The block scheme for an IEEE 802.15.4 signal.

software is written to generate a simple ACK (Acknowledgment) frame. Figure
2.26 illustrates the schematic overview of the acknowledge frame [14, 50]. It con-

Figure 2.26: Schematic view of the acknowledge frame.

tains 3 main parts: a SHR (synchronization header), a PHR (physical layer header)
and a PSDU (physical layer service data unit). The SHR is used for synchroniza-
tion and contains a preamble sequence of 32 binary zeros and a fixed sequence as
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start-of-frame delimiter 1100101. The PHR gives the frame length in bytes of the
following PSDU, which is limited to 127 bytes (resulting in a maximal length of
7 bits). An ACK frame always contains 5 bytes, hence the PHR is 0100000. For
an ACK frame, the PSDU only contains a header and a footer. This header starts
with 3 bits frame type (which is 010 for an ACK frame), followed by the security
bit (for an ACK frame always 0) and a frame pending bit (no additional frames
are expected for an ACK frame, hence 0). Then there is a bit reserved for an ACK
frame request, which is for an ACK frame of course equal to 0. The intra PAN
ID indicates that the frame remains in the same network, which is always the case
for an ACK frame and hence results in 1. Normally, this is followed by the ad-
dress fields, but for an ACK frame no addresses are included. Instead, a sequence
number is added. In our application a random sequence number is selected. The
PSDU footer is a frame check sequence (FCS) based on a 16 bit CRC (Cyclic
Redundancy Check).

2.4.4 Results

In figure 2.27, both the I- and Q-signal are plotted as function of the time, before
any pulse shaping. This signal is a software generated ACK frame like described
above and measured at the output of the DAQ card. From both I- and Q-signal, the
according spectral behavior can be generated with a spectrum analyzer. There is
at this stage no up-converter involved, resulting in a baseband signal.

The signals of figure 2.28 are used as inputs of the transmitting PCB. This up-
converter mixes and modulates both signals. The spectral output is given in figure
2.29, which shows that the bandwidth is exactly 2 MHz, meeting the prescriptions
of the standard. Please note that in these figures, the side lobes of the signal have
not yet been filtered. In order to check the validity of a transmitted data packet, we
are using a commercially available packet sniffer. The hardware is the CC2420DK
Development Kit from Chipcon [59], while the packet sniffer software is freely
available. In figure 2.30, transmitted acknowledgment (ACK) frames, like de-
scribed above, are sniffed. For measurement purposes, different ACK frames are
repeated. Please note that the frame check has not yet been implemented correctly,
resulting in an error. The packet sniffer software also gives the RSSI (Received
Signal Strength Indicator), as an indication of the received power. The distance in
the lab measurements was limited to approximately 2 m, resulting in rather large
and fixed values for RSSI. In order not to disturb the neighboring channels, two
constraints for the transmitted power spectral density should be considered. One
constraint (relative limit) is that the power of frequencies differing more than 3.5
MHz should be 20 dB lower than the carrier frequency and the other constraint
(absolute limit) should be lower than -30 dBm.

According to figure 2.29, both the absolute and the relative limit are fulfilled.
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Figure 2.27: I-signal and Q-signal as function of the time.

This means that no power is lost in frequencies outside the considered band and
that our design is according to the standard.

2.4.5 Conclusion

Based on a DAQmx card (for the necessary I- and Q-signal) and a transmitting
PCB, which mixes and modulates the signals, an RF signal is generated. We also
proved with time and frequency domain figures and with real transmitted acknowl-
edgment frames that our design meets the IEEE 802.15.4 DSSS physical layer
specifications. This section helped to understand the IEEE 802.15.4 standard bet-
ter. Indeed, our versatile software based approach improved access to the physical
layer. It is clear now that the good spectral response is related to the chirp to half-
sine pulse shaping step (prior to O-QPSK modulation). Furthermore, using SDR
techniques, the self-made transmitter communicated with commercially available
devices. A design of a software defined receiver, based on the same design, would
allow to explore the standard more profoundly.
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(a)

(b)

Figure 2.28: Spectrum of the I-signal (a) and Q-signal (b). These signals are input for the
AD8349 Quadrature modulator.
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Figure 2.29: The spectral output of the generated IEEE 802.15.4 signal fulfills the absolute
and relative PSD requirements.

2.5 Conclusions

This chapter started with the choice of a suitable ranging technique and wireless
technology based on the design goals of section 1.3. The IEEE 802.15.4 DSSS
ranging technique has been selected, because it has a wide extended range. Fur-
thermore, it is designed for a simple, low-cost communication network that allows
wireless connectivity in applications with limited power and relaxed throughput
requirements. The main objectives of this standard are ease of installation, reliable
data transfer, short-range operation, extremely low cost, and a reasonable battery
life, while maintaining a simple and flexible protocol. Having 64-bit extended ad-
dresses, the standard scales extremely well. Other UWB based systems require
complex timing techniques, and might perform better than IEEE 802.15.4 DSSS
systems on accuracy and robustness. In our design of a localization algorithm
(see chapter 4 and chapter 5) these characteristics will be given extra attention.
The IEEE 802.15.4 DSSS ranging technique definitely outperforms the other tech-
niques in the other design goals.

In a next section, the w-ilab.t test bed has been described. The powerful test bed
is integrated in the CREW platform. For our research of localization algorithms,
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Figure 2.30: A Chipcon packet sniffer detects the generated ACK-signal.

described in chapter 4 and chapter 5, this w-ilab.t test bed has been indispensable.

In a next section, the challenges of working in a wireless environment are dedi-
cated. It is shown that multipath fading is a very annoying phenomenon for indoor
localization algorithms. Therefore, a good localization algorithm must cope with
the effects of multipath fading. Our experiments show that RSSI-measurements in
a long corridor are far too strong (35 dB is not exceptional), due to this (construc-
tive) multipath fading. The section continues with an interference study. Minimum
distance between the interferer and an IEEE 802.15.4 DSSS receiver are presented.
When two different technologies are housed in the same package, interference can
only be avoided using a power reduction of the interferer and a kind of clear chan-
nel assessment. The radiation pattern of the antenna is also treated in this section.
The radiation pattern of the build in planar inverted-F antenna is quite well om-
nidirectional, except for two dips. The effect of these dips will be discussed in
chapter 4 and chapter 5.

This work aims to improve localization by incorporating physical layer con-
cepts. For fully understanding the pitfalls of the underlying IEEE 802.15.4 DSSS
standard, a software defined transmitter has been designed, consisting of a stan-
dard PC, LabVIEW, a data acquisition card and a self-made up-converter. Our
design meets the IEEE 802.15.4 DSSS physical layer specifications.
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3
Localization

3.1 Introduction

The previous chapter discussed the underlying physical aspects of RSSI-based
wireless sensor networks. It is shown that a RSSI-based ranging technique is an
ideal candidate to implement excellent localization systems (see table 1.5). This
chapter presents some simple localization algorithms. In a first step the RSSI-
measurements are converted to distances. A second step estimates the actual po-
sition using these distances. Section 2.3 demonstrated that multipath fading is by
far the most troublesome phenomenon for indoor localization. Indeed, this fading
can influence the RSSI-measurements so much that the presence of these outliers
makes it very difficult to estimate the position correctly. The mitigation of mea-
surement outliers in localization has seldom been addressed. Therefore, this chap-
ter focuses on the resilience to outliers in widely used techniques that convert the
individual calculated distances (ranges) to a position. Geometric multilateration,
statistical multilateration, maximum likelihood and a min-max localization algo-
rithm are compared here under the same (extreme) multipath fading conditions.
This chapter further emphasizes the importance of keeping the relation between a
localization algorithm and the underlying physics.
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3.2 Range-based localization steps

Basically, there are two steps in a localization algorithm. The first step converts
the physical RSSI-variable to a range representing the distance between an anchor
(node knowing its own position) and the target. In a next step, the position is
estimated from the ranges.

3.2.1 Conversion of RSSI to a distance

For conversion of a RSSI-measurement to a distance, a channel model is needed.
This model characterizes the attenuation of the medium (path loss) between the
transmitter and the receiver. The IEEE802.15.4 standard [1] recalculates this path
loss in the 2.4 GHz industrial, scientific and medical (ISM) radio band to equation
3.1. The free space model suggests a path loss proportional to the square of the
distance; this is equivalent to the first case of equation 3.1. For larger distances the
attenuation increases more rapidly than the square of the distance.

PL(d) =

{
40.2 + 20 log10(d) for d < 8m
58.5 + 33 log10(d8 ) for d > 8m

(3.1)

The RSSI-measurements of the anchors are converted to distances, starting from
equation 3.1. When the mobile target transmits at 0 dBm, this equation directly
yields:

RSSI(dBm) =

{
−40.2− 20 log10(d) for d < 8m
−58.5− 33 log10(d8 ) for d > 8m

(3.2)

Taking the receiver sensitivity of -92 dBm and a transmit power of +0 dBm, this
equation leads to a maximum range of 82.8 m. This justifies the appraisement
“large extended range” in table 1.5, because this is sufficient for most indoor envi-
ronments. It is a common practice to parameterize this relationship to

RSSI(dBm) = −(A+ 10n log10(d)) (3.3)

where the initial signal strength A describes the absolute value of the RSSI, mea-
sured at 1 m distance to the transmitting unit. The signal propagation coefficient
n shows the attenuation of the signal. For the theoretical approach in the IEEE
802.15.4 standard (see equation 3.2), A equals 40.2 and 58.5 for distances smaller
or greater than 8 m respectively and n equals 2 and 3.3 respectively. In practical
cases, however both parameters must be determined empirically [2]. Some algo-
rithms choose for “simplicity” among the design goals (see section 1.3) and keep
both A and n constant for all anchors. In chapter 4 we present an algorithm where
not only the “simplicity” but also the “accuracy” objective is met using basic sta-
tistical tools: in this case both A and n are made anchor dependent.
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3.2.2 Conversion of distances to a position

The conversion of distances (between the anchors and the target) to a position is
a very important step: it shouldn’t be too complex. Simple localization algorithm
candidates are:

1 Multilateration

2 Maximum likelihood

3 Min-max localization

In the next sections, special attention is given to the effect of outliers on these sim-
ple localization algorithms. Accuracy and robustness are also equally important
for a valuable localization system (see section 1.3).

3.3 Multilateration

Lateration is a simple localization algorithm using RSSI-measurements. Multilat-
eration is twofold: geometric multilateration and statistical multilateration [3, 4].

3.3.1 Geometric multilateration
3.3.1.1 The geometric multilateration principle

Geometric multilateration is based on geometric concepts. The System-on-Chip
CC2431 is an example of geometric multilateration with a hardware built-in local-
ization engine [5]. This system obtains an average accuracy of over 4 meters in a
deployment area of 10 m x 22 m [6].

In its simplest form geometric multilateration uses three anchors and the geom-
etry of circles, triangles and centroids. This reduces the geometric multilateration
to a geometric trilateration. Figure 3.1 presents the ideal case where all distances
are estimated correctly. Like in chapter 2 the anchors are drawn in small green cir-
cles. The remainder of this trilateration section will use small red circles to show
the estimated position. The solid blue lines are reserved for the distances, obtained
by equation 3.2. In this ideal case the distance circles intersect in one single point
(which is the target).

In figure 3.2 the RSSI-measurements of anchors 2 and 3 are correct, just as
in the ideal case. The RSSI-measurement of anchor 1, however is too low. This
results in a too large distance circle for this anchor. The (a) part of this figure
shows a global view. In the (b) part a detailed view is given. The intersection
points A, B and C (represented by small squares) of the circles enclose a polygon.
This polygon is the common intersection of the three distance disks. The (b) part
further illustrates the detailed principle of the algorithm: the estimated position is
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Figure 3.1: Geometric trilateration where all distance circles are correct. The distance cir-
cles intersect in one single point: the estimated position, represented by the
small red circle.

the centroid of the triangle formed by the A, B and C points. The coordinates of
this position can easily be calculated by averaging the coordinates of the A, B and
C points. For clarity the geometric medians (represented by red dashed lines) of
the triangle are also shown.

Geometric multilateration breaks down in many trilaterations. The algorithm
starts with a three-anchor-combination of the total anchor set and proceeds with the
calculation of the respective centroids. Therefore, in a multilateration algorithm
the computational cost rises with the number of anchors [7].

Figure 3.3 shows the number of combinations versus the number of anchors on
a logarithmic plot. The number of three-anchor-combinations are represented by
the small circles and follow equation 3.4.

#combinations =

(
#anchors

3

)
=

#anchors!

(#anchors− 3)!3!
(3.4)

E.g. in a multilateration algorithm with 12 anchors, there are
(

12
3

)
= 220 pos-

sible combinations. It can easily be verified that equation 3.4 can be simplified to
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(a)

(b)

Figure 3.2: Illustration of the geometric trilateration principle. In (a) a global view is given,
the detailed view is shown in (b). The estimated position is the centroid of the
triangle with cornerpoints A, B and C. These points are the intersections of the
distance circles.
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Figure 3.3: With geometric multilateration the required number of trilaterations increases
cubicly with the number of anchors.

equation 3.5.

#combinations =
#anchors3 − 3×#anchors2 + 2×#anchors

6
(3.5)

Hence, the required number of trilaterations increases cubicly with the number
of anchors. Next, the results of several trilateration realizations are combined by
either averaging the multiple position estimates or by finding their centroid [3].
For each combination, a trilateration is performed and the positions are averaged
for the final position estimate.

3.3.1.2 Geometric trilateration with obstructed path outliers

The measured RSSI is further decreased and an outlier is created. The distance
circle contains point D in figure 3.2 (a). This point is the other intersection of the
anchor 2 and anchor 3 distance circles.

Figure 3.4 reveals that the common intersection of the three distance disks has
only two vertices. Indeed, the distance circle of the first anchor is so large that
the B-point and the C-point are no longer part of the ‘common’ intersection of the
distance disks. This situation is typical for too large distance circles. The triangle
of figure 3.2 degrades to the single line AD. This makes the implementation of
this algorithm more complex: the centroid of a line differs from the centroid of a
triangle.

Possible causes of this outlier include

• destructive multipath fading (see section 2.3.2)
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Figure 3.4: The geometric trilateration with an obstructed path outlier. The triangle de-
grades to the single line AD. The result of the linearized implementation of the
trilateration (red hexagram), see section 3.3.2.2, is not correct: it falls outside
the common intersection polygon with vertices A and D.

• the target and the particular anchor connect in a direction with an antenna
dip (see section 2.3.4)

• the direct path is obstructed

3.3.1.3 Geometric trilateration with constructive multipath outliers

When a path between an anchor and the target suffers from constructive multipath
fading, the measured RSSI is too large (see section 2.3.2). This results in too small
distance circles (see equation 3.2). Figure 3.5 illustrates a constructive multipath
fading between the anchor 1 and the target. Because no common intersection of the
three distance discs can be found, the algorithm can not be applied successfully.

3.3.1.4 A linearized implementation of geometric trilateration

The use of geometric concepts with obstructed path outliers is not straightforward.
Under constructive path outlier conditions, no senseful graphical interpretation
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Figure 3.5: The geometric trilateration with a constructive multipath outlier. There is no
common intersection of all the distance disks.

can be found. Therefore, the remainder of this section describes a mathematical
method that is commonly used for geometric trilateration [8].

Let x and y be the abscissa and ordinate of the (unknown) target. The coordi-
nates of the anchors are represented by (xi,yi) with i=1,2,3. The distance between
the anchor i and the target is denoted by di. Hence, 3.6 is a set of nonlinear equa-
tions.

di =
√

(xi − x)2 + (yi − y)2 (i = 1, 2, 3) (3.6)

Squaring both sides of these equations and subtracting the last equation from the
other two linearizes the set. In matrix form this can be written as

A×
[
x
y

]
= B (3.7)

with A = 2

[
x3 − x1 y3 − y1
x3 − x2 y3 − y2

]
a 2x2 and B =

[
d21 − d23 − x21 − y21 + x23 + y23
d22 − d23 − x22 − y22 + x23 + y23

]
a two-column vector, both with known elements. Hence equation 3.7 represents
a linear system with a set of two equations in the two variables x and y. In this
trilateration approach both sides of equation 3.7 are left-sided multiplied by the
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inverse of matrix A, yielding [
x
y

]
= A−1 ×B (3.8)

This confirms what other researchers [3] have found: the geometric trilateration
algorithm is simple to implement and computationally inexpensive. The imple-
mentation of geometric trilateration via equation 3.8, however, is erroneous for
outliers in an obstructed path environment. The red hexagram in figure 3.4, rep-
resenting the outcome of this equation, is outside the intersection of the distance
discs. Furthermore, it shows that the too large distance of anchor 1 is corrected in
the wrong sense: the faulty distance further increases.

3.3.2 Statistical multilateration
3.3.2.1 The statistical multilateration principle

The previous section revealed that geometric multilateration is not scalable in the
number of anchors. The cubic increase with the number of anchors in equation
3.5 quickly results in an unmanageable amount of trilaterations. Using only part
of the abundant measurements might look interesting, but poses other problems:
e.g. how to discriminate between a good measurement and an outlier, or how to
determine the optimal combination of multiple measurements? In order to achieve
the design goals of section 1.3, other localization algorithms are needed. It is
widely accepted that statistics can manage large data sets.

In a statistical approach, the variables are not deterministic but are treated as
random variables [9] with probability density functions [10]. Equation 3.9 repre-
sents a nonlinear set of m equations in the statistical variables x and y.

d̂i =
√

(xi − x)2 + (yi − y)2 + ηi (i = 1, 2, 3...m) (3.9)

The estimated distances are denoted by d̂i, m is the total number of anchors and
ηi denotes an additive noise, which is usually assumed to be an independent zero-
mean Gaussian distributed random variable. The overdetermined dataset of equa-
tion 3.9 can be rewritten as equation 3.10

d̂i = di(x, y) + ηi (i = 1, 2, 3...m) (3.10)

where di(x, y) represents the Euclidean distance between anchor i and the posi-
tion of the target. d̂i the estimated distance (calculated with the RSSI). Under
the Gaussian distribution condition of the previous paragraph, the interpretation of
equation 3.10 is straightforward: the estimated distances are normally distributed
around the Euclidean distances.

This equation can easily put in matrix form:

d̂ = d(x, y) + η (3.11)
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where d̂ and η are multivariate column vectors and d(x, y) is a nonlinear vector
function.

Solving this equation can be done by

• In constrained minimization [11], weighted constraints are added to the least
squares problem. The goal is to find the solution, minimizing the weight of
the constraints using the Lagrange multiplier [12].

• Multidimensional scaling (MDS) [13] is a statistical technique for analyzing
similarities or dissimilarities in data in various fields, ranging from informa-
tion science over molecular biology, marketing, geography , ecology and
sociology to psychology. In [14] it is used in a localization algorithm. Here,
the first step is the construction of a scalar distance matrix. Next, a least
square algorithm is used to solve a set of linear equations using eigenvalues.

• Subspace decomposition [15] is another technique. It is based on multidi-
mensional scaling.

• The appearance of the error term η makes equation 3.9 a “mathematical
programming” or “numerical optimization [16]” problem, and more specific
a “nonlinear programming [17]” problem. In an initial phase the problem is
linearized, using Taylor expansion, gradients, Jacobians and/or Hessians.
Further processing can be performed with following iterative techniques:

– the Steepest descent algorithm

A method like this converges, but the final convergence is linear and
often very slow [18]

– the Conjugate gradient algorithm [19]

– the Gauss-Newton algorithm

In many applications, the Gauss-Newton has quite good performance,
though it normally has only linear convergence [18].

– the Levenberg-Marquardt algorithm

This method is based on Gauss-Newton. It has superior global perfor-
mance.

• The algorithms of the previous item require iterations, affecting processing
time. It is a common practice [20] to linearize equation 3.9 using the sub-
traction method. In section 3.3.2.2, this linear least squares algorithm is
applied on a trilateration problem.
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3.3.2.2 A linearized implementation of statistical trilateration

To illustrate this simple implementation with an example, we start with the ex-
tension of the linearization procedure described in section 3.3.1. The set of m
equations (3.9) is squared and the last equation is subtracted from each of the oth-
ers yielding equation 3.12. A is a (m − 1) × 2 and B a (m − 1) column vector,
both with known elements.

A×
[
x
y

]
= B (3.12)

Because matrix A is non-square, its inverse does not exist. However, the over
determined set of linear equations can be solved by the use of a generalized inverse,
also called the pseudo-inverse matrix A+. A well-known pseudo-inverse matrix is
the Moore-Penrose pseudo-inverse [21, 22]. This matrix is the solution of the
least square problem: it minimizes the sum of the squared differences between
the data values and their corresponding modeled values. When A has full column
rank, so that ATA is invertible, it can be proven that A+ = (ATA)−1AT where
AT denotes the transposed matrix of matrix A. Substituting A+ in equation 3.12
results in equation 3.13, the solution of the statistical multilateration problem.[

x
y

]
= (ATA)−1ATB (3.13)

This brings us to the following discussion:

• Statistical multilateration with the help of equation 3.13 is perfectly scalable
in the number of anchors.

• It can easily be verified that A+ = A−1 for a nonsingular, symmetrical
matrix. The geometric trilateration in the linear system in equation 3.8 and
the statistical trilateration in the linear system in equation 3.13 are therefore
identical. The implementation of statistical multilateration with the help
of equation 3.13, however does not minimize the sum of the squared dif-
ferences between the calculated distances and their corresponding modeled
values: it minimizes the squared differences between the position and the
“transformed” position with the help of the A and B matrices. The transfor-
mation introduces squares of the d̂i in the B-matrix, which makes neither
the physical nor the graphical interpretation straightforward. The localiza-
tion algorithms, described in chapter 4 and chapter 5 avoid this situation.

• This implementation of statistical trilateration is not better than the imple-
mentation of geometric trilateration that is discussed in section 3.3.1. There-
fore it offers no solution to outliers. The red hexagram in figure 3.4 repre-
sents the result of the trilateration. This red hexagram is outside the common
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intersection (represented by the polygon with vertices A and D) of the dis-
tance disks. Therefore, this linearized implementation is erroneous in the
presence of an obstructed path outlier.

• Many authors testify that the quality of the statistical multilateration model
increases when there are more anchors. This is in line with our findings
because treating more data simultaneously also improves the quality of a
regression model, under the explicit condition that these are no outliers. In
chapter 4 we will pay extra attention to outliers and base our 2D localization
algorithm on the quality of the regression model.

• Statistical methods need a large data set. If this dataset is reduced, the qual-
ity of the underlying model deteriorates.

3.4 Maximum likelihood

3.4.1 The maximum likelihood principle

The maximum likelihood algorithm is also a statistical method, and therefore
based on equation 3.10. Plotting the calculated distances on a vertical axis ver-
sus the modeled distances reveals the graphical interpretation of the errors ηi. It is
a common practice to reform equation 3.10 to∑

η2i =
∑

(d̂i − di)2 (3.14)

The interpretation is straightforward: if all calculated distances are equal to the
modeled distances, the model is extremely good. This explains the essence of the
minimum mean square error cost function (MMSE):

(x̂, ŷ) = argmin(x,y)
∑

j∈anchor(i)

(d̂i,j − di,j)2 (3.15)

(x̂, ŷ) represents here the estimated (or most likely position). This position is found
at the location where the sum of squared error between the measured position
and the modeled position is minimal. This statistical method combines different
RSSI-measurements in a joint density function [23]. As an example the maximum
likelihood approach is used for the layout of figure 3.1. Figure 3.6 shows the
contribution of each anchor in equation 3.15. The green anchor 1 has a large
contribution at the left-hand side extreme of the building, the blue and the red at
the right-hand side extreme. The summation of the individual contributions results
in figure 3.7. For this example, the minimum of this cost function results in a
correct position estimate: the target.

Several cost functions exist, depending on the presumed distribution of ηi and
the implementation of the model. Indeed, equation 3.11 can be extended to repre-
sent other main variables which indirectly depend on the distance e.g. the RSSI.
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Figure 3.6: The contribution of each anchor in the (joint density) MMSE cost function

Figure 3.7: The MMSE cost function for the case where all distances are estimated correctly

Under the assumption that the ηi in equation 3.10 are Gaussian and indepen-
dent identically distributed, the probability distribution of the residuals can be writ-
ten as:

p(η) =

m∏
i=1

1√
2πσ2

exp (− η2i
2σ2

) = (2πσ2)−m/2 exp−
∑m
i=1 η

2
i

2σ2
(3.16)

This equation 3.16 reveals that maximizing the Gaussian likelihood with respect to
the signal parameters is equivalent to minimizing the squares of the residuals [24].
Furthermore, maximizing p(η) is equivalent to minimizing −p(η). Therefore, it
always needs to be specified whether the cost function needs to be minimized or
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maximized. Cost functions are presented in [25–28]. In section 4.5 we will present
a new cost function based on the physical aspects (the propagation channel) that
needs to be maximized. Because most cost functions are nonlinear, they need to
be solved either by the methods described in 3.3.2.1 or by the grid method [29].

3.4.2 False extrema and false convergences

For most cases of practical interest the performance of maximum likelihood algo-
rithms is optimal for sufficiently large data records [29]. This can be explained
by the fact that the distribution of ηi approaches a normal distribution, thanks to
the central limit theorem. For small datasets and in presence of outliers, this is no
longer true. These outliers give rise to local extrema in the cost function, which
put high stress on the methods mentioned in section 3.3.2.1: it is possible these
methods do not converge any longer or converge to the wrong extreme.

An exacerbated situation is shown in figure 3.8. Minimizing the cost function
does not result in a good target localization, the local minimum is by far a better
choice. Good models and efficient preprocessing improve this situation [30].

3.5 Min-Max localization algorithm

3.5.1 The Min-Max localization principle

This section illustrates the principle of the Min-Max localization algorithm, start-
ing again (just like in chapter 3.3) with an example where the range measure-
ments are exact. This algorithm [31–33] uses squared bounding boxes, obtained
by adding and subtracting the estimated distance from the anchor’s position. Let
d̂i be the estimated distance between the target and the anchor position with coor-
dinates (xi, yi). Equation 3.17 describes these bounding boxes, drawn in dashed
lines in figure 3.9.

[xi − d̂i, yi − d̂i] x [xi + d̂i, yi + d̂i] (3.17)

The intersection of these bounding boxes, which is presented by the pink rectangle,
is obtained by computing the maximum of all coordinate minima and the minimum
of all maxima. Table 3.1 contains the needed information in matrix-form for our
example of figure 3.9. In the first column we find the transmitting anchor, the
second represents x-coordinate of that anchor, the third gives the y-coordinate,
the fourth the estimated distance (with the help of equation 3.2), the fifth and the
sixth the coordinates minus the estimated distance and the seventh and eighth the
coordinates plus the estimated distance.

Next, the maxima of the fifth and sixth columns are calculated. These define
the maxima of the minimum x- and y- coordinate of the intersection respectively.
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Figure 3.8: A cost function in a real-life environment with both constructive multipath and
obstructed path outliers: the local minimum is closer to the target than the ab-
solute minimum [30]
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Figure 3.9: Principle of the Min-Max localization algorithm.

i xi yi d̂i xi − d̂i yi − d̂i xi + d̂i yi + d̂i

1 36 30 23 13 7 59 53
2 4 8 20 -16 -12 24 28
3 27 1 10 17 -9 37 11

max=17 max=7 min=24 min=11

Table 3.1: Min-Max algorithm matrix (for the case that all distances are estimated correctly)

The calculation of the minima of the seventh and eighth column follows, result-
ing in minima of maximum coordinates. The two pairs of coordinates define the
intersection of the bounding boxes, mathematically expressed as equation 3.18.

[max(xi − d̂i),max(yi − d̂i)]x[min(xi + d̂i),min(yi + d̂i)] =

[17, 7] x [24, 11]
(3.18)

The intersection can also be found graphically (although this is more com-
plex). The starting point is the (green) marking of the left bottom coordinates
of the bounding boxes. The example of figure 3.9 illustrates the navigation from
the leftmost (green) lower corner (-16,-12) to the green bounding box corners that
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are more to the right-hand side: the intermediate corner is (13,7) and (17,-9) is
the green bounding box corner that is the most to the right-hand side. Shifting
upwards from this point in the direction of the other green corner(s) determines
the lower left-hand side corner (17,7) of the intersection. An analogous proce-
dure determines the upper right-hand side corner of the intersection: from the (red
marked) (59,53) toward (37,11) and (24,28) to terminate in (24,11).

The final estimated position, the small blue triangle, is set by calculating the
centroid of the pink rectangle. For a rectangle this centroid is simply the average
of the corner coordinates. Figure 3.9 further reveals that the estimate position devi-
ates from the target (presented by the black diamond) when all distances are exact.
This effect is called biased estimation and this figure shows that in our particular
example the error on the position decreases when the path between anchor 2 and
the target is slightly obstructed: the RSSI-reading decreases, the distance circle
increases (equation 3.2), the bounding box expands for this anchor (equation 3.17)
and the small blue triangle approaches the (fixed) target. Removing the bias in an
algorithm is a better option than counting on an unwanted phenomenon to improve
the accuracy. We present in chapter 4 new algorithms that are based on circles (not
boxes) to improve this bias.

The main advantage of the Min-Max algorithm, however, remains: it is fast
and can be easily executed on a 8-bit MCU with matrix manipulations that are
converted to simple addition, subtraction and comparison operations [33].

3.5.2 Min-Max positioning algorithm with obstructed path out-
liers

Both an obstructed path and a destructive multipath fading result in too small
RSSI- readings. This implies that the estimated distances are too large. This sec-
tion demonstrates the consequences for a Min-Max localization algorithm under
these circumstances. In figure 3.10, the distance circle of anchor 1 is largely in-
creased. The corresponding matrix is shown in table 3.2.

i xi yi d̂i xi − d̂i yi − d̂i xi + d̂i yi + d̂i

1 36 30 40 -4 -10 76 70
2 4 8 20 -16 -12 24 28
3 27 1 10 17 -9 37 11

max=17 max=-9 min=24 min=11

Table 3.2: Min-Max algorithm matrix with an obstructed path outlier

Next, the principle of the previous section 3.5.1 is applied, resulting in the
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intersection of equation 3.19.

[max(xi − d̂i),max(yi − d̂i)]x[min(xi + d̂i),min(yi + d̂i)] =

[17,−9] x [24, 11]
(3.19)

The position is estimated at (x̂, ŷ) = ( 24+17
2 , −9+11

2 ) = (20.5, 1). The intersec-
tion of the bounding boxes contains the target. The intersecting area, however is
much larger than in the previous section 3.5.1, the y-axis bounds are determined
by the same anchor (number 3) in this particular example, resulting in a larger er-
ror. Despite this large error, the Min-Max algorithm is used to detect and correct
the error of a maximum likelihood algorithm [34] in an obstructed path environ-
ment. A Min-Max algorithm that is more complex could use the knowledge that
bounds are determined by the same anchor. In chapter 4 we present an algorithm
that detects and deletes or corrects too large distance circles.

Figure 3.10: The Min-Max localization algorithm with an obstructed path outlier.
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3.5.3 Min-Max positioning algorithm with constructive multi-
path fading

This section illustrates the working of a Min-Max positioning algorithm, when
there is an outlier due to constructive multipath fading (see section 2.3.2). In
presence of constructive multipath fading, the RSSI-measurements are too high,
resulting in too small distance circles. In figure 3.11 the constructive multipath
fading between anchor 2 and the target is so high that an outlier is created. Table
3.3 represents the corresponding matrix. Again, the principles of section 3.5.1 are
applied, resulting in the bounding box, represented by equation 3.20:

[max(xi − d̂i),max(yi − d̂i)]x[min(xi + d̂i),min(yi + d̂i)] =

[17, 7] x [10, 11]
(3.20)

The position is estimated at (x̂, ŷ) = ( 17+10
2 , 7+11

2 ) = (13.5, 9).
A closer look at table 3.3 reveals that the maximum of all x-coordinate minima

is larger than the minimum of all x-coordinate maxima. Performing the graphical
construction of the “intersection” box again (see section 3.5.1), shows that the
green bounding-box lower cornerpoints define a lower right-hand side (not lower
left-hand side) box corner. Likewise, the red bounding-box upper corners define an
upper left-hand side (not upper right-hand side) box corner of the intersection. To
our knowledge, this problem is not described in literature, yet. One solution might
be allowing the “negative sides”, like in the figure 3.11.The error, however is large
and the intersection box no longer contains the target. Another solution might be
ignoring the faulty anchor. Even if it can be identified, the error stays high. We
will come back on this discussion, when we treat outliers in our preprocessing and
positioning algorithm in chapter 4.

3.6 Case study: Effect of outliers on simple localiza-
tion algorithms with three anchors

A simulation is set up for comparing the different localization algorithms. We
limit this simulation to the usage of no more than three anchors. The first three

i xi yi d̂i xi − d̂i yi − d̂i xi + d̂i yi + d̂i

1 36 30 23 13 7 59 53
2 4 8 6 -2 2 10 14
3 27 1 10 17 -9 37 11

max=17 max=7 min=10 min=11

Table 3.3: Min-Max algorithm matrix with a constructive multipath outlier
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Figure 3.11: The Min-Max localization algorithm with a constructive multipath outlier.

columns of table 3.4 identify the anchors and their fixed position. The fourth
column shows the respective estimated distances: the second and third anchor
distances are estimated correctly. The estimated distance for the first anchor is
changed from 13.75 m to 45 m. The last column refers to the respective situation
(changing from constructive multipath outlier to obstructed path outlier) and the
corresponding subplot in figure 3.12.

i xi yi d̂i illustration
1 0 25 13.75 constructive multipath outlier, see figure 3.12 (e)

20 constructive multipath, see figure 3.12 (c)
25 exact, see figure 3.12 (a)
30 obstructed path, see figure 3.12 (b)
45 obstructed path outlier, see figure 3.12 (d)

2 0 0 70.7
3 50 25 25

Table 3.4: Outlier test setup for comparison of simple localization algorithms
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(a)

(b)

(c)

(d)

(e)

Figure 3.12: Comparison of different localization algorithms with three anchors for (a) cor-
rect estimated distances, (b) an obstructed path environment, (c) a constructive
multipath environment, (d) an outlier obstructed path environment, and (e) an
outlier constructive multipath environment.

In this figure the target is presented by a black diamond, the solid blue lines
denote the calculated distance and the dashed blue lines are for the exact distance
between the target and anchor 1 (25 m).
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The small red circles show the position estimation of the linearized trilateration
algorithm, the green “+”-signs are for the MMSE maximum likelihood algorithm
and the blue triangles are for the Min-Max algorithm.

Figure 3.12(a) shows that only the Min-Max algorithm is biased. The errors
of this algorithm are more constant for the different cases (a) through (e). The
linearized trilateration and MMSE maximum likelihood show the same pattern: no
error for the exact distance and increasing for the other cases in the same order. The
worst accuracy is met for the disturbance with an obstructed path outlier for both
algorithms. This confirms the correctness of using a Min-Max algorithm to correct
errors of a maximum likelihood algorithm in an obstructed path environment, like
in [34].

Accuracy Robustness
to outliers

Linearized

Trilateration
Maximum

likelihood

Min-Max

Table 3.5: Simple localization algorithms with three anchors versus design goals.

Table 3.5 gives an overview of the results of this case study. The accuracy
score is based on the results under minimal distance errors, see figure 3.12 (a),
(b) and (c). The robustness to outliers score is based on the results under severe
distance disturbances, see figure 3.12 (d) and (e).

The highest accuracy is for the maximum likelihood algorithm. Second is the
linearized trilateration algorithm. The Min-Max algorithm is the least susceptible
to outliers.

3.7 Conclusions

This chapter started with the presentation of some common simple localization
algorithms. A comparison between a linearized trilateration algorithm, a Min-
Max algorithm, and a Maximum likelihood algorithm has been made. There is
no doubt that there is a trade-off between complexity, accuracy, and robustness to
outliers.
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Simple localization algorithms, however can perform excellently if some pit-
falls are avoided:

• A good localization algorithm keeps the underlying physical aspects trans-
parent in order to avoid faulty implementations.

• A good preprocessing technique is needed to eliminate outliers.

• Furthermore, statistical methods enable an accurate manipulation of a large
data set.

In the next chapter, we present localization algorithms that fulfill these require-
ments.
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4
2D-localization

Both this chapter and the next one focus on localization algorithms. This chap-
ter concentrates on two-dimensional positioning. The position is calculated in the
(two-dimensional) plane of the anchors. As outlined in the previous chapter, spe-
cial care is taken to keep the underlying physical aspects. Therefore, this chapter
starts with a simple and accurate statistical linear regression procedure to calibrate
the propagation model (equation 3.3) of the w-ilab.t test bed. Next, the accuracy
of this model is used to select “well behaving” anchors. The previous chapter
further revealed that preprocessing is needed to improve the localization. Our
preprocessing uses a min-max procedure on the distances and extends it with an
elimination of bad measurements based on the accuracy of the model. Next, the
preprocessing executes a maximum likelihood on the distances to further improve
the accuracy. For the actual conversion of distances to a position, two different
algorithms are presented: the first algorithm LiReFLoA (Linear Regression based
Fast Localization Algorithm) is based on a linear regression model and the ac-
curacy of this model. For the second algorithm LiReCoFuL (Linear Regression
based Cost Function for Localization), a new cost function is developed and uses
this function in a maximum likelihood algorithm. With experiments, we will show
that the position errors of both LiReFLoA and LiReCoFul are smaller than these
of the MMSE localization algorithm.
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4.1 Selection of anchors

A test was set up using the w-ilab.t test bed on the third floor, The nodes with
numbers 10, 19, 32, 39, 40, 42, 44, 48 and 50 were down for maintenance dur-
ing our experiment (see figure 2.1 (a)). There are 47 active nodes. Every node
broadcasts 240 packets. Every packet consists of 100 bytes, the inter packet delay
is 25ms. This brief recovery time between packets allows devices to prepare for
reception of the next packet. Transmission is at channel 26 in order to avoid Wi-Fi
interference (see section 2.3.3). Upon swapping sending nodes, the test bed is idle
for 3.5s. The test is performed at a transmit power level of 0 dBm. Every second,
available data was sent to our log file.

The test bed only counts valid RSSI-measurements: our software detects cor-
rupted and lost packets; these packets are excluded in the averaging process. Mi-
crowave ovens with a traditional power supply only radiate at the positive peaks
of the mains supply (see section 2.3.3.5). Our software is able to distinguish valid
and invalid packets. Indeed, it uses the RSSI VALID bit (which is generated by the
CC2420 chip [1]) and it averages only over valid RSSI-measurements. Therefore,
RSSI-measurements from packets sent at the negative peaks of the main supply
are recorded correctly. Fast fading fluctuations can be averaged out by considering
a large number of RSSI-reading levels.

Figure 4.1: Scatter plot of all reported averaged RSSI-readings in function of the distance
(on a logarithmic scale)

A first look at figure 4.1, where RSSI versus the distance (expressed in m)
between all sending and receiving nodes of our building is plotted on a semi-
logarithmic scale, confirms the dominance of multipath fading in indoor envi-
ronments. Basically the graph consists of 1942 RSSI-logarithmic distance pairs,
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where the distance is expressed in meter. The 47 nodes broadcast 240 packets to all
other nodes and the average of the RSSI reported by the receiver and its distance
to the sender gives one point. Packets below the sensitivity level of a receiver are
not reported and thus not presented in the graph. For example at a distance of 24
m RSSI-values between -40 dBm and -84 dBm are encountered. Alternatively a
RSSI of -65 dBm corresponds to distances ranging between 5.5 m to 77 m which
actually covers almost the whole building. This large RSSI variability is also found
in other experimental studies in industrial indoor environments [2]. It is obvious
that in such a realistic environment physical relationships can not be applied as
such. We therefore use standard statistical tools to solve this problem. We assume
a pre-existing sensor network with a large number of nodes, which is a realistic
scenario for future dynamic wireless indoor environments. In a first step we select
well behaving anchor nodes [3] from all active nodes and calibrate them to their
individual propagation parameters according to their underlying physical behavior.

4.1.1 Selection of anchors based on the linearity of their cali-
brated path loss model

Figure 4.1 looks like a wide monotonously decreasing stripe clipped by a hori-
zontal line at the bottom because of the sensitivity of the receiver. This suggests
there still is a linear relationship between RSSI and the logarithmic distance. As
already discussed in section 3.2.1, this relation defines a first and very important
step in range-based RSSI localization algorithms. Therefore, we further transform
equation 3.3 to:

RSSI(dBm) = intercept+ slope× log10(d) (4.1)

This equation 4.1 will be intensively used throughout this book, because its (graph-
ical) interpretation is straightforward. Indeed, intercept denotes the RSSI mea-
sured at a distance of 1 m, where the log10(d) equals zero. Likewise, slope repre-
sents the sign-sensitive gradient of the RSSI-logarithmic distance line. Hence, for
the theoretical approach in equation 3.2 we instantaneously get an intercept point
of -40.2 and a slope of -20 for distances smaller than 8 m. For distances greater
than 8 m the standard proposes a steeper slope (-33) and thus proposes a model
based on the two ray ground model. Please note these values are invalid for send-
ing power levels different from 0 dBm and frequencies different from 2.4 GHz.
Please also note that for Wi-Fi the RSSI is not calibrated in dBm [4] and an extra
step is needed to include the relationship between RSSI and dBm. In this section
we will calibrate the test bed by determining the intercept point and slope with
the linear regression technique, like in [5]. Basically, the regression technique is
a least squares problem [6]. Therefore, the Moore-Penrose pseudo-inverse matrix
(see section 3.3.2) is used to find the regression line (intercept and slope) out of the
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RSSI-measurements and the (known) distances, like in [7]. This is done for each
sender (and all other 46 nodes receiving). The use of a considerable amount of
receiver nodes improves the quality of the regression model. Next, the r-squared
(RSQ) values are calculated for each sender (and all other nodes receiving) with
a linear regression tool: RSSI in function of the logarithm of the distance (in m).
RSQ is the square of the Pearson correlation coefficient [8]. A zero indicates that
there is no linear fit, and with a 1.0 all points lie on a straight line. The Pearson
correlation coefficient is positive for ascending regression lines and negative for
descending regression lines. For the RSSI at full power the RSQ is varying from
0.89 on node 43 to 0.37 on node 21 in figure 4.2.

Figure 4.2: RSQ correlation coefficient of RSSI versus logarithmic distance for the send-
ing nodes on the 3rd floor. Some nodes are highly RSSI-logarithmic distance
correlated.

The higher the RSQ, the higher the quality of the anchor nodes but also the
smaller their quantity. We suggest to choose a RSQ of 0.8 (corresponding to a
Pearson correlation coefficient of -0.89) resulting in 10 anchor nodes. The top 10
best fitting nodes are marked with a square in figure 2.1. They are in the extremities
of the building, not in the corridors. These nodes are located in positions less
sensitive to multipath fading and are considered as more informative ones. This is
also confirmed by another empirical study in an indoor environment [9]. In figure
4.3 the intercept points and the slope factors are used to produce graphs of the 10
best fits with RSQ > 0.80. A mean of these 10 best fits is also included. This line
is constructed using the average of the 10 intercept points and the average of the
10 slopes as a new intercept point and slope respectively.

Figure 4.4 gives the reported RSSI versus the logarithmic distance with the best
node 43 sending and all others receiving. Please recall there are 47 active nodes.
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Figure 4.3: RSSI versus logarithmic distance calibration of the 10 best anchors.

Hence, in this half-duplex communication system there are 46 potential receiving
nodes. In this figure the measurements from 9 receivers are below the sensitivity
level. So there are 46 minus 9 or 37 measurement points. The graph also includes

Figure 4.4: RSSI versus logarithmic distance for well behaving sensor node 43. The node
has acceptable multipath fading at all receiving nodes.

a linear regression of the measured RSSI and the mean of the 10 best fits. The last
two lines are almost coinciding. Measured points above the fit are certainly due
to (constructive) multipath fading as explained in section 2.3.2, whereas measured
points below the fit are due to (destructive) multipath fading or attenuation.

Figure 4.5 gives the worst performing node 21 (which is in the longest corri-
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dor). For this central node the measurements from only one receiver are below the

Figure 4.5: RSSI versus logarithmic distance for bad behaving node 21. The slope is less
steep.

sensitivity level, yielding 46 minus 1 or 45 measurement points. The fit and the
mean of the ten best fits are no longer parallel. The slope of this node is not so
steep, multipath fading boosts the tail and the higher attenuation at low distance
cuts the head (the reason for this higher attenuation is the passing through concrete
to a nearby node). Furthermore, there is a greater difference between the measure-
ments and the fit. Adding more nodes with lower RSQ will pile up with flatter
slopes. Calibrating the 10 best sending nodes with their respective intercept point
and slope will improve the RSSI to distance conversion. These intercept points
and the slopes calculated with known distances can now be used to calculate any
distance with a measured RSSI as input. Hashemi [10] reports many researchers
added an error correction to equation 3.3 and minimized it in their investigation.
In [5, 11, 12] this is e.g. done for the attenuation of walls. Please recall from
section 2.2 that many walls of our building are drywall. Passing through them
does not affect the RSSI-measurements considerably. Likewise, propagation paths
from the sending nodes in the staircases will pass through the same high attenu-
ation concrete material for all the other nodes and therefore mainly influence the
intercept point. Because all anchors are individually calibrated, our model absorbs
the latter effect. Although a model that includes walls can have a positive effect on
the position accuracy, it will add complexity.
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4.1.2 Selection of anchors with low standard error

With the 10 best correlated sending nodes, every node in the network hears at
least 3 nodes, which should be sufficient for the two-dimensional localization of
a subject [13]. Some localization protocols work fine with anchor nodes in the
corner [14]. Unfortunately our building (and many others) is not a square and it
is obvious that the absolute accuracy of far nodes will be lower. The challenge
now is to find a few extra central nodes in order to increase this distance accu-
racy. Linear regression assumes a constant standard deviation for each point on
the regression line [6]. There are two conditions for having a good RSQ. If the
slope is flat and the points are spread around this line, a low RSQ will result. On
the other hand if the slope is not flat, but the points are spread too far around the
line, there will also be a bad correlation. The standard deviation is a measure for
how close the points lie around the regression line and is therefore important for
determining ranging bounds. We propose an empirical approach for determining
and optimizing bounds on the distance. Indeed, any standard linear regression tool
can calculate the standard error on the vertical axis which is an estimate of the
standard deviation. It can be shown [6] that

s2 = MSE =

∑
i e

2
i

n− 2
(4.2)

where s is the estimate of the standard deviation, MSE the error mean square (or
residual mean square), ei the residuals (deviation of the observation around its own
estimated mean) and n the number of observations. Please note that the division is
by n− 2 and not by n− 1. This comes from the fact that two degrees of freedom
are lost: one for calculating the intercept and one for calculating the slope. This
makes s an unbiased estimator of the standard deviation [6]. This means that
the expected value of s is equal to the true value of the standard deviation being
estimated.

We suggest to swap the RSSI- and the logarithmic distance-axis and to redo the
linear regression resulting in the standard error on the logarithm of the distance.
We define the Error on Distance parameter as 2 times the estimated standard
deviation of the logarithmic distance frequency distribution. Please note the RSQ
is invariant to the axes swap: the RSQ-values don’t change when axes are swapped.

The probability density function (pdf) of a normal random variable Y is given
by:

pdf(Y ) =
exp (− 1

2 (Y−µσ )2)
√

2πσ
(4.3)

where µ and σ are the mean and the standard deviation of the normal random
variable Y respectively [6]. Equaling Y to the logarithmic distance log10(distance1m )

and σ to s (the latter only valid for large n, we will come back on this topic later),
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we immediately get:

pdf(distancelog) =

√
2

π

exp (−2(
distancelog−µlog

Error on Distance )2)

Error on Distance
(4.4)

In figure 4.6 this frequency distribution is plot on a linear distance scale for
mean logarithmic distances µlog of 1.3 (20 m), 1.4 (25 m) and 1.7 (50 m) with
the same Error on Distance. It can easily be verified that with this constant
Error on Distance the absolute distance error in meter increases with increasing
logarithmic distances. Therefore, central nodes in addition to the 10 anchor nodes

Figure 4.6: Frequency distribution for different points lying on the logarithmic distance ver-
sus RSSI regression line.

in the extremities of the building, will improve absolute distance accuracy. RSSI-
measurements that are too low (too much attenuation from the walls or too much
destructive multipath fading) will result in distances at the right-hand side of the
peak of the distribution and will thus correspond to estimated distances that are
too high. RSSI-measurements that are too high (certainly too much constructive
multipath fading) will result in distances that fall at the left-hand side of the peak
of the distribution and will thus correspond to estimated distances that are too
low. The above mentioned property is widely used in the design of our positioning
algorithm in section 4.3.

Figure 4.7 gives the Error on Distance for each node. Node 3 is the node
with the lowest Error on Distance (0.21). Please recall from figure 4.2 that this
is also the previously selected second best anchor node based on correlation. As
can be seen on figure 4.8, where the RSQ is plotted versus theError on Distance
for each node, the nodes with the lowest errors correspond to the nodes with the
highest RSQ, but there are also 2 new nodes in the center: node 30 and node 31.
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Figure 4.7: Error on Distance (defined as two times the estimated standard deviation of
the logarithmic distance frequency distribution) for the sending nodes on the
3rd floor. Some central nodes have low maximum Error on Distance.

These nodes are marked with a circle in figure 2.1 (a) and figure 4.8. Including
these nodes in our set of good nodes implies a lower absolute error on the position.
Measuring a logarithmic distance 1.5 ± 0.3 (31.6 m) will result in a distance of

Figure 4.8: RSQ correlation coefficient versus Error on Distance showing a good linear
fit.

101.2 to 101.8 or 15.8 m to 63.1 m or 31.6 m (-50% +100%). These error percent-
ages are in a multipath environment an order of magnitude greater than the 10.1%
encountered in less complex environments [15], although equally well calibrated.
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Please also note that the error percentages in plus and minus are asymmetric, be-
cause the distance on error is a logarithmic value and thus the geometric mean
needs to be considered.

A typical circle corresponds to the calculated distance, obtained with the mea-
sured RSSI and the calculated slope and intercept for the corresponding anchor
node.

With the Error on Distance we produce lower and upper bounds for the
expected distances. From now on, we will extensively use “small” and “large”
distance circles; by definition these correspond to circles with the radii of these
bounds, respectively. The radius of the small distance circle corresponds to the
radius of the typical circle divided by 10Error on Distance. The largest distance circles
radii are the typical circles radii multiplied by 10Error on Distance.

Figure 4.9: Regression line with probability intervals and expectation intervals (also hyper-
bola) for anchor 30.

In figure 4.9, the regression is shown for node 30 with the swapped axes and
two curves are added: the curves with the 95% expectation and 95% confidence in-
tervals. These curves are hyperbola [6] with as center X-coordinate the average of
the RSSI regression points and as center Y-coordinate the average of the logarithm
of the distance regression points. If an individual logarithmic distance-RSSI ex-
periment is done 95% of the measurements will be found between the expectation
lines. The area between the confidence lines (or confidence band) shows where
the regression line is expected for the given confidence level. Around the center
point the intervals are the smallest. Towards both ends of the regression lines, the
intervals become wider. This can be explained by the fact that the uncertainty on
the slope increases as the regression point is no longer in the center. Using this
property gives an insight in the quality of our regression model: anchor nodes
at the extremities of the building have their maximum accuracy at the geometric
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Figure 4.10: Accuracy of the regression model for two anchors placed at the extremities
of the (rectangle shaped) building. The darkest intensities correspond to the
greatest accuracy. Placing anchors in the center will improve accuracy.

means of the minimum calculated distance (around 4 m) and the maximum calcu-
lated distance (around 83 m) or about 18 m. This is illustrated in figure 4.10 with
shaded rings for two anchors at the extremities of the building. At the geometric
center of these rings the accuracy of the regression model is maximal, because
this corresponds to the central (X,Y) coordinates in figure 4.9. Moving away from
this central point in this figure results in wider confidence intervals resulting in a
lighter gray in figure 4.10. The rectangle represents our building. Rings of cen-
tral anchors will intersect both other rings and thus have a positive effect on the
accuracy. These central anchors unfortunately cannot improve the accuracy of the
model at the extremities of the building because there these are also working at the
end of their regression lines.

4.1.3 Form factor of the building

This item discusses the shape of a building for a localization algorithm. The up-
per part of figure 4.11 presents a rectangular building, measuring 10 m x 90 m.
The small red circles are the anchors, placed at the extremities of the building,
and the blue circles show the estimated distance circles, calculated with the RSSI-
measurements of the anchors and the propagation parameters (equation 3.2). The
circles form a vertical stripe and the lateral resolution is very low. In the lower
part of this table the building is a square with dimensions 30 m x 30 m (or exactly
the same surface). The distance circles are now coming from orthogonal direc-
tions: the lateral resolution is much better. Most buildings, unfortunately, are not a
square, and in the remainder of this chapter we will develop localization algorithms
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in a rectangular office environment.

4.1.4 Complexity of the calibration process and robustness
against environmental changes

In the previous subsection the best anchors are selected from the active nodes and
each anchor is calibrated with its own propagation constants (slope and intercept).
This section discusses the complexity of such a calibration process and the robust-
ness of the system against environmental changes. After the experiment on the
test bed the measurements are imported in Matlab. For each sending-receiving
pair the RSSI is averaged and forms a RSSI-matrix, where element ai,j corre-
sponds to the averaged RSSI reported from receiver j with sending node i. With the

(a)

(b)

Figure 4.11: Effect of the shape of a building on the longitudinal resolution. (a) rectangular
building and (b) square building.
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(known) position of the nodes a distance matrix is formed too. Because our nodes
are fixed this matrix remains the same for all experiments. On the correspond-
ing rows of both matrices our software now calculates the slope, intercept, RSQ
and Error on Distance. It selects the 10 best correlated nodes and completes
the selection with the two first nodes in the sorted Error on Distances vector,
which are not in the best correlated list yet. At this stage the anchors are selected
and calibrated. The location information of the remaining nodes is discarded in
further procedures and the anchors are used to localize these nodes. Using a single
power level and sending 240 packets (with a 25ms inter packet delay) over a sin-
gle channel the whole calibration phase is done in less than 10 minutes, including
the measurements. Calibration can be easily redone, e.g. when a node becomes
inactive.

Sending less packets increases the effect of time fading because there are less
averaged RSSI-measurements. Sending over more channels and averaging the
RSSI-measurements will reduce the effect of different reflections.

For a fingerprinting based algorithm, a training phase is not only typical, but
also essential. During this time consuming phase (usually several days) a large
database is filled with RSSI-measurements. Next, during the final phase a RSSI-
measurement is compared with all records of this database and the record with
the best match gives the estimated position. We will not follow this approach
in our work: our already deployed nodes are used to quickly and automatically
characterize the propagation constants (slope and intercept) of the medium. The
knowledge of these two parameters is sufficient to localize (not previously stored)
targets.

4.2 Preprocessing

Chapter 3 concluded that preprocessing data before an indoor localization algo-
rithm is tremendously important. Simple mathematical methods, like those dis-
cussed in that chapter, are challenging. In presence of outliers, however, the per-
formance of most localization algorithms deteriorates. Our preprocessing detects
these outliers in an early stage. Table 4.1 gives a schematic description of the
preprocessing algorithm. Each procedure will be explained in the following sub-
sections. In the preprocessing steps we take the underlying physical aspects into
account and incorporate simple Min-Max and Maximum likelihood procedures.
These concepts, however are not applied to find a position, but to improve the dis-
tance measurements. Furthermore, the quality of the regression model (see section
4.1) is used to extend the Min-Max algorithm on the distance to eliminate bad dis-
tance measurements. Section 4.3 and section 4.4 will show preprocessing to be
effective in reducing the position errors.
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Procedure Min-Max
If there are larger than expected large circles for the hardware used:

delete them
Procedure Ignoring Circles
Delete the typical circles containing at least 5 others if there are no

typical circles contained by at least 5 others

If there are typical circles contained by at least 5 others:
delete them.

Procedure Maximum Likelihood
Group the anchors based on distance

Are there small distance circles contained by other small distance
circles of other group members?

If yes:
new typical circle radius all members=geometric average of
m calculated distances
new Error on Distance = (Member )Error on Distance√

(#Remaining Typical Circles−1)
adapt small and large circles according to new Error on Distance
continue

If no:
continue

Table 4.1: Schematic description of the preprocessing

4.2.1 Min-max algorithm

It is very important to only feed good input to a localization engine. In this section
a resembling technique to the min-max algorithm on the position (see 3.5) is used
to detect destructive multipath outliers.

Our software gathers data and produces overviews like table 4.2, table 4.3 and
table 4.4. As an example node 4 (table 4.2), node 55 (table 4.3) and node 54
(table 4.4) are considered, but this is done for all targets. In the first column
we find the transmitting anchor, the second represents the reported RSSI by the
target, the third gives the corresponding calculated distance (taking into account
each anchor’s own propagation parameters), the fourth the Error on Distance
from section 4.1.2, the fifth the lower and upper bounds for expected distances
(radii of the small and large distance circles, see section 4.1.2), calculated from
the previous two columns. E.g. for anchor 3 in table 4.2 a calculated distance of
11.3 m with an Error on Distance of 0.234 gives an expected “small distance”
of 11.3 times 10−0,234 or 6.6 m and an expected “large distance” of 11.3 times
10+0,234 or 19.4 m. The last column gives the RSQ from section 4.1.1. Table 4.5,
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Anchor RSSI Calculated Error Expected RSQ
ID Distance On Distance

(dBm) (m) Distance (m)
3 -55.9 11.3 0.23 6.6 – 19.4 0.87
6 -63.9 12.3 0.28 6.5 – 23.2 0.84
9 -59.3 10.1 0.31 5.0 – 20.4 0.82

13 -62.6 12.3 0.27 6.7 – 22.7 0.85
30 -78.0 35.6 0.32 16.9 – 75.2 0.71
31 -89.8 108.1 0.32 51.5 – 227.2 0.71
33 -90.4 122.2 0.32 58.2 – 256.7 0.81
47 -89.6 105.7 0.31 51.2 – 216.8 0.87

Table 4.2: Data available for positioning node 4

Anchor RSSI Calculated Error Expected RSQ
ID Distance On Distance

(dBm) (m) Distance (m)
13 -89.3 66.9 0.27 36.3 – 123.2 0.85
30 -68.9 20.2 0.32 9.6 – 42.7 0.71
31 -74.0 38.8 0.32 18.5 – 81.5 0.71
33 -44.0 4.6 0.32 2.2 – 9.7 0.81
35 -66.3 21.4 0.33 10.2 – 45.2 0.80
38 -61.9 13.7 0.31 6.8 – 27.8 0.81
43 -62.4 9.7 0.26 5.3 – 17.8 0.89
47 -58.3 10.7 0.31 5.2 – 22.0 0.87
56 -56.3 7.7 0.33 3.6 – 16.6 0.82

Table 4.3: Data available for positioning node 55.

table 4.6 and table 4.7 show the real distance between the anchors to node 4, 55
and 54 respectively.

Section 4.1.1 found 10 good anchors, having a good linear regression be-
tween the RSSI reported by all receivers and the logarithmic distances between
sender and receiver. Section 4.1.2 added two good central anchors having a low
Error on Distance. Furthermore, it revealed where the anchors are the most
accurate. Now, we start polishing up the measurements. Comparing table 4.2 and
table 4.5, a large error between calculated (122.2 m) and exact distance (72.0 m)
from anchor 33 is seen. Although not an outlier here (the minimal estimate 58.2
m is less than 72.0 m) this measurement can disturb any positioning algorithm.
More extreme examples are found with other targets with up to 134 m (1.5 times
the size of the building) calculated distance and up to 275 m maximum distance
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(three times the size). Multipath fading resulted in flatter slopes of the regression
lines and extrapolating these lines causes these large errors.

Anchor RSSI Calculated Error Expected RSQ
ID Distance On Distance

(dBm) (m) Distance (m)
3 -84.1 51.3 0.23 29.9 – 87.8 0.87
6 -85.1 43.0 0.28 22.8 – 81.4 0.84
9 -88.9 66.1 0.31 32.7 – 133.6 0.82

13 -77.1 31.0 0.27 16.9 – 57.1 0.85
30 -70.0 21.7 0.32 10.3 – 45.8 0.71
31 -46.0 6.3 0.32 3.0 – 13.3 0.71
33 -73.4 36.8 0.32 17.5 – 77.3 0.81
35 -60.0 13.9 0.33 6.6 – 29.2 0.80
38 -54.4 8.1 0.31 4.0 – 16.4 0.81
43 -70.0 16.4 0.26 8.9 – 30.0 0.89
47 -73.6 32.8 0.31 16.0 – 67.3 0.87
56 -73.6 26.7 0.33 12.4 – 57.7 0.82

Table 4.4: Data available for positioning node 54

Anchor Real
ID Distance

(m)
3 13.0
6 12.2
9 12.6

13 15.4
30 43.1
31 43.4
33 72.0
35 72.9
38 68.2
43 67.3
47 72.2
56 75.8

Table 4.5: Real distance between target node 4 and the 12 anchors.

Like in [16] a combination of a min-max algorithm with a maximum likelihood
algorithm is needed to improve these situations. Unlike them we suggest to drop
all measurements where the calculated distance is greater than a limit because the
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Anchor Real
ID Distance

(m)
3 82.5
6 77.8
9 73.9

13 68.4
30 33.7
31 33.9
33 4.8
35 12.9
38 15.4
43 10.9
47 6.8
56 5.0

Table 4.6: Real distance between target node 55 and the 12 anchors.

Anchor Real
ID Distance

(m)
3 52.7
6 47.9
9 43.9

13 38.4
30 8.8
31 5.6
33 25.5
35 24.7
38 20.0
43 19.6
47 24.5
56 28.1

Table 4.7: Real distance between target node 54 and the 12 anchors.

correction to that limit can lead to a large error. Based on equation 3.2 a maximum
distance for our hardware is calculated. Indeed considering a sending power level
of 0 dBm and a receiver sensitivity of -92 dBm, equation 3.2 gives a maximum
distance of 82.8 m. RSSI-measurements resulting in higher distances are not in
accordance with the hardware used, and are ignored. 35 individual measurements
are dropped in this way. For all nodes this additional step improves the distance
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error. If a distance calculation is higher than the limits for the hardware, it probably
comes from a connection with either too much attenuation or too much destructive
multipath fading. In both cases it comes from anchors operating at the end of their
regression line. Applying this algorithm on node 4 (in table 4.2) results in the
elimination of the RSSI-measurement of anchors 31, 33 and 47.

The blue lines in the floor plan of figure 4.12 show the (direct) transmission
paths between node 4 and the anchors 31, 33 and 47. Like in figure 2.1, drywall
walls are presented by dark green solid lines, the solid gray lines are concrete
wall and the black squares and black circles are the selected anchors. When elec-
tromagnetic radiation is obliquely incident on a wall or floor, less power will be
transmitted through the wall than would occur at normal incidence [17]. The red
pentagrams represent the regions where this situation occurs.

• The higher attenuation in the path between node 4 and anchor 31 is probably
due to the scattering at two pentagrams.

• The path between node 4 and anchor 47 crosses a concrete block completely,
furthermore there is a region of oblique incidence.

• The path between node 4 and anchor 33 passes 14 scattering nodes and is
attenuated by 6 drywall walls.

These paths are not representative for the majority of the transmission paths, and
are considered as outliers. Because the slopes for these anchors are flatter than
those of the theoretical model (equation 3.2), these outliers can be detected and
deleted.

4.2.2 Elimination of circles

In this section, the regression based technique is evaluated on its accuracy. The
model accuracy, discussed in section 4.1.2 is helpful to decide whether too small
or too large distance circles need to be ignored. Indeed, figure 4.9 and figure 4.10
illustrate that the model accuracy is best in the middle of the regression line. The
elimination of circles is based on this knowledge. Table 4.8 illustrates where node
4, 54 and 55 are on the regression lines of the anchors.

Node 54 is representative for a target in the center of the building and node
55 is a good example of a target in an extremity of the building. These nodes
perfectly demonstrate the accuracy of the model. With column 3 of table 4.2,
table 4.3 and table 4.4 and the exact position of the anchors typical (dot marked)
circles can be drawn for locating the nodes. This is done in figure 4.13 for node
4. The radius of these typical circles is the calculated distance (based on RSSI-
measurements) to the target, represented by the dark square. If all measurements
were on the regression line, all typical circles would intersect in the target. The too
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Figure 4.12: The blue lines represent transmission paths between node 4 and anchor 31,
node 4 and anchor 47, and also node 4 and 33. These paths are not represen-
tative for the majority of the transmission paths. They have high attenuation,
due to the passing through walls and the occurrence of oblique incidence on
walls.

large (red) typical circles of anchors 31, 33 and 47 contain all other typical circles.
The RSSI-measurement is too low and in the logarithmic distance–RSSI graph the
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measurement is too far above the linear regression line. As explained in section
4.2.1, these circles have been deleted.

Figure 4.13: Drawing of (dot marked) typical circles for positioning (squared) target 4. The
red circles are ignored because they are larger than the limit for the hardware.

Anchor Anchor Anchor
3-6-9-13 30-31 33-35-38-

43-47-56
node 4 (lower) end (higher) end (higher) end

node 54 center (lower) end center
node 55 (higher) end (higher) end (lower) end

Table 4.8: Where are node 4, node 54 and 55 on the regression lines of the anchors?

With two measurements (from two different anchors) of the same target there
are four possibilities: they are both too small, they are both (slightly or much) too
large, the first one is (slightly or much) too small and the second is (slightly or
much) too large or vice versa. Averaging in the first two cases gives no improve-
ment, because the closest distance to the target is corrected in the wrong direction.
Averaging in the last two cases only improves if there are no outliers. Deleting bad
measurements and outliers is a major preprocessing step in our environment with
heavy multipath fading.

Now, we suggest expanding the elimination of bad measurements based on
containing-contained circles and the quality of the anchors. Figure 4.14 shows
the typical circles for node 55 constructed with table 4.3 and the exact position
of the anchors. We observe that the largest (yellow) typical circle (belonging to
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anchor 35) contains five others. The smallest (pale blue) circle at the left-hand side
(belonging to anchor 33) is contained by 3 others. Node 55 is representative for all
nodes at the extremities of the building: there are no circles that are contained by
minimum 5 others and there are more than 5 containing circles.

Figure 4.14: Drawing of (dot marked) typical circles for positioning (squared) target 55.
All measurements from anchors at the right-hand side and the center of the
building have low accuracy for targets at the left-hand side. The largest (yel-
low) circle at the left- hand side is ignored because it contains too many other
typical circles.

For targets at the left-hand side extremity of the building all anchors are operat-
ing at the end of their linear regression line. The left-hand sided typical circles are
at minimum distance and all others (including the central) at maximum distance
of their respective regression line. The accuracy of the smallest typical circles
increases when the target shifts to the center, thus these circles are not deleted.
Between the large amount of large typical circles there exists not only inaccuracy
but also redundancy. In this situation, all typical circles containing at least 5 others
will be ignored.

The figure 5 is dependent on the total number of sending anchors (received
by the target). When this figure is set too low, also good measurements may be
eliminated. This will imply the number of measurements is not large enough for
the (good) positioning. When it is set too high, also bad measurements may be
allowed. This will have a negative impact on the next step of our preprocessing:
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Figure 4.15: Drawing of (dot marked) typical circles for positioning (squared) target 54.
The blue circles is deleted because it is contained by more than 5 other cir-
cles. The green circles are kept and can be used in the maximum likelihood
algorithm on the distance.

the maximum likelihood algorithm.

Likewise, for targets in the center of the building the anchors at the extremi-
ties are not extrapolating their regression lines, thus the largest circles shouldn’t
be deleted now. The anchors in the center of the building are operating at low
distances. Too small central typical circles are contained by more typical circles
(coming from anchors at both sides of the extremities) than typical circles at the
extremities. A representative example is node 54. A closer look at figure 4.15
reveals the green typical circles contain minimum 5 other typical circles and the
blue circles are contained by at least 5 other typical circles. Hence, when there
are both minimum 5 containing and 5 contained typical circles only the too small
(blue) circles are deleted. Please note that the remaining typical circles are more
consistent. The too large (green) typical circles will be used in the maximum like-
lihood algorithm on the distance of the next subsection, where they can correct the
distances of their group members.
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4.2.3 Grouping Anchors

When anchors are grouped a maximum likelihood algorithm can be used. It is very
common to use a maximum likelihood algorithm on the position, as described in
section 3.4. In our preprocessing, a reduced complexity maximum likelihood algo-
rithm on the distance is incorporated. Neighboring anchors can be grouped and the
most likely distance is estimated. This technique is excellent for a preprocessing
procedure because it is fast and achieves a large improvement.

Figure 2.1 (a) shows three groups of anchors: nodes 3, 6, 9 and 13 are in
the first group, nodes 30 and 31 in the second and the others in the third. These
nodes are neighboring anchors in one extremity of the building, the center and
the extremity of the building at the other side. We suggest considering the an-
chors in one group as coinciding if one “small circle” (with a radius that is equal
to the lower bound for the expected distance, see section 4.1.2) is contained in
the other(s). Please recall from section 4.1.2 the radii of these small circles are
available from the fifth column of table 4.2, table 4.3 and table 4.4, and calculated
with the Error on Distance. Under the assumption that the probability distri-
bution of the logarithmic distance is normally distributed for all group members
with the same variance, the likelihood function equals the product of these normal
distribution functions of the m (see table 4.1) remaining calculated logarithmic
distances in each group. This assumption is not strange: in the previous two pro-
cedures, outliers have been deleted. Furthermore, just a few high quality anchors
have been selected based on the high RSQ and low EOD (which is an estimate
for the standard deviation, and hence the variance). Moreover, figure 4.8 shows
a good correlation between the RSQ and EOD. This results in the fact that there
is not a large variation in the anchor’s EOD. Partial derivation of this likelihood
function [6] proves the most likely logarithmic distance equals the average of the
calculated distance of the m group members. Hence the most probable distance
can be found out of the (geometric) average of the m (see table 4.1) remaining
calculated distances in each group. This geometric average is calculated and ap-
plied to all anchors in that group. (Please note the position of the anchors remains
unchanged.) If a distance estimation of one anchor is too high, it is compensated
by the other group members. Also with distances too low this is the case. By elim-
inating the outliers before this process, the chance of decreasing the accuracy of
the good anchors is minimized. If the small circles don’t contain others, the target
is probably nearby and the individual anchors are needed to increase the accuracy.

In this section we suggest to use the standard error of the regression model
and divide the Error on Distances by the square root of the number (m− 1) to
obtain the corrected Error on Distance for the group members. We divide by
m− 1 and not by m because one degree of freedom is lost.

In figure 4.16 the maximum likelihood algorithm on the distance is illustrated.
All solid circles are small distance circles. Again, the typical distance circles are
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Figure 4.16: Application of the maximum likelihood algorithm on the distance on the ma-
genta group brings the (black dotted) typical circles closer to the target.

dot marked and the target (node 14) is represented by a small square. The orange
circles are for the first group with the anchors 3, 6 , 9 and 13. Here, none of the
small circles is contained by another small circle of any group member. Therefore,
the maximum likelihood on the distance is not applied. The magenta circles belong
to the third group, consisting of anchors 33, 35, 38, 43, 47 and 56. Please note
that the measurements of anchors 35 and 56 are below the noise floor and the
measurement of node 38 is above the limits of the hardware (see section 4.2.1).
The remaining (magenta dot marked) typical circles are not close to the target.
Because the small distance circle of node 33 is contained by the small distance
circle of nodes 43 and 47 the maximum likelihood algorithm on the distance is
applied. The corresponding radii are calculated using this subsection and result in
the black circles. Geometric averaging of 44.7 m (anchor 33), 63.4 m (anchor 43)
and 53.5 m (anchor 47) yields 53.4 m as new radius. The magenta distance circles
are replaced by the black. Please note the corrected typical circles are now very
close to the target. Please also note that the large circles and the circles of a second
group consisting of anchors 30 and 31 are not shown in this figure. Including them
would have overloaded this drawing.

The (log-normal) probability distributions functions (pdf) for anchors 33, 43
and 47 peak at 44.7 m, 63.6 m and 53.5 m for anchors 33, 43 and 47, respectively,
as shown in figure 4.17. These lines are constructed with the measured RSSI at
node 14, and the slope, intercept and the EOD of the respective anchors. Just as
in figure 4.6, the distributions are wide because of the large EOD (0.32, 0.26, and
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0.31, respectively). Multiplication of these distributions results in the maximum
likelihood function. The derivative (gradient) of the maximum likelihood function
is shown in the gray solid line zero-crossing at a distance of 54.5 m, the most
likely distance between the anchors and node 14. This value is very close to the
geometric average (53.4 m) of the anchor-target distances, justifying the previously
made assumptions of normality and equal variance.

Figure 4.17: Log-normal probability functions for node 14. The gray solid line represents
the gradient of the maximum likelihood function. The geometric average (53.4
m) of the abscissa where the respective probability functions peak is a good
approximation of the abscissa of the peak of the maximum likelihood function
(54.5 m).

4.2.4 Preprocessing results: the distance error

Preprocessing aims at improving the distance ranges before the real positioning.
Therefore, this section evaluates the performance of each successive preprocessing
step. A good metric for this goal is the distance error. This distance error considers
one of the 1942 sender/receiver pairs at a time. The error between the real and the
calculated distance results in one point in the cumulative distribution function (cdf)
plot. Section 4.3 will show preprocessing to be effective in reducing the position
error.

Figure 4.18 gives the cdf of the distance error on the preprocessing steps.
The dotted line represents the error distribution for the initial step. The RSSI-
measurements of the test described in section 4.1 at full power are converted to
distances using the propagation parameters taken from the theoretical linear re-
gression model derived from the attenuation in the IEEE802.15.4 standard when
evaluated between 2.5 m and 83 m (see section 4.1.1).
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Figure 4.18: Cumulative distribution function plots for the preprocessing steps. Each sub-
sequent preprocessing step further reduces the median of the distance error.

The difference between these distances and the real distance between the cor-
responding sender/receiver pair defines the (one-dimensional) distance error. The
other curves present the cdf for the distance errors after subsequently applying
section 4.1.2 (calibration 12 nodes left), 4.2.1 (min-max algorithm), 4.2.2 (elimi-
nation of circles) and 4.2.3 (grouping anchors) respectively. For low and medium
percentiles, the first preprocessing step already gives an improvement. As can be
seen at the upper right side of the figure the calibration of anchors has a negative
effect for percentiles above 90. Figure 4.18 also reveals this effect is eliminated
when the too large circles are rejected. The subsequent steps of the preprocessing
further improve the accuracy.

Please note that all preprocessing steps reduce the median of the distance error
from 8.95 m to 4.03 m.

One might argue that there is no significant difference between the “elimina-
tion of circles” and “min-max” cdf plots and conclude that the min-max procedure
is useless. This conclusion is wrong. Please recall from section 4.1.2 there are
46 potential receivers for each anchor transmission. Therefore, the “calibration”
cdf plot consist of (at most) 46x12 or 552 measurements. In our experiment the
“min-max” cdf plot consist of 425 measurements. The “min-max” procedure fur-
ther eliminates only 40 out of these 425 measurements. The other distance errors
remain unchanged. The small amount of affected measurements is not sufficient
to show a large difference in figure 4.18 for the “elimination of circles”-curve and
the “min-max”-curve, but please note that the “elimination of circles”-curve stays
above the “min-max”-curve. Examination of the 40 deleted measurements further
reveals that the median of the distance error for this subgroup of measurements



2D-LOCALIZATION 127

equals 8.47 m, or almost the median of the unpreprocessed distance errors. This
subgroup therefore contains outliers. The next preprocessing step is a maximum
likelihood algorithm. Please recall from section 3.4 that elimination of outliers is
extremely needed for this kind of algorithm.

4.3 LiReFLoA

With the preprocessing of the previous sections good input is achieved for position-
ing: good anchors are selected, based on high RSQ and low Error on Distance;
bad measurements are eliminated because both too small and too large distance cir-
cles are rejected. Furthermore, grouping anchors allows a maximum likelihood al-
gorithm on the distance. All of this results in more consistent distance circles. Our
Error on Distance approach results in small and large distance circles forming
rings (washers) with accurate bounds on the distance. These distance rings can
be used in an area-based localization algorithm like [18]. In that more theoretical
study these authors find the intersection of the rings and find the smallest enclos-
ing circle covering this intersection of rings. Please note that our anchor selection
and calibration algorithm provides a method to empirically obtain these rings. The
thickness of the rings is not only anchor dependent (see table 4.2, table 4.3 and
table 4.4), but (because of the logarithmic property of the Error on Distance)
also distance dependent (see figure 4.6). For this approach, however it is necessary
that the rings are not disjunct. This is why the bounds of section 4.2.3 must not be
set too conservatively.

Indeed, decreasing the thickness of the rings will increase the risk of these
rings to be disjunct. For a few cases this disjunct-ring condition is met in our
multipath environment. Instead of increasing the bounds, a low complexity point-
based algorithm better suits our empirical data. We present the flowchart in figure
4.19. Mainly it consists of 6 procedures and two decisions. The numbers represent
the subsections where the respective items are discussed. Usually the following
path 4.3.1, 4.3.2, 4.3.3, 4.3.4, 4.3.5, 4.3.7 is used. In very few cases procedure
4.3.6 is encountered and the use of procedure 4.3.8 is even rarer.

First, the underlying principles of LiReFLoA are discussed.
Section 2.3 revealed that multipath fading is a very annoying problem for in-

door localization. Moreover, chapter 3 showed that simple localization algorithms
are extremely vulnerable to multipath faded outliers. Indeed, with constructive
multipath fading, the RSSI-measurements are (much) too high, and hence the dis-
tances too small. With destructive multipath fading, the RSSI-measurements are
too low resulting in too large distances. LiReFLoA is based on this physical phe-
nomenon to calculate the position. The first decision (section 4.3.2) is a test on the
large distance circles (defined in section 4.1.2). Hence, if the most restrictive large
circles don’t intersect, there is constructive multipath fading. The second decision
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Figure 4.19: Flowchart of the LiReFLoA positioning algorithm.
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(see section 4.3.4) is a test on the amount of intersections of typical circles within
the building. When none or very few intersections lie within the building, it is
likely that there is constructive multipath fading.

4.3.1 Calculate intersection points of the longitudinal border-
lines of the building and the large circles

For each target the previous section resulted in small, typical and large distance
circles around the anchors. This starting procedure looks for the common inter-
section of these large circles and the longitudinal borderlines of the building, see
figure 4.20.

Figure 4.20: Common intersection of the large distance circles and the longitudinal bor-
derlines of the building. Initial position is calculated as the intersection of
the diagonals of the trapeze (when initial position cannot be calculated from
typical circles).

This is a principle figure and all underlying information as target number, an-
chor ID ... is left out, in an effort to avoid overloading the drawing. This approach
is valid for the remainder of this section. The rectangle represents the building
and the large circles are in dashed lines. The intersection points of the large cir-
cles and the longitudinal borderlines of the building are calculated. If the leftmost
intersection is to the right of the corresponding leftmost corner of the building, it
replaces this corner point. Now, the next large circle is considered and its leftmost
intersection point replaces the previous if it is more to the right. In this way the
left points are changed from point A through D. The interpretation of this point is
straightforward: if there are no outliers, all large circles represent effective max-
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imum bounds on the distance and the target can not be at the right of the most
restrictive left point. This is done for both longitudinal borderlines of the build-
ing. An analogous procedure gives the leftmost right points of a trapeze. Without
outliers on the constructive multipath fading the large circles will not be too small
and the vast majority of the targets will continue on the main track towards 4.3.3.

4.3.2 Is the amount of constructive multipath fading accept-
able?

As discussed in section 2.3.2 constructive multipath fading results in too large
RSSI-measurements and hence too small distance circles. If the most restrictive
large circles do not intersect constructive multipath fading is present. See figure
4.21. The final right point is now situated left to the final left point. The trapeze
now has negative sides.

Figure 4.21: Large distance circles in case of constructive multipath fading. Too small large
circles result in trapezes with negative sides. Initial position is calculated as
the intersection of the diagonals of the trapeze.

When no outliers on the constructive multipath fading are present like in figure
4.20, the trapeze has positive sides. Hence, this is a fast method to decide on the
amount of constructive multipath fading. On the positive trapeze sides outcome
the algorithm continues with 4.3.3 and with negative sides 4.3.8 is the next step.
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4.3.3 Calculate typical circles intersection points within the
building

Next, the typical circles intersection points within the building are calculated.
There are two possibilities: figure 4.22 shows the situation where the intersection
points are inside the building and figure 4.23 illustrates an example where typi-
cal circles do not intersect or have intersection points outside the building. Our
software counts the intersection points within the building of the most intersected
typical circle(s). In the next step a new decision needs to be taken.

Figure 4.22: Initial position based on averaging of typical circles intersection points.

4.3.4 Is there more than one intersection point within the build-
ing?

Preprocessing steps resulted in more consistent distance circles. As discussed in
section 4.1.1 constructive multipath results in too small circles. When all typical
circles don’t intersect at all within the building or when there is only one inter-
section point of all intersecting typical circles within the building, uncorrected
constructive multipath fading is expected. Therefore, the number of intersection
points within the building is a good metric for the presence of constructive multi-
path fading. When there is more than one intersection point within the building,
procedure 4.3.5 is executed. If this is not the case, procedure 4.3.6 follows. The
difference is a selection of a different initial point. Very few targets follow the 4.3.6
procedure and the vast majority of targets will continue with procedure 4.3.5.
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4.3.5 Calculate initial position as the centroid of all typical cir-
cles intersection points

A logical next step is the calculation of an initial position. It is the result of a
multilateration process, calculated as the centroid of all typical circles intersection
points with the typical circle that is intersected most. Figure 4.22 gives an example
where the lowest circle is intersected twice. The little square in the middle of the
drawing represents the initial position. In a few cases a typical circle is intersected
up to 14 times by other typical circles.

4.3.6 Calculate the initial position as the intersection of the di-
agonals of the trapeze

In figure 4.23 the leftmost typical circle is smaller than the corresponding circle
of the same anchor in figure 4.22. It is likely there is more constructive multipath
fading for figure 4.23. The typical circles do not intersect within the building, ei-
ther because there are no intersections or because the intersections are not within
the building. Please also note that if the multipath fading for the two rightmost
anchors decreases (and these circles become larger) there will again be intersec-
tions within the building. Therefore, constructive multipath is expected when there
are no intersections within the building. Furthermore, when there is at most one
intersection point of all typical circles within the building, the initial point cannot
be calculated with the multilateration step of section 4.3.5. In this case the ini-
tial position is estimated as the intersection point of the diagonal of the (positive)
sided trapeze, calculated from the large circles as in figure 4.21. The procedure
described in subsection 4.3.7 will further increase accuracy.

4.3.7 Calculate the estimated position of the nearest intersec-
tion points of the longitudinal line and the typical circles

Around the initial point accurate typical circles are expected, because the prepro-
cessing resulted in consistent circles. Please recall from section 3.3 and figure
3.1 that all typical circles would intersect in the target if there were no multipath
fading. Furthermore, figure 4.9 shows that the 95 percent confidence intervals (in
m) are widest at high distances. Looking in the neighborhood of the initial point
at distances larger than the limits of the confidence interval will include outliers.
Therefore, we impose an absolute limit on the search region around this initial
point. When set too high also non detected outliers will spoil the good measure-
ments and when set too low also good measurements from far anchors will be
eliminated. As a limit we propose the same total confidence interval of 22 m for
all anchors. Models that are more complex can adapt this margin to the considered
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Figure 4.23: Large distance circles in case of constructive multipath fading. Too small large
circles result in trapezes with negative sides. Initial position is calculated as
the intersection of the diagonals of the trapeze.

anchor. Figure 4.9 shows that for node 30 a 95 percent confidence intervals of 22
m is reached at a distance of 50 m.

Figure 4.24: Final step of the localization algorithm. A weighted averaging of typical circle
points in the vicinity of the initial position results in the final position.

Figure 4.24 represents the final step in the localization. Around the initial posi-
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tion (obtained with procedure 4.3.6), a line of +/- 11 m is drawn in the longitudinal
direction. Please note the limits of the line are symmetrical, while the confidence
intervals are not. Models that are more complex could keep these limits asymmet-
rical. Now, for each typical circle the intersections with this line are calculated.
The intersecting point that is closest to the initial point is kept. Multilateration of
these kept intersections results in the estimated position. Due to the form factor of
the building multilateration in the lateral direction of the building is not performed.

4.3.8 Calculate the position as the intersection of the diagonals
of the trapeze

This procedure is executed when the most restrictive large circles do not intersect.
Therefore, at least one of the concerned anchor-target paths exhibits too much
constructive multipath fading. In our building the preprocessing step reduced the
number of affected targets from 5 to 3. Instead of finding out which circle is too
small, we allow negative sided trapezes. Considering both circles equally likely to
be too small and that the negative sides are small, the position is estimated as the
intersection of the diagonals of the trapeze. In figure 4.21 this position is marked
with a black square. It is obvious that also the typical circles will be much too
small. Hence, searching in the vicinity of this black square (as in section 4.3.5)
will not increase the accuracy.

4.3.9 LiReFLoA results: the positioning error

The previous section 4.2 ended with a discussion on the distance error. In this
section the distance calculations d̂i,j from the different anchors are grouped and
result in one of the 47 target positions at a time. A good metric for evaluation of
the complete algorithm is the position error. Here, all distances from the different
anchors are grouped, resulting in one of the 47 target positions at a time. Please
note that lower distance errors result in lower position errors and that in most
algorithms, the position error is higher than the corresponding distance errors. To
prove the concept of our method, we use the unselected nodes (non-anchors) as
localization targets. However, our technique can also be used for the localization
of other targets, for which no location information is available.

For comparison, a more conventional maximum likelihood on the position with
a mean square error (MMSE) cost function is implemented. Please recall from
section 3.4 the MMSE cost function is given by equation 3.15. For a better un-
derstanding of the grid method, the dependency of the calculated distance d̂i,j is
explicitly given in equation 4.5

(x̂, ŷ) = argmin(x,y)
∑

j∈anchor(i)

(d̂i,j(RSSI)− di,j)2 (4.5)
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Our building is gridded with an intergrid size of 0.50 m in each direction. Next, the
exact distances di,j between the grid points j and the (known) position of anchors
i are calculated. Now, the RSSI-measurements at the anchors are converted to
the calculated d̂i,j(RSSI) distances . For each anchor, the exact distance to each
grid point is subtracted from the calculated distance and this difference is squared.
According to equation 4.5, this difference calculation is redone for all contributing
anchors. For each grid point, the corresponding squared differences are added.
The grid point with the lowest sum of the squared differences is the most likely
location.

Figure 4.25: Cumulative distribution function plots for the error on the position. Compar-
ison is made between our algorithm and conventional maximum likelihood
methods, presented by the mean square cost function (MMSE).

In figure 4.25 the error on the position is shown in our sparse anchor density (12
anchors on a surface of 1512 m2 or approximately 0.008 anchors per square meter)
environment. As a common reference the end of section 4.1.2 is chosen: the best
anchors are selected and calibrated. The effect of the presence of the preprocessing
steps (section 4.2.1 through section 4.2.3) is studied on both our algorithm and the
more conventional maximum likelihood on the position. The figure shows there
is an improvement of the preprocessing on our complete algorithm, the median of
the error is reduced from 6.22 m to 5.29 m. Furthermore, the worst result is for
MMSE without preprocessing steps section 4.2.1 through section 4.2.3. Using our
min-max algorithm, eliminating circles and grouping anchors has a positive effect
on the position error of the MMSE algorithm. It reduces the median from 6.66 m
to 6.45 m. Our complete algorithm has a lower median than the MMSE maximum
likelihood algorithm with all our preprocessing steps and it has the lowest high
percentiles.
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Figure 4.26: Error on the position along the longitudinal coordinate of the building.

The largest errors for both algorithms are made in the longitudinal axis of the
building along the longest side of the rectangle. Figure 4.26 shows this longitu-
dinal error for both algorithms and illustrates the existence of many large errors
for the maximum likelihood algorithm on the position. Its highest error belongs to
node 2 (at a longitudinal coordinate of 91 m) , situated not only in an extremity of
the building (where the selected anchors are less accurate, see figure 4.10 but also
in the longest corridor (with the most constructive multipath fading, see section
2.3.2). Figure 4.27 shows the cumulative distribution function plots for the lateral
error on the position. The upper graph is for our complete algorithm and the lower
graph is for the maximum likelihood on the position (without preprocessing step
section 4.2.1 through section 4.2.3). Our tests show that our algorithm tends to fa-
vor the center in a narrow rectangle, while a maximum likelihood on the position
rather locates the targets on the longitudinal borders for such a geometry. Indeed,
the longitudinal coordinate of LiReFLoA is determined by either the diagonals of
trapeze construction (procedure 4.3.6 and procedure 4.3.8), or the averaging of
typical circles intersection points 4.3.5. Both procedures favor the center.

Traditional maximum likelihood algorithms can be compared with a bed sheet,
having a ball in it. This ball represents the most likely position. At the posi-
tion of the anchors, this sheet is pulled up with a force proportional to the RSSI-
measurement. If all RSSI-measurements are correct, the ball finds the position of
the target. This comparison makes clear what happens in narrow rectangular envi-
ronments: if the anchor’s “forces” are not accurate, the ball falls by either one of
the waysides.
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Figure 4.27: Cumulative distribution plot of the lateral error on the position shows our al-
gorithm performs better with a median around 2.6 m (from 3.49).

4.4 Synergy of the preprocessing and LiReFLoA al-
gorithms

In the previous three sections (section 4.1 through section 4.3) we have presented
a new approach for localization in a realistic indoor environment, where multipath
fading is highly present. Our measurements show that the preprocessing steps
decrease the median of the distance error from 8.95 m to 4.03 m. Furthermore,
applying our complete algorithm eliminates the outliers and obtains a median of
the position error of 5.29 m. A maximum likelihood algorithm with a mean square
error cost function has a position error median of 6.66 m. When our preprocessing
is applied, not only this median, but also the high percentiles of this algorithm are
improved. In our pre-existing sensor network with a large number of sensor nodes,
the best available nodes are selected as anchors and calibrated. The whole process
can be automated using standard linear regression tools. Time consuming manual
fitting and complex fingerprinting is avoided, making it possible to do real-time
localization in future dynamic wireless indoor environments.

4.5 LiReCoFuL
Researchers have already been investing a lot of effort in localization-aware appli-
cations [19]. Within the DEUS-project [20], a next generation network and service
has been implemented by the use of T-mote Sky modules in an elderly surveillance
localization system. Modern widely accepted methods use statistics like Bayesian
estimators [21–23] and maximum likelihood estimation [24] to improve the ac-



138 2D-LOCALIZATION

curacy of the position. The maximum likelihood concept has been introduced in
section 3.4, and the widely used Minimum Mean Square Error function (MMSE)
maximum likelihood estimator for localization has been discussed. Furthermore,
in section 4.1, we presented a statistics based automated method to select, optimize
and calibrate anchors before offering the RSSI-measurements to our preprocessing
algorithm. This preprocessing algorithm, presented in section 4.2, further uses the
accuracy of the underlying statistical model to eliminate bad measurements. In
section 4.3, we presented a Linear Regression based Fast Localization Algorithm
(LiReFLoA) [25]. This tool calculates the position. Here, at the end of this chap-
ter, we use the same selection and calibration method, present a new maximum
likelihood cost function and compare it with cost functions that are more tradi-
tional, like (MMSE) [26], Relative Location Estimation (RLE) [18] and Reduced
Bias Relative Location Estimation (RBRLE) [18].

4.5.1 The LiReCoFuL cost function

The starting point of a maximum likelihood algorithm is a cost function. Several
cost functions exist: the simplest and widely used cost function is the minimum
mean square error function, presented in equation 3.15. Please recall that di,j is
the Euclidean distance between a point j and an anchor i. Furthermore, d̂i,j de-
notes the estimated (most likely) distance and is the estimated distance between
point j in the x-y plane and anchor i. Although we estimate this distance with the
Received Signal Strength Indicator (RSSI)-values of the radio chip and the prop-
agation constants, the log-normal relationship between RSSI and distance is not
a prior assumption. Thus, this cost function means that the most likely position
is a point in the x-y plane where the sum of squared position errors between es-
timated and Euclidean distances to the anchors is minimal. Equation 3.15 does
not take into account that the underlying physics dictates the relationship between
the RSSI and the distance to be semi-logarithmic [27]. Therefore, Patwari et al.
start with this assumption and propose the Relative Location Estimation (RLE)
cost function [18]:

(x̂, ŷ) = argmin(x,y)
∑

j∈anchor(i)

ln2(
d̂2i,j
d2i,j

) (4.6)

where ln stands for the natural logarithmic function. This cost function implies
that the most likely position is a point in the x-y plane where the sum of squared
logarithms of the squared quotient of the Euclidean and estimated distance is min-
imal. Since this cost function is biased (this means that the mean of the estimated
position does not equal the Euclidean distance), the same authors suggest a better
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cost function with reduced bias (RBRLE)

(x̂, ŷ) = argmin(x,y)
∑

j∈anchor(i)

ln2(
d̂2i,j
C2d2i,j

) (4.7)

where C is calculated with the propagation parameters and the standard devia-
tion on the RSSI. This standard deviation is estimated with the Cramer-Rao lower
bound (CRLB). The authors of [18] notice that C ≈ 1.2 for typical channels.
Therefore, we use this value in this section.

LiReCoFul is based on linear regression and probabilities around a point on
the regression line.

Figure 4.28: Linear regression and distance probability distribution.

The RSSI-distance plane in figure 4.28 presents the measurements for a well
behaving anchor with the regression line. This line reduces the mean squared er-
rors, thus the measurements are close to this regression line. A point further away
from this line will therefore result in a lower probability of occurrence. The dis-
tance probability distribution is shown for three different values of the RSSI in
the third dimension of this plot, according to the basics of the linear regression
technique [6]. This is also valid for other RSSI-values and thus a kind of tunnel
is formed around this regression line. An assumption of linear regression theory
is that the y-coordinate values are normally distributed with the same standard
deviation. Therefore, the width of the tunnel remains constant for a specific re-
gression line. Having defined an Error on Distance [25] we were the first to
assume a normal distribution on the (logarithmic) distance. Many other authors,
including [18], assumed a normal distribution on the RSSI. Because the variables
are linearly correlated, both assumptions are equivalent. Our approach however is
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more direct, because it outputs distances rather than RSSIs.

log10(
d̂i,j
di,j

) ∼ N (0, σi) (4.8)

Consequently, equation 4.8 is a normal distribution with zero mean and unknown
standard deviation. Dividing equation 4.8 by this standard deviation results in
a standard normal distribution. For each anchor, the exact standard deviation is
estimated from the measurements using the regression technique.

Dividing equation 4.8 by the standard (logarithmic distance) error (or half the
Error on Distance [25]) results in a conversion of this standard normal distribu-
tion into a t-distribution [6]. The most likely location is now found by maximizing
our cost function:

(x̂, ŷ) = argmax(x,y)
∏

j∈anchor(i)

tpdf

 log10(
d̂i,j
di,j

)

SEanchor(i)
, n(i)

 (4.9)

where tpdf(t, n) denotes the Student’s t probability distribution function with n
degrees of freedom at the t-value of t [6]. The anchor dependent degrees of free-
dom n(i) can also be obtained by linear regression: for each sending anchor, n(i)

is two units less than the number of receivers with a RSSI-measurement above
the noise floor. Indeed two degrees of freedom are lost: one for calculating the
mean and one for calculating the standard deviation [6]. When the Euclidean dis-
tance of a point in the x-y plane to a particular target equals the estimated distance,
the t-value is zero and the t-distribution peaks. This is the case for all anchors.
Assuming that the anchors are independent, the overall probability is found by
multiplying the probabilities of the individual anchors. Therefore, multiplication
needs to be done for all points that are anchors and the cost function needs to be
maximized.

Mostly the conjugate gradient algorithm is used to find the extremes of the
cost functions (equations 3.15, 4.6, 4.7 and 4.9) [28]. A drawback of this method
is that it does not always converge to the wanted extreme of the function, or that
it converges to a local extreme [29]. Some authors [30] therefore use this algo-
rithm in combination with another coarse positioning algorithm. In this section
we put a grid on our building and calculate the cost function for each grid point.
This algorithm is safer because it always finds the true extreme and allows easy
visualization, at the expense of extra computational cost.

4.5.2 Theoretical comparison LiReCoFuL and RLE

This section compares the LiReFLoA and RLE cost functions theoretically. An
overview is given in table 4.9.
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Item RLE LiReCoFuL
Propagation model used in RSSI used in distance
Dependent RSSI Distance
variable (axis swap)

Assumption RSSI(i, j) ∼ N (RSSI, σi) log10(
d̂i,j
di,j

) ∼ N (0, σi)

Calculate density

function of RSSI
log10(

d̂i,j
di,j

)

σi

with area under tail peak Student-t
normal distribution (measurements)

Calculation multiplication multiplication
joint density
Find MLE by differentiation keeping multiplication

Table 4.9: Theoretical comparison LiReCoFuL and Relative Location Estimation

Please recall from section 4.5.1 that both cost functions start from the propa-
gation model (equation 3.3). LiReCoFuL swaps the axes. Therefore, the distance
(instead of the RSSI) becomes the dependent variable. A next logical step is the
assumption that this (statistical) variable is normally distributed. Now, the density
function (for one anchor) is calculated. For this density function, RLE uses the
(minimum) tail area under the normal distribution. In LiReCoFul, the (peak) of a
Student-t distribution is used. Next, both cost functions assume independence of
the anchors and multiply the respective density functions to obtain a joint density
function. RLE uses an additional step and differentiates the joint density function,
transforming the multiplication into a sum. LiReCoFuL keeps the multiplication,
because a multiplication has a smooth gradient in the neighborhood of the targets.
A more detailed description of the RLE cost function can be found in [31].

4.5.3 Test conditions for grid based maximum likelihood

This section describes the test conditions for this grid based maximum likelihood
algorithms. The iMinds w-ilab.t test bed is used in our experiment. More about
this test bed can be found in section 2.2. The second floor is used in this section.
In section 4.5.7 the third floor is examined. On figure 2.1(b), this second floor
is shown with the position of the 58 nodes. Figure 4.29 shows the position of
the active nodes, the anchors and a central target for the LiReCoFuL test on the
second floor. The floor is rectangle shaped, but in the center of the floor, there are
also outside walls, almost cutting the floor into two smaller rectangles. The floor
is gridded with a grid size of 0.25 m in each (lateral and longitudinal) direction. In
this section, we use not only the same selection method of best anchors but also
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the same calibration method as in section 4.1. Again, each node broadcasts 240
packets of 100 bytes with an interpacket delay of 25ms. Furthermore, transmission
is at channel 26 to avoid Wi-Fi interference and upon swapping the nodes, the test
bed is idle for at least 3.5s. Our test bed collects the data, we swap the RSSI
and (logarithmic) distance axes, perform a linear regression and use regression
properties to obtain the well behaving and calibrated anchors. These anchors are
marked with a black square in figure 4.29.

Figure 4.29: Position of the active nodes, the anchors and a central target for the LiReCo-
FuL test on the second floor.

4.5.4 Graphical comparison of the cost functions

Now, the different cost functions can be compared. This section initiates this com-
parison with the plots of the cost functions and the next section follows with a
cumulative distribution function plot of the position error.

Figure 4.30 plots the cost functions (equations 3.15, 4.6, 4.7 and 4.9) on a 0.25
m grid (for the same central target) respectively. In figure 4.29 this target is marked
with a blue pentagram. This target is chosen randomly. Other targets have similar
graphs. For RBRLE, a C-value of 1.2 is chosen. Please recall that MMSE, RLE
and RBRLE need to be minimized. For this central target, the Euclidean distances
to the extremities of the building are large in the cost function of equation 3.15.
This results in the shape of the upper left MMSE graph in figure 4.30.

Near an anchor the denominator of the ln-argument of equation 4.6 and equa-
tion 4.7 is very small. When this point is not the target, the nominator of the
ln-argument is not small. This results in peaks of these cost functions at the an-
chor locations, forcing the estimated position to the lower values in both the upper
right-hand side RLE- and lower left RBRLE graphs of figure 4.30. A large value
of the C-value will increase these peaks more pronouncedly. Our cost function for
the target can be found in the lower right corner of figure 4.30. Please recall that
our cost function needs to be maximized. It has a large gradient around the maxi-
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(a)

(c)

(b)

(d)

Figure 4.30: Comparison of the different cost functions for a central target (a) MMSE, (b)
RLE, (c) RBRLE and (d) LiReCoFuL.

mum. It has less local maxima than other cost functions have local minima. This
eases a real-time positioning algorithm based on the conjugate gradient method.

4.5.5 Cumulative distribution function plots of the position er-
ror

Our software now calculates the position of each of the 51 active nodes for the
different algorithms and compares the results with the exact positions. In figure
4.31, a cumulative distribution function plot (cdf plot) of the position error is given
for the different cost functions. The Euclidean distance between the exact and the
calculated position presents one position error point in this cdf plot. The MMSE
cost function gives the worst results. It has a median of 4.86 m. This can be
explained by the fact that the model does not take into account the log-normal
relation of the distance and the RSSI. The other medians are 3.23 m, 4.01 m and
3.23 m for the RLE, RBRLE and our cost function respectively.

It can be shown that the frequency distribution of the position error is not a
normal distribution. Therefore, non-parametric tests are performed. A Friedman
test [32] rejects the null hypothesis that the error distributions are the same for all
cost functions. The p-value (defined as the probability that the test statistic is equal
to or more extreme than the one observed under the null hypothesis [32]) equals
0.003 or 0.3%. Next, 6 Wilcoxon tests [32] are done, pairwise comparing the
position error of the cost functions. E.g. a first test compares the position error for
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Figure 4.31: Cumulative distribution plot of the position error for the different cost func-
tions on the second floor.

MMSE and LRE (for the same target), a second the error for MMSE and RBLRE,
etcetera. These tests confirm that RLE, RBRLE and our cost function result in
lower position errors than MMSE. One-tailed p-values are less than 0.05%, 2.9%
and 0.05% respectively. The tests further fail to prove a difference between the
position error of our cost function and both RLE and RBRLE. Therefore, this
subsection shows that the position errors of LiReCoFuL are comparable with those
of (RB)RLE and definitely better than those of MMSE.

4.5.6 Execution times

Very fast execution times are needed for real-time localization. This aspect is
treated in this section.

At the starting point of this algorithm comparison, anchors are already selected
and calibrated. Therefore, those execution times are not treated here. At this stage,
a RSSI matrix and a distance matrix are already calculated in Matlab. The RSSI(i,j)
matrix consists of averaged RSSI elements reported from receiver j with sending
node i. The distance matrix contains elements with the (known) distance between
receiver j and sending node i. First, the grid points are calculated. In our 0.25
m gridded building this results in a matrix of 26000 rows and two columns (one
for the longitudinal and one for the lateral coordinate). A denser grid will result
in a larger matrix and therefore also in larger execution times. Now, the position
errors are calculated for each algorithm. On our Dell Latitude D830 position server
equipped with Matlab, the average time for calculating one of the 51 positions took
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27, 45, 45 and 240 ms for the MMSE, RLE, RBRLE and LiReCoFuL algorithm
respectively. Implementing the t-distribution equation [33]:

tpdf(t, n) = (nπ)−
1
2

Γ(n+1
2 )

Γ(n2 )
(1 +

t2

n
)−(

n+1
2 ) (4.10)

instead of using the tpdf build-in Matlab function will speed up our algorithm.
Please note that equation 4.10 is differentiable. This eases the implementation of
equation 4.9 in a conjugate gradient algorithm.

4.5.7 The cost function with different scenarios

A similar test as the test described in section 4.5.3 was done on the third floor of
the iMinds building. The cdf plots can be found in figure 4.32. The medians of
the position errors are 7.05, 4.19, 4.83 and 4.01 m for MMSE, RLE, RBRLE and
LiReCoFuL respectively. This confirms the findings of section 4.5.5.

Furthermore, the presence of the longer corridors on the third floor results in
higher constructive multipath fading. This explains the fact that the medians on
this floor are higher than those on the second floor for the same algorithm.

Figure 4.32: Cumulative distribution function plot of the position errors for the different
cost functions on the third floor.
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4.6 2DLiReFLoA and LiReCoFuL

4.6.1 2DLiReFLoA

The two-dimensional positioning algorithm is a sequential combination of the al-
gorithms described in section 4.1, section 4.2 and section 4.3.

4.6.2 Comparison 2DLiReFLoA and LiReCoFuL

Figure 4.33 shows the cumulative distribution plot of the position errors for the
2DLiReFLoA algorithm (see section 4.3) and the LiReCoFuL algorithm (see sec-
tion 4.5. The test is done on the third floor, the test conditions are described at
the beginning of section 4.1. The anchors are selected and calibrated, as described
in section 4.1. The preprocessing of section 4.2 is not applied on the LiReCoFuL
algorithm.

Figure 4.33: Cumulative distribution function plot of the position errors for the LiReFLoA
with preprocessing and the LiReCoFuL algorithms on the third floor.

This figure shows that the LiReCoFuL algorithm has a lower position error
median (4.26 m) than the LiReFLoA algorithm (5.29 m).

4.7 Conclusions

This chapter concentrated on the empirical development of two-dimensional lo-
calization algorithms using the iMinds w-ilab.t test bed. First, a statistical model,
based on linear regression has been constructed. This simple model is able to han-
dle large databases and implements the physical aspects of the propagation chan-
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nel. In a first step, it has been used to select and calibrate the best available anchors
at a certain time. Next, the model accuracy has been investigated in the prepro-
cessing to eliminate bad RSSI-measurements. This preprocessing incorporates a
fast maximum likelihood algorithm on the distance. It has been shown empirically
that the preprocessing steps reduce the median of the distance error from 8.95 m
to 4.03 m in our environment with heavy multipath fading.

Next, two different localization algorithms have been presented. The first al-
gorithm LiReFLoA (Linear Regression based Fast Localization Algorithm) fur-
ther uses fast geometric principles, based on the model accuracy to obtain a posi-
tion. The synergy between the preprocessing and LiReFLoA algorithms has been
demonstrated: the complete algorithm performs better than the MMSE algorithm.
Time consuming manual fitting and complex fingerprinting is avoided, making it
possible to do real-time localization in future dynamic wireless indoor environ-
ments.

The second new localization algorithm is called LiReCoFuL (Linear Regres-
sion based Cost Function Localization) because it uses a linear regression based
cost function in a maximum likelihood algorithm. LiReCoFuL not only respects
the underlying physics of the propagation model, but also the estimated standard
deviation on a sufficient large dataset. It has been shown empirically that the po-
sition errors of LiReCoFuL are (just like LiReFLoA) better than a maximum like-
lihood algorithm with a MMSE cost function. Furthermore, the grid approach
reveals that the (RB)RLE cost function has more local minima than LiReCoFuL
has local maxima. This enables LiReCoFul to be used with fewer convergence
problems in a conjugate gradient algorithm.

A first test on the third floor shows that LiReCoFuL has a higher accuracy than
2DLiReCoFuL. It is interesting to know if this is also valid in different environ-
ments. This is kept as future work.
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5
Pseudo-3D localization

Localization in presence of (indoor) multipath fading remains a challenging task.
Statistical methods, like statistical multilateration and maximum likelihood esti-
mators are widely used to improve the accuracy of the position. The principle of
these algorithms has been outlined in chapter 3. In chapter 4, we presented alter-
native statistical methods to select and calibrate the anchors, and preprocess the
data. Furthermore, two new two-dimensional localization algorithms, Linear Re-
gression based Fast Localization Algorithm (LiReFLoA) and Linear Regression
based Cost Function for Localization (LiReCoFuL) have been introduced.

This chapter focuses on three-dimensional localization. However, exact three-
dimensional localization is far more complex than two-dimensional localization
and usually requires different algorithms and a combination of wireless technolo-
gies. Pseudo-3D algorithms use two-dimensional projection techniques to find
an object in a three-dimensional space. This reduces the complexity. After the
projection two-dimensional localization algorithms are used. In this section, we
follow this approach and expand LiReFLoA to obtain a fast pseudo-3Dl algorithm
P3DLiReFLoA with the same number of anchors. Empirically, we will show that
execution times barely change.

5.1 Introduction

Table 5.1 gives an overview of what is meant by two-dimensional, three-dimensional
and pseudo-3D localization. The classification based on the position of the anchors
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and the targets.
Targets to be located in the same plane as the plane of the anchors is called two-

dimensional localization. This has been discussed in chapter 4. Three-dimensional
localization adds the third dimension: the target is located in the tree-dimensional
space. This requires that the anchors are deployed in the three dimensions. Some-
times, it is sufficient to find the position of the target in a plane that is different
from the plane of the anchors. This is called pseudo-3D localization, treated in
this chapter.

Localization Anchor location Target location
2D in one plane same as anchor plane
3D in 3 dimensions in 3 dimensions

Pseudo-3D in one plane in one plane
not in anchor plane

Table 5.1: Definition of the two-dimensional, three-dimensional and pseudo-3D localiza-
tion

Our work focuses on experimental RSSI-based WSN indoor localization as
in [1–3]. The shortage of experimental results obtained from real indoor test beds,
as outlined in [2], is well known. That latter work shows many similarities with
ours. Like these authors, we also present a new localization algorithm. The envi-
ronments, however, are difficult to compare because our test bed is larger (1512m2

versus 23.2m2) with the same number of anchors (12 anchors). This results in
an anchor density of only 0.008 (versus 0.517) anchors per square meter. Further-
more, our automated calibration method is able to manipulate more measurements.
During the selection and calibration method each of the 41 nodes transmits 240
packets to the other nodes. The corresponding RSSI-measurements are reported
and averaged. More than 380000 RSSI-measurements are manipulated (somewhat
less than 41x40x240 because not all packets were above the noise floor of the
receiver). This is an order of magnitude higher than 12240 RSSI-measurements
reported in [2]. Please recall from section 2.3.1 that a higher number of measure-
ments increases the accuracy of the rough measurements, because the fast fading
variation is averaged out.

The offline phase of the statistical indoor localization method, described in [4],
is based on a LOcal regrESSion (LOESS) [5] fitting method to build a large RSSI
database (called radio map) containing the distribution of the signal strength re-
ceived at each known location. LOESS divides the independent statistical RSSI-
variable in small intervals and performs a regression on these binned data inter-
vals. This offline phase tries to capture the complete distribution of the RSSI-
distribution. Next, an online phase involves a maximum likelihood procedure on
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the distribution and the measured signal strength. A time-consuming bootstrap-
ping method is used. This method includes resampling the data (typically more
than 1000 repetitions are needed): the 95% confidence intervals for the estimated
position are obtained by randomly drawing data (with replacement) from a set of
data points. Our work is also based on statistics, but takes a completely different
approach: the underlying physical (and widely accepted [6, 7]) relationship be-
tween the RSSI and the logarithm of the distance (equation 3.2) results in a regres-
sion that is faster and simpler, because it is linear in the complete RSSI-variable
and does not need data binning. Furthermore our algorithm requires no radio map-
ping: the knowledge of two parameters (slope and intercept of the regression) is
sufficient for the estimation of the position, further reducing the execution time.
In this chapter, statistics are also used for comparing results with non-parametric
hypothesis testing, where no assumption needs to be made about the distribution
of the position error. To our knowledge, this has not been encountered in WSN lo-
calization yet. More traditional research uses the cumulative distribution function
(cdf) of the position error as well as parametric statistical metrics (mean value, av-
erage value and standard deviation) to measure the localization performance [1].
Outliers can affect these parametric parameters substantially, and make the tests
and conclusions less reliable.

Very few authors [2, 8] calibrate the propagation parameters to their individ-
ual values. In section 4.1 we used linear regression techniques to automate the
selection and the individual calibration of the anchors. Here, this chapter uses this
technique in a pseudo-3D algorithm.

Three-dimensional indoor positioning is complex and requires a combination
of technologies. In [9], a three-dimensional algorithm is presented combining
RSSI, time of arrival and sophisticated three-dimensional ray tracing. Ray trac-
ing, which is a widely accepted technique for exact three-dimensional position-
ing, is based on geometrical optics. It can be applied as an approximate method
for estimating the levels of high-frequency electromagnetic fields [10]. With the
knowledge of the three-dimensional layout of the building and the materials used,
path losses can be predicted. With this path loss the distances can be calculated.
This time consuming task can be performed by the use of software tools as in [11].
In this chapter we will not follow this methodology, because it remains tedious.

RADAR-based localization systems [12] and their two-dimensional finger-
printing method, are widely known: in a time consuming training phase a database
is filled with RSSI-measurements. In the online phase a measurement is matched
with these previously stored measurements. This two-dimensional fingerprinting
method can be expanded to the third dimension. In a dynamically changing en-
vironment (e.g. changing the position of furniture, presence of persons), how-
ever, the time consuming training phase needs to be redone in order to get accu-
rate results [13, 14]. Therefore, [13] proposes an artificial neural network (ANN)
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incorporating not only a dynamic fingerprint, but also databases using a linear
regression-based tree model mining technique. This approach trades in lack of
accuracy for complexity. Effective three-dimensional fingerprinting needs com-
plementary fingerprints of RSSI, temperature, humidity and light [14]. In most
cases simple localization algorithms, like Weighted Centroid Location (WCL) [2]
are more robust against the variability of the investigated parameters [14].

Other three-dimensional localization systems require a full three-dimensional
deployment. At least the double amount is then required: one node on the ceiling
and one node on the floor. This solution is mostly used in multi-story buildings,
as in [15]. It could be useful in buildings with extremely high ceilings. In these
cases the anchors are used efficiently. In most practical situations, however, ver-
tical resolution is not always a primordial matter: e.g. in a museum information
system it is more important to know that a person is in front of a particular paint-
ing, than the information that he is standing or sitting. Therefore, most localization
algorithms don’t take the third dimension into account and apply the procedures
just as in the two-dimensional localization. In simple RSSI-based algorithms (like
LiReFLoA in section 4.3), however, the two-dimensional and three-dimensional
propagation paths can differ significantly. When two-dimensional propagation
paths are used for calibration in a three-dimensional environment, large errors oc-
cur, spoiling the accuracy of the underlying model. Therefore, [16] proposes a
complexity-reduced multilateration for three-dimensional localization using super
anchors (anchors with pairwise antenna positions whose coordinates only differ in
the z-axis). The projection of three-dimensional super anchors reduces the three-
dimensional localization to a two-dimensional multilateration algorithm. In this
chapter we extend this approach of reduced complexity with very low additional
computing time: no super anchors having two antennas are needed, because our
three-dimensional calibration is performed with a mobile node, just beneath the
two-dimensional selected anchors. Very few extra calibrations are needed: the
person to be located makes an initial walk through the building and beneath the
anchors, he triggers the mobile node.

5.2 Test conditions for pseudo-3D test

Our hardware consists of the iMinds w-ilab.t test bed. More about this test bed can
be found in section 2.2. Only the third floor is used in this chapter. On this 16.8 x
90 x 2.65 m floor, there are 41 active nodes, represented by small green circles in
the floor plan of the third floor in figure 5.1.

The nodes are fixed in a plane, approximately 0.15 m below the highly con-
ductive ceiling. An anchor selection results in the best available quality (as dis-
cussed in section 4.1) anchors at a given time. These are represented by the black
squares. Like in the two-dimensional case (see chapter 4), there is a lot of con-
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Figure 5.1: Position of sensor nodes on the third floor of the iMinds office building. Drywall
walls are presented by blue solid lines. The solid brown lines are concrete wall.
The black squares are the selected anchors (see section 4.1).

structive multipath fading, due to the presence of long corridors and the highly
conductive ceiling (see section 2.3.2). Because the walls mainly consist of drywall
(these walls are represented by blue solid lines), the presence of wall attenuation is
rather limited. In this typical office environment, there is also furniture: e.g. metal
bookshelves that are about 2 m tall. Please note the selected anchors are not the
same as those in figure 2.1. This comes from the fact that the active nodes are also
different.

Figure 5.2: Schematic overview of the pseudo-3D environment. All but one pseudo-3D
distance (represented by solid red lines are approximated by their projection in
the plane of the fixed nodes (represented by solid blue lines).

Figure 5.2 presents the schematic overview of the pseudo-3D environment.
Again, the fixed ceiling nodes are shown as green circles. The remainder of this
chapter compares a two-dimensional algorithm with a pseudo-3D algorithm. To
this end, two tests are performed. The blue lines belong to the first test in the plane
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of the anchors. The red lines belong to the second test, 1.2 m beneath each fixed
active node.

1 The first test uses 2DLiReFLoA and the two-dimensional plane of the fixed
nodes. Please recall from section 4.6.1 2DLiReFLoA is the subsequent im-
plementation of the anchor selection of section 4.1, the preprocessing of
section 4.2 and LiReFLoA 4.3. The test conditions are the same as those
described at the beginning of section 4.1. For this two-dimensional test, the
Euclidean distances are taken into account. In figure 5.2 these distances are
represented by blue solid lines.

2 The second test is pseudo-3D and uses P3DLiReFLoA. Now, a test person
activates a mobile node at a constant height from the ceiling. This test was
performed exactly 1.2 m beneath each fixed node. The mobile node is hand
carried with the same type inverted-F antenna parallel to the antenna of the
fixed node above it, in order to obtain good reproducibility. The swapping
time of the sending nodes is different (the target is not fixed on the ceiling,
but moved by the person to be located), but the other conditions remain the
same. All but one pseudo-3D distance (represented by solid red lines in fig-
ure 5.2) are approximated by their projection in the plane of the fixed nodes
(represented by solid blue lines). Only for the closest distance, the exact
distance is used (1.2 m). Although this introduces an error (of maximum
3.5%) in the calibration of the distances, this error is acceptable because
the nodes are on a relatively coarse grid of approximately 4.5 m. This er-
ror is an order of magnitude smaller than the error on the multipath faded
RSSI-measurements, which has been discussed in section 2.3.2.

5.3 P3DLiReFLoA
Figure 5.3 gives a flowchart of the positioning algorithm. It contains both the
2DLiReFLoA and the new Pseudo-three-Dimensional Linear Regression based
Fast Localization Algorithm (P3DLiReFLoA) steps.

The left-hand side illustrates that 2DLiReFLoA is a sequential combination of
the algorithms described in section 4.1, section 4.2 and section 4.3. see section
4.6.1

The pseudo-3D algorithm is based on this two-dimensional algorithm. In fig-
ure 5.3 the rightmost path is taken. The differences between the two-dimensional
and pseudo-3D algorithm are the transmission of the RSSI-beacons beneath the
selected anchors and the calibration procedure. The remainder of this section ex-
plains this approach.

A full three-dimensional counterpart of the fast two-dimensional anchor se-
lection procedure requires either the automatic height variation of the nodes or,
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2DLiReFLoA (TWO-DIMENSIONAL) P3DLiReFLoA (PSEUDO-3D)

start

automated 2D-selection of anchors (section 4.1) 

based on

- squared correlation coefficient (highest rsq)

- error on distance (lowest eod)

2D/3D?

2D 3D

Show position

Stop

preprocessing (section 4.2)

- min-max criterion

- elimination of bad measurements

- mlh on distance

3D-calibration using

intercept and slope

2D-calibration (section 4.1) using

intercept and slope

LiReFLoA positioning (section 4.3)

- using accuracy regression model 

- multilateration

read 2D 

RSSI and position of 

all nodes 

read 3D 

RSSI and position 

beneath the anchors

read  

RSSI of the target 

Figure 5.3: This flowchart illustrates the similarities and the differences between the two-
dimensional and three-dimensional algorithm.

alternatively, a physical walk in the building with a mobile target transmitting at
many known places. Because this full three-dimensional selection is neither cheap
nor simple, the two-dimensional selection is kept in our pseudo-3D algorithm.

The two-dimensional calibration of the anchors requires linear regression be-
tween the measured RSSI and the logarithm of the distances. The (unknown)
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distances can be calculated fast using the intercept and the slope of this regression
line. The regression lines change when the target is moved away from the two-
dimensional plane of the anchors, basically because there is a larger attenuation
due to the presence of furniture. A human body in the vicinity of the transmitter
has a comparable attenuating effect on the communication link. Therefore an easy
pseudo-3D calibration is performed. It is not necessary to use the complete test
data of the second test. Only the test bed RSSI-values of sending mobile node 1.2
m beneath the twelve anchors are needed. A linear regression between the RSSI-
values and the logarithmic distance is executed for each of the twelve mobile node
positions. The new slopes and intercepts are used for pseudo-3D calibration of the
anchors and the distance calculations.

The pseudo-3D selection and calibration has several advantages:

1 A good two-dimensional anchor is also a good pseudo-3D anchor, as illus-
trated in figure 5.4.

Figure 5.4: Comparison of the correlation coefficient of the two-dimensional and pseudo-
3D tests. Two-dimensional nodes with high RSQ are also pseudo-3D nodes
with high RSQ.
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This figure plots the RSQ-values of the two-dimensional regression (in the
first test, i.e. on the ceiling) versus the pseudo-3D regression (in the second
test, i.e. with one mobile node for regression). The large circles are the
10 best pseudo-3D correlated counterparts, and the smaller circles repre-
sent the others. The large “+”-signs denote the ten best two-dimensional
correlated ones and the small “+”-signs are the others. The blue dash-
dotted horizontal line corresponds with a two-dimensional RSQ of 0.76
and the red vertical dash-dotted line corresponds with a pseudo-3D RSQ
of 0.76. Above this 0.76 value the best correlated nodes are found. The
diagonal dashed line represents the bisector of the pseudo-3D RSQ and
two-dimensional RSQ axes. The nodes with largest RSQ are in the upper
right-hand side part of the figure. A pseudo-3D selection instead of a two-
dimensional one would have resulted in only one different anchor at a cost
of a higher computational time (because measurements beneath each node
are needed). Therefore, in P3DLiReFLoA the two-dimensional selection of
the anchors is kept and there is no extra time needed for a dedicated pseudo-
3D anchor selection. Please note that a pseudo-3D correlation coefficient
of 0.795 (instead of 0.840) is still a very good value. We further observe
that the three-dimensional RSQ-values are somewhat higher than the two-
dimensional RSQ-values: there are 12 anchors at the right-hand side of the
vertical line at 0.76 and only 11 anchors above the horizontal line at 0.76.
Furthermore there are 11 points above the bisector (positive ranks), none of
the points are on the bisector (no ties) and 30 points below the bisector (neg-
ative ranks), therefore a Wilcoxon signed-rank test (see section 4.5.5) [17]
rejects the null-hypothesis that the pseudo-3D RSQ-distribution equals the
two-dimensional RSQ-distribution.

2 Figure 5.3 illustrates that 2DLiReFLoA and P3DLiReFLoA have the same
the anchor selection and calibration. Thanks to the automated selection and
two-dimensional calibration of nodes, the best available two-dimensional
anchors can be selected at a given time. When anchors fail, the algorithm
can quickly reselect and calibrate other anchors (see section 4.1.4). This
advantage is kept in P3DLiReFLoA. Selecting uniformly distributed anchors
could have resulted in an anchor that is down. In our sparse anchor density
environment, every selected (and high quality) anchor is needed.

3 The measurements beneath an anchor results in a RSSI at a very short dis-
tance. This nearby information is very useful, because it is at the beginning
of the regression line. Without this measurement, the regression line would
have been extrapolated, resulting in large errors [18].

4 The complete extension to the pseudo-third dimension requires minimal ef-
fort and computation time: only on twelve anchors a linear regression be-
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tween the logarithm of the distance and the RSSI is needed to obtain the
new propagation constants for the calibration. This can easily be imple-
mented: the person to be located in a building first initiates the pseudo-3D
calibration at a limited number of places (beneath the dynamically selected
anchors). Afterwards the person can be located anywhere in the building.

The algorithm can calculate the (x,y)-position for any point in the plane 1.2 m
beneath the anchors, starting from the position of the anchors and their pseudo-3D
propagation parameters. In this chapter the moving target sends packets beneath
the deployed two-dimensional nodes, enabling a good comparison with the two-
dimensional parameters. Please note that sending at other positions requires an
(automated) measurement of the exact position for interpretation of the results of
the algorithm. The remainder of the two-dimensional algorithm in figure 5.3 is
unchanged in the pseudo-3D algorithm. More about P3DLiReFLoA can be found
in [19].

5.4 Results

This section presents the results of the P3DLiReFLoA algorithm. First, the dif-
ferences between a two-dimensional calibration (with all nodes in the plane of
the anchors) and a pseudo-3D calibration (with all nodes 1.2 m beneath the plane
of the anchors) is discussed. Next, a comparison is made between P3DLiReFLoA
and a maximum likelihood algorithm with a minimum least square error cost func-
tion. Finally, a comparison is made between the two-dimensional algorithm (with
all targets in the plane of the anchors) and P3DLiReFLoA (with all targets 1.2 m
beneath the plane of the anchors).

5.4.1 Comparison of the two-dimensional and pseudo-3D cali-
bration

Figure 5.5 compares the 2DLiReFLoA calibration with the P3DLiReFLoA cali-
bration for a selected anchor (node 56) at the left-hand side of the building (see
figure 5.2). The small circles in figure 5.5 are the recorded RSSI-distance pairs
for all nodes when the selected anchor is sending (two-dimensional values). The
“+”-markers are the recorded RSSI-distance pairs for all nodes when sending with
the mobile node beneath that anchor (pseudo-3D values). The solid and the dashed
line show the corresponding regression lines. The pseudo-3D regression line has a
higher attenuation at low distance levels and a flatter slope. At high distances, the
difference in RSSI decreases. This can be explained by the fact that the attenuation
of furniture (or other obstacles) is more pronounced at low to medium distances.
Please recall the angle dependency of the attenuation factors, discussed in [20]
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and figure 4.12: when electromagnetic radiation is obliquely incident on a wall or
floor, less power will be transmitted through the wall than would occur at normal
incidence. Nodes in the neighborhood of the target have larger incident angles
than nodes that are further away. Although only one typical regression compari-
son is shown here, this conclusion holds true for the vast majority of the nodes, as
illustrated in figure 5.6 and figure 5.7.

Figure 5.5: Pseudo-3D regression lines not only have higher attenuation at low distances,
but are also less steep than two-dimensional counterparts. The pseudo-3D cali-
bration procedure has an extra measurement at the beginning of the regression
line.

Figure 5.6: The pseudo-3D calibration results in higher attenuation at small distances (com-
pared to two-dimensional calibration).



162 PSEUDO-3D LOCALIZATION

Figure 5.7: The two-dimensional calibration results in higher slopes (compared to pseudo-
3D calibration).

Figure 5.6 represents the cumulative distribution plot for the intercept for two-
dimensional and pseudo-3D calibrations respectively. Except for a few nodes (not
being anchor nodes), the two-dimensional plot is at the right-hand side of the
pseudo-3D plot. Hence, this confirms the higher attenuation at low distances of
the pseudo-3D calibration compared to the two-dimensional calibration. Figure
5.7 represents the cumulative distribution plot of the slope of the two-dimensional
and pseudo-3D calibration of all nodes. Now, the two-dimensional plot is at the
left-hand side of the pseudo-3D plot for the vast majority of the nodes. Therefore,
the two-dimensional calibration results in higher slopes.

A cumulative distribution function (cdf) plot of the Error on Distance for
the two-dimensional and pseudo-3D calibration of the anchors is presented in fig-
ure 5.8. Only the restricted data set limited to the measurements of the anchors
(two-dimensional) is considered in this figure. Being defined as twice the esti-
mated standard deviation of the (logarithmic) distance frequency distribution (see
section 4.1.2 and [21]), the Error on Distance is a logarithmic value on the tol-
erances of the distances. E.g. a value of 0.3 means that the tolerances on a distance
are minus 10−0.3 or minus 50% and plus 10+0.3 or 200%. This figure illustrates
that the anchors have a higher Error on Distance when pseudo-3D calibrated
than when two-dimensionally calibrated. This difference in Error on Distance
can be explained by the higher attenuation in presence of furniture. The tolerances
are not only used in the preprocessing step (both elimination of bad measurements
and maximum likelihood on the distance), but also in the positioning step for a
decision on the amount of constructive multipath fading present. Therefore, it is
important to offer the right empirical EOD to the algorithm: the two-dimensional
EOD for two-dimensional localization and the pseudo-3D EOD for the pseudo-3D
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Figure 5.8: The pseudo-3D Errors on Distance of the anchors are larger than their two-
dimensional counterparts.

localization.

5.4.2 Comparison of our algorithm with a more conventional
algorithm.

The three-dimensional algorithm is tested: the algorithm is executed and the results
are compared with the exact position. For comparison, a maximum likelihood
algorithm on the position is implemented using the minimum mean square error
(MMSE) cost function (see equation 3.15).

Like in section 3.4, section 4.3.9 and section 4.5, the grid method is used.
Please recall that unlike the conjugate gradient algorithm [22], the grid method al-
ways finds the exact minimum on the grid and does not get stuck in local minima.
Please further recall from section 3.4.2 that the exact minimum on the grid is not
always in the immediate vicinity of the wanted minimum. Indeed, figure 3.8 illus-
trates that in rare cases (and unideal cost functions), the local minimum is closer
to the target than the exact minimum on the grid.

The grid plane is now formed 1.2 m below the vertical position of the anchors.
The point in this plane with coordinates (x,y) that minimizes the sum of squared
differences between the calculated and exact distances is the estimated position.

With both algorithms the position is calculated and compared with the exact
distance. This is performed for both cases: with and without our preprocessing
steps, which are based on a min-max criterion, elimination of bad measurements
and a maximum likelihood on the distance (see section 4.2). The results of the
position errors of both algorithms are outlined in table 5.2 and figure 5.9. Table
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P3DLiReFLoA P3D MMSE
w/o (m) with (m) w/o (m) with (m)

Upper outlier - - 22.47 17.56
Upper adjacent 19.00 13.37 17.67 12.36
Third quartile 9.80 8.48 10.33 7.68

Median 7.22 5.11 7.79 4.90
First quartile 3.49 2.91 4.70 3.50

Lower adjacent 1.19 0.46 1.79 1.22
Under Outlier - - - -

Table 5.2: Position error comparison between P3DLiReFLoA and P3D MMSE, both with
and without (w/o) the preprocessing.

Figure 5.9: Boxplot of the position errors with and without (w/o) the preprocessing steps: at
the left-hand side for the position errors of the algorithm proposed in this paper
and at the right-hand side for the position errors of the minimum mean square
error maximum likelihood algorithm. A maximum likelihood algorithm with
a mean square error cost function has a lower position error median when our
preprocessing is applied.

5.2 lists the outliers, adjacent (most extreme data points not considered outliers),
and the first (25th percentile), second (50th percentile, median) and third (75th
percentile) quartile. The same information is given a graphical form with boxplots
in figure 5.9. On each box, the central mark is the median, the edges of the box are
the first and third quartile, the whiskers extend to the upper and lower adjacent. All
position errors that are 1.5 times the box size above the third quartile are deemed
upper outliers, and all position errors that are 1.5 times the box size below the first
quartile are considered under outliers. The outliers are plotted individually with a
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“+”-sign [18]. This table 5.2 and figure 5.9 reveal that

• There are no outliers with P3DLiReFLoA, in contrast with MMSE. For a
normal distribution, the edges of the box lie between the average minus
0.6745 times the standard deviation and the average plus 0.6745 times the
standard deviation. The box is then 1.349 standard deviations wide. There-
fore, the whiskers extend to the average minus/plus 0.6745+1.5x1.349 the
standard deviation, or the average minus/plus 2.6980 times the standard de-
viation. Therefore, the probability that there are values below the lower
adjacent is less than normcdf(−2.6980) or 0.35% in a normal distribution.
(Normcdf is the cumulative standard normal distribution function.) Like-
wise, the probability there are values above the upper adjacent in a normal
distribution equals (1− normcdf(2.698)) or also 0.35%.

• A maximum likelihood algorithm with a mean square error cost function
(MMSE) has a higher position error median when our preprocessing is not
applied.

• When our preprocessing is applied not only this median, but also the high
percentiles of this algorithm are improved.

• None of the distributions are normal distributions:

– All of them have larger upper tails than lower tails, introducing skew-
ness in the distribution.

– For MMSE there are outliers, which are absent in normal distributions.

– Except for MMSE without the processing, the medians (the large hor-
izontal lines in the box) are not in the center of the box. This means
that the median of the distribution is different from the average.

Further interpretation of the test results is based on statistical inference. Be-
cause the position error is not normally distributed, Students t-tests could lead
researchers to draw incorrect conclusions [23]. Non-parametric tests make no as-
sumption on the distribution, and are a better option here. Thanks to the increased
availability of software, these non-parametric statistical analyses are often found
in medical research [24] . The Wilcoxon signed-rank test (see section 4.5.5 [17] is
a non-parametric statistical hypothesis test for comparing two related samples, e.g.
before preprocessing and after. The null-hypothesis of a first Wilcoxon test - that
the P3DLiReFLoA position error distribution after the preprocessing equals the
P3DLiReFLoA position error distribution before the preprocessing - is rejected.
The two-tailed p-value (defined as the probability that the test statistic is equal to
or more extreme than the one observed under the null hypothesis) equals 0.2%. A
second Wilcoxon test is performed on MMSE with and without the preprocessing
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steps and results in a two-tailed p-value of less than 0.1%. The third Wilcoxon test
follows, comparing P3DLiReFLoA with the preprocessing steps and MMSE with-
out them, results in a two-tailed p-value of 2%. The first Wilcoxon test concludes
that there is a difference in position error for P3DLiReFLoA with and without the
preprocessing. Wilcoxon test 2 shows this is also the case for MMSE. This proves
our preprocessing has a positive effect on the positioning error. Furthermore, the
third Wilcoxon test shows that the position errors of P3DLiReFLoA with the pre-
processing steps are significantly lower than those of the MMSE without them.

5.4.3 Comparison of the two-dimensional and pseudo-3D algo-
rithms

This section compares the two-dimensional algorithm (first test, left-hand side of
figure 5.3) with the pseudo-3D P3DLiReFLoA algorithm (second test, right-hand
side of figure 5.3). Testing the algorithm in their respective two-dimensional and
pseudo-3D environment gives comparable medians. Figure 5.10 further illustrates
that also the distributions are very similar.

Figure 5.10: Comparison of the cdfplot of the two-dimensional and pseudo-3D algorithms

Table 5.3 gives an overview of the comparison of two-dimensional and pseudo-
3D algorithms. This table reveals that both algorithms use the same position en-
gine. Both the preprocessing and the positioning procedure are the same (as al-
ready outlined in figure 5.3). Also the anchor selection remains unchanged. While
the two-dimensional LiReFLoA based algorithm calibrates these anchors in the
two-dimensional plane of these anchors, a pseudo-3D calibration with a mobile
node beneath these anchors is needed for P3DRiReFLoA. With an anchor density
of 0.008 anchors per square meter, very little additional time is needed. Indeed,
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2DLiReFLoA P3DLiReFLoA
Localization Two-dimensional Pseudo-3D

Anchor selection Two-dimensional
Calibration Two-dimensional Three-dimensional

on selected anchors
Position of target In anchor plane 1.2 m below anchor plane
Position engine The same

Slightly less fast:
only quick additional

Computation time Fast calibration is required
for a limited number

of anchors
Accuracy

Without preprocessing Median 5.79 m Median 7.22 m
With preprocessing Median 5.49 m Median 5.11 m

Cdfplot See figure 5.10
Wilcoxon p-values Two-tailed p-value = 98%

Table 5.3: Comparison of the two-dimensional and pseudo-3D algorithms

figure 5.3 shows that 2DLiReFLoA and P3DLiReFLoA share the same anchor se-
lection. The person to be located makes an initial walk through the building and
beneath the two-dimensionally selected anchors, he triggers the mobile node. A
paired Wilcoxon test results in a two-tailed p-value of 98%. Therefore the null-
hypothesis that P3DLiReFLoA performs equally well in a pseudo-3D environment
as LiReFLoA in a two-dimensional environment is accepted.

5.5 Conclusions

This chapter presents a new pseudo-3D localization algorithm, based on a fast
two-dimensional algorithm. Only a quick recalibration is required for the limited
number of anchors. Our empirical tests show that the position errors are lower than
with a maximum likelihood algorithm with a mean square error cost function. Pre-
processing of the data also reduces the position errors for the maximum likelihood
algorithm in a statistically significant way.
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6
Overall conclusions

6.1 Overall conclusions

With military, law enforcing, firefighting, medical, industrial, civilian and con-
sumer applications, there is a huge potential for localization-aware services. Due
to their unique characteristics, receiver signal strength based wireless sensor net-
works have been called the ideal candidate to fulfill this need. No wonder that this
topic received so much research attention during the last few years. Despite the
research effort, it is observed that the accuracy of commercial indoor localization
systems is still marginal.

Theory and simulations are valuable tools for designing localization algorithms.
However, it is important to base these tools on valid assumptions. Therefore, we
started this book with the study on the physical layer and its technological chal-
lenges. One major revelation is that the underlying physical aspects are sometimes
lost in theoretical localization algorithms. Another shows that multipath fading
is by far the most troublesome phenomenon for indoor localization, because it
generates outliers. A test on simple localization algorithms further showed that
there is a trade-off between complexity and robustness to outliers. The Maximum
Likelihood algorithm has a high accuracy but is very sensible to outliers. For the
Min-Max localization algorithm the opposite is true: a good resilience to outliers
is combined with a low accuracy. Therefore, simple localization algorithms need
a good preprocessing technique to eliminate outliers.

Until recently, localization experiments were performed on a low scale: a few
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nodes, one room, and a few measurements. The wide acceptance of wireless sensor
networks and the emergence of test beds added another dimension to this “craft”
work: mass-deployment. A main requirement for WSN mass-deployment is the
easy installation and configuration. Fingerprinting based solutions today rely on
a manual and time-consuming set-up phase. Such solutions cannot deal with fad-
ing and the high dynamics of wireless environments (mobility of people, objects
and furniture, changing density of people), requiring a recalibration each time the
wireless setting changes. In our work, we focus on quasi real-time approaches that
can handle the dynamics of the wireless indoor environment. The new developed
algorithms in this study are preceded by an automatic selection and calibration of
anchor nodes, avoiding complex and time-consuming manual configuration and
calibration, while keeping the scalability advantages in number of nodes, space,
and number of measurements.

Due to this better scalability, the performance of the statistical tools increases,
because more measurements and nodes are encountered. A first reason is that
averaging the RSSI-measurements levels out the short-time fading effects. Fur-
thermore, outliers can be identified more accurately in a larger dataset than among
just a few measurements.

Algorithms that are more traditional, have a top-down approach: the algorithm
is mainly designed on an application level, and what happens on the physical layer
is not a major concern. This works presents a bottom-up approach, aimed at keep-
ing the physical aspects into the design. Therefore, the presented preprocessing is
based on the underlying physics of the propagation channel, the linear regression
model of the RSSI and the logarithmic distance, and on the accuracy of this model.

The common theme through this book is the quest of simple localization algo-
rithms. We presented a regression based anchor selection, calibration and prepro-
cessing. Furthermore, LiReFLoA, LiReCoFuL, 2DLiReFLoA and P3DLiReFLoA
have been introduced. Let us further embark on this path.

The conversion of the (corrected) distances (between the anchors and the tar-
get) to a position is kept simple in both presented two-dimensional localization
algorithms. Linear Regression based Fast Localization Algorithm (LiReFLoA)
uses simple geometric principles and further exploits the accuracy of the regres-
sion model to reduce the effect of (constructive) multipath fading. Empirical tests
in this work show that the combination of the preprocessing and LiReFLoA per-
forms better than the MMSE algorithm. Linear Regression based Cost Function
for Localization (LiReCoFuL) is, just like MMSE, a cost function in a maximum
likelihood algorithm. The former cost function, however, includes the physical
aspects of the power decay with distance and uses linear regression concepts to
derive a model that includes the estimation of the standard deviation. Therefore,
the position errors are lower than those of the MMSE cost function. Moreover,
LiReCoFuL has very few local extremes. This enables it to be used with fewer
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convergence problems in a conjugate gradient algorithm.
This thesis ends with the expansion of the two-dimensional LiReFLoA to

a pseudo-three-dimensional localization algorithm. These algorithms use two-
dimensional projection techniques to find an object in a three-dimensional space.
We show with empirical results that P3LiReFLoA is a simple algorithm having
lower position errors than those of a maximum likelihood algorithm with a MMSE
cost function. Preprocessing the data reduces the position errors of the MMSE
algorithm in a statistically significant way.

6.2 Outlook and future work

We feel this thesis has contributed in the design of localization algorithms and
should not be considered as an endpoint, but as a source of inspiration for future
research work.

Here follows a list of issues, still remaining to be solved and requiring further
parallel studies and research.

• The algorithms have been validated on the rectangular second and third floor
of the iMinds building. A next logical step is testing the algorithms on non-
rectangular shapes. We rejected the idea to virtually increase the width of
the building, because this is too artificial. Using a restricted area of the
building was also not successful, because this requires a more dense node
deployment, in order to keep a minimum quantity of high quality anchors.
On square ground floors, we are convinced the anchor selection will give
the same conclusions: put anchors at the extremities of the building and add
central “low EOD” anchors. We think LiReCoFuL will scale perfectly, for
LiReFLoA a multilateration in the second dimension might be required.

• In order to meet the different customer requirements, architects can be very
creative: e.g. the floor plans of the main hospitals in Ghent, Ypres and
Courtray are completely different. Irregularly shaped floor plans can be dealt
with by splitting the floor plan into rectangular sections and performing the
localization algorithms in each section. Unwanted interaction between the
sections can be avoided by a proper channel selection plan.

• Our environment has many drywall walls, a highly conductive ceiling and
long corridors. Environments with more concrete walls result in higher RF
attenuation, less constructive and more destructive multipath fading. This
will probably require a denser anchor deployment.

• The iMinds test bed is an already deployed network. Some sensor net-
works might want to start from scratch and build the network up in order
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to limit the number of nodes. The IEEE 802.15.4 is ideally suited to build
ad hoc networks. A solution might be developing a new interactive ap-
plication. Again, the first anchors are put in the corners. Based on the
network connectivity of the corner’s anchors this application suggests pre-
liminary positions of additional (central anchors), next the user proceeds to
these areas with a potential anchor and gets feedback on a map where the
already available anchors locate him. On approval the candidate anchor pro-
motes to a new anchor of the building and the selection is completed with
these central nodes. For good algorithm performance estimates of the slope,
intercept and Error on Distance are needed. These parameters are dif-
ficult to predict, because they are strongly environment dependent. Maybe,
they can be deducted from the kind of environment: a checklist with the
amount of metal, concrete, corridors, ... could result in the recommended
values. When the accuracy is insufficient, a temporary network with more
nodes needs to be deployed in order to characterize the environment with
linear regression. After the anchor selection, calibration and calculation of
Error on Distance, the non-anchor nodes are no longer needed.

• Section 2.3.3 was dedicated to interference. It was shown that different radio
emissions are usually unwanted. Radio Interferometric Positioning Systems
(RIPS), however, try to benefit from interference. They exploit interfering
radio waves from two locations at slightly different frequencies to obtain
ranging information for localization. The composite signal has a low beat
frequency. The envelope of this signal is used to obtain the position [1–3].
Research on this brand new technique is part of the EVARILOS-project [4].

• Repeatability [5] studies the variation of the measurements: i.e. if the same
target is located again at another time, what is the difference on the position.
In our work, we retested 2DLiReFLoA on two different days. The first time,
we obtained a median position error of 5.29 m. The second time, a median
of 5.49 m has been obtained (see table 5.3. In [6] an in-depth study on
repeatability is found. We keep this as future work.

• Section 2.3.4 showed that the radiation pattern of an inverted-F has a few
dips. Section 3.3.1.2 further added that these dips can cause outliers in sim-
ple localization algorithms. Although outliers are dealt with in LiReFLoA,
these might be avoided, if the antenna optimization guidelines in [7] are
used.

• Section 3.3.2.1 listed an overview of the techniques to solve the set of non-
linear localization equations. Applying one of these techniques, e.g. the con-
jugate gradient method on LiReCoFuL (see section 4.5) can further speed up
this algorithm.
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• Up to now, our work concentrated on the localization of a target, only us-
ing anchors. Furthermore, RSSI-measurements below the noise floor were
neglected. The latter implies that the information that the anchor-target link
is on a highly attenuated path, is discarded. A next logical step is coopera-
tive localization [8]. In such a setting, localization can be obtained through
the cooperation of multiple nodes, using not only the measurements from
anchors but also the measurements among pairs of ordinary nodes. Thus,
high anchor density or long-range anchor transmissions are no longer re-
quired. The additional information gained from these measurements be-
tween pairs of ordinary nodes can offer increased accuracy and coverage [9].
This topic can easily be expanded to an algorithm with measurements be-
tween all nodes and studied with multivariate statistics.

• Up to now, RSSI-measurements were performed at one single frequency.
A next step is using more frequencies to obtain a more accurate RSSI, and
hence a more accurate position. This “frequency diversity” [10, 11] has
been intensively used to increase the throughput in faded environments, like
in [12]. Recently, it can also be found in WSN localization algorithms in
these harsh environments, like in [13, 14].

• Environments with large RSSI variability over time need recursive filtering,
such as a Kalman filter. A linear Kalman filter is very robust, and with a
proper selection of the process noise covariance and the measurement noise
covariance convergence is fast, if a node receives data directly from an-
chors [15]. Furthermore, if the noise is Gaussian and zeromean, the Kalman
filter is the optimal estimator in the sense that it minimizes the expected er-
ror variance [15, 16]. After the preprocessing steps of section 4.2, the best
anchors are selected and the outliers have been deleted. Furthermore, the
resulting linear propagation model of the anchors fulfills the Gaussian-ness
condition. It looks interesting to insert a Kalman filter after the preprocess-
ing steps in order to continuously follow the changing slope and intercept
of the regression lines.
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