278 research outputs found

    Optimal Power Control and Scheduling under Hard Deadline Constraints for Continuous Fading Channels

    Full text link
    We consider a joint scheduling-and-power-allocation problem of a downlink cellular system. The system consists of two groups of users: real-time (RT) and non-real-time (NRT) users. Given an average power constraint on the base station, the problem is to find an algorithm that satisfies the RT hard deadline constraint and NRT queue stability constraint. We propose a sum-rate-maximizing algorithm that satisfies these constraints. We also show, through simulations, that the proposed algorithm has an average complexity that is close-to-linear in the number of RT users. The power allocation policy in the proposed algorithm has a closed-form expression for the two groups of users. However, interestingly, the power policy of the RT users differ in structure from that of the NRT users. We also show the superiority of the proposed algorithms over existing approaches using extensive simulations.Comment: Submitted to Asilomar 2017. arXiv admin note: text overlap with arXiv:1612.0832

    Dynamic Scheduling for Delay Guarantees for Heterogeneous Cognitive Radio Users

    Full text link
    We study an uplink multi secondary user (SU) system having statistical delay constraints, and an average interference constraint to the primary user (PU). SUs with heterogeneous interference channel statistics, to the PU, experience heterogeneous delay performances since SUs causing low interference are scheduled more frequently than those causing high interference. We propose a scheduling algorithm that can provide arbitrary average delay guarantees to SUs irrespective of their statistical channel qualities. We derive the algorithm using the Lyapunov technique and show that it yields bounded queues and satisfy the interference constraints. Using simulations, we show its superiority over the Max-Weight algorithm.Comment: Asilomar 2015. arXiv admin note: text overlap with arXiv:1602.0801

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Data Collection in Two-Tier IoT Networks with Radio Frequency (RF) Energy Harvesting Devices and Tags

    Get PDF
    The Internet of things (IoT) is expected to connect physical objects and end-users using technologies such as wireless sensor networks and radio frequency identification (RFID). In addition, it will employ a wireless multi-hop backhaul to transfer data collected by a myriad of devices to users or applications such as digital twins operating in a Metaverse. A critical issue is that the number of packets collected and transferred to the Internet is bounded by limited network resources such as bandwidth and energy. In this respect, IoT networks have adopted technologies such as time division multiple access (TDMA), signal interference cancellation (SIC) and multiple-input multiple-output (MIMO) in order to increase network capacity. Another fundamental issue is energy. To this end, researchers have exploited radio frequency (RF) energy-harvesting technologies to prolong the lifetime of energy constrained sensors and smart devices. Specifically, devices with RF energy harvesting capabilities can rely on ambient RF sources such as access points, television towers, and base stations. Further, an operator may deploy dedicated power beacons that serve as RF-energy sources. Apart from that, in order to reduce energy consumption, devices can adopt ambient backscattering communication technologies. Advantageously, backscattering allows devices to communicate using negligible amount of energy by modulating ambient RF signals. To address the aforementioned issues, this thesis first considers data collection in a two-tier MIMO ambient RF energy-harvesting network. The first tier consists of routers with MIMO capability and a set of source-destination pairs/flows. The second tier consists of energy harvesting devices that rely on RF transmissions from routers for energy supply. The problem is to determine a minimum-length TDMA link schedule that satisfies the traffic demand of source-destination pairs and energy demand of energy harvesting devices. It formulates the problem as a linear program (LP), and outlines a heuristic to construct transmission sets that are then used by the said LP. In addition, it outlines a new routing metric that considers the energy demand of energy harvesting devices to cope with routing requirements of IoT networks. The simulation results show that the proposed algorithm on average achieves 31.25% shorter schedules as compared to competing schemes. In addition, the said routing metric results in link schedules that are at most 24.75% longer than those computed by the LP
    • …
    corecore