3,744 research outputs found

    CSI Feedback Reduction for MIMO Interference Alignment

    Full text link
    Interference alignment (IA) is a linear precoding strategy that can achieve optimal capacity scaling at high SNR in interference networks. Most of the existing IA designs require full channel state information (CSI) at the transmitters, which induces a huge CSI signaling cost. Hence it is desirable to improve the feedback efficiency for IA and in this paper, we propose a novel IA scheme with a significantly reduced CSI feedback. To quantify the CSI feedback cost, we introduce a novel metric, namely the feedback dimension. This metric serves as a first-order measurement of CSI feedback overhead. Due to the partial CSI feedback constraint, conventional IA schemes can not be applied and hence, we develop a novel IA precoder / decorrelator design and establish new IA feasibility conditions. Via dynamic feedback profile design, the proposed IA scheme can also achieve a flexible tradeoff between the degree of freedom (DoF) requirements for data streams, the antenna resources and the CSI feedback cost. We show by analysis and simulations that the proposed scheme achieves substantial reductions of CSI feedback overhead under the same DoF requirement in MIMO interference networks.Comment: 30 pages, 7 figures, accepted for publication by IEEE transactions on signal processing in June, 201

    Limited Feedback Design for Interference Alignment on MIMO Interference Networks with Heterogeneous Path Loss and Spatial Correlations

    Full text link
    Interference alignment is degree of freedom optimal in K -user MIMO interference channels and many previous works have studied the transceiver designs. However, these works predominantly focus on networks with perfect channel state information at the transmitters and symmetrical interference topology. In this paper, we consider a limited feedback system with heterogeneous path loss and spatial correlations, and investigate how the dynamics of the interference topology can be exploited to improve the feedback efficiency. We propose a novel spatial codebook design, and perform dynamic quantization via bit allocations to adapt to the asymmetry of the interference topology. We bound the system throughput under the proposed dynamic scheme in terms of the transmit SNR, feedback bits and the interference topology parameters. It is shown that when the number of feedback bits scales with SNR as C_{s}\cdot\log\textrm{SNR}, the sum degrees of freedom of the network are preserved. Moreover, the value of scaling coefficient C_{s} can be significantly reduced in networks with asymmetric interference topology.Comment: 30 pages, 6 figures, accepted by IEEE transactions on signal processing in Feb. 201

    Opportunistic Relaying in Wireless Networks

    Full text link
    Relay networks having nn source-to-destination pairs and mm half-duplex relays, all operating in the same frequency band in the presence of block fading, are analyzed. This setup has attracted significant attention and several relaying protocols have been reported in the literature. However, most of the proposed solutions require either centrally coordinated scheduling or detailed channel state information (CSI) at the transmitter side. Here, an opportunistic relaying scheme is proposed, which alleviates these limitations. The scheme entails a two-hop communication protocol, in which sources communicate with destinations only through half-duplex relays. The key idea is to schedule at each hop only a subset of nodes that can benefit from \emph{multiuser diversity}. To select the source and destination nodes for each hop, it requires only CSI at receivers (relays for the first hop, and destination nodes for the second hop) and an integer-value CSI feedback to the transmitters. For the case when nn is large and mm is fixed, it is shown that the proposed scheme achieves a system throughput of m/2m/2 bits/s/Hz. In contrast, the information-theoretic upper bound of (m/2)loglogn(m/2)\log \log n bits/s/Hz is achievable only with more demanding CSI assumptions and cooperation between the relays. Furthermore, it is shown that, under the condition that the product of block duration and system bandwidth scales faster than logn\log n, the achievable throughput of the proposed scheme scales as Θ(logn)\Theta ({\log n}). Notably, this is proven to be the optimal throughput scaling even if centralized scheduling is allowed, thus proving the optimality of the proposed scheme in the scaling law sense.Comment: 17 pages, 8 figures, To appear in IEEE Transactions on Information Theor

    Beam-searching and Transmission Scheduling in Millimeter Wave Communications

    Full text link
    Millimeter wave (mmW) wireless networks are capable to support multi-gigabit data rates, by using directional communications with narrow beams. However, existing mmW communications standards are hindered by two problems: deafness and single link scheduling. The deafness problem, that is, a misalignment between transmitter and receiver beams, demands a time consuming beam-searching operation, which leads to an alignment-throughput tradeoff. Moreover, the existing mmW standards schedule a single link in each time slot and hence do not fully exploit the potential of mmW communications, where directional communications allow multiple concurrent transmissions. These two problems are addressed in this paper, where a joint beamwidth selection and power allocation problem is formulated by an optimization problem for short range mmW networks with the objective of maximizing effective network throughput. This optimization problem allows establishing the fundamental alignment-throughput tradeoff, however it is computationally complex and requires exact knowledge of network topology, which may not be available in practice. Therefore, two standard-compliant approximation solution algorithms are developed, which rely on underestimation and overestimation of interference. The first one exploits directionality to maximize the reuse of available spectrum and thereby increases the network throughput, while imposing almost no computational complexity. The second one is a more conservative approach that protects all active links from harmful interference, yet enhances the network throughput by 100% compared to the existing standards. Extensive performance analysis provides useful insights on the directionality level and the number of concurrent transmissions that should be pursued. Interestingly, extremely narrow beams are in general not optimal.Comment: 5 figures, 7 pages, accepted in ICC 201

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin
    corecore