193 research outputs found

    Structural properties of optimal coordinate-convex policies for CAC with nonlinearly-constrained feasibility regions

    Get PDF
    Necessary optimality conditions for Call Admission Control (CAC) problems with nonlinearly-constrained feasibility regions and two classes of users are derived. The policies are restricted to the class of coordinate-convex policies. Two kinds of structural properties of the optimal policies and their robustness with respect to changes of the feasibility region are investigated: 1) general properties not depending on the revenue ratio associated with the two classes of users and 2) more specific properties depending on such a ratio. The results allow one to narrow the search for the optimal policies to a suitable subset of the set of coordinate-convex policies

    Call blocking probabilities for Poisson traffic under the Multiple Fractional Channel Reservation policy

    Get PDF
    In this paper, we study the performance of the Multiple Fractional Channel Reservation (MFCR) policy, which is a bandwidth reservation policy that allows the reservation of real (not integer) number of channels in order to favor calls of high channel (bandwidth) requirements. We consider a link of fixed capacity that accommodates Poisson arriving calls of different service-classes with different bandwidth-per-call requirements. Calls compete for the available bandwidth under the MFCR policy. To determine call blocking probabilities, we propose approximate but recursive formulas based on the notion of reserve transition rates. The accuracy of the proposed method is verified through simulation

    An Erlang multirate loss model supporting elastic traffic under the threshold policy

    Get PDF
    In this paper, we propose a multirate teletraffic loss model of a single link with certain bandwidth capacity that accommodates Poisson arriving calls, which can tolerate bandwidth compression (elastic traffic), under the threshold policy. When compression occurs, the service time of new and in-service calls increases. The threshold policy provides different QoS among service-classes by limiting the number of calls of a service-class up to a pre-defined threshold, which can be different for each service-class. Due to the bandwidth compression mechanism, the steady state probabilities in the proposed model do not have a product form solution. However, we approximate the model by a reversible Markov chain, and prove recursive formulas for the calculation of call blocking probabilities and link utilization. The accuracy of the proposed formulas is verified through simulation and found to be very satisfactory

    QoS Based Capacity Enhancement for WCDMA Network with Coding Scheme

    Full text link
    The wide-band code division multiple access (WCDMA) based 3G and beyond cellular mobile wireless networks are expected to provide a diverse range of multimedia services to mobile users with guaranteed quality of service (QoS). To serve diverse quality of service requirements of these networks it necessitates new radio resource management strategies for effective utilization of network resources with coding schemes. Call admission control (CAC) is a significant component in wireless networks to guarantee quality of service requirements and also to enhance the network resilience. In this paper capacity enhancement for WCDMA network with convolutional coding scheme is discussed and compared with block code and without coding scheme to achieve a better balance between resource utilization and quality of service provisioning. The model of this network is valid for the real-time (RT) and non-real-time (NRT) services having different data rate. Simulation results demonstrate the effectiveness of the network using convolutional code in terms of capacity enhancement and QoS of the voice and video services.Comment: 10 Pages, VLSICS Journa

    Admission Control Policies in Multiservice Cellular Networks: Optimum Configuration and Sensitivity

    Full text link
    Abstract. We evaluate different call admission control policies in various mul-tiservice cellular scenarios. For each of the studied policies we obtain the maximum calling rate that can be offered to the system to achieve a given QoS objective defined in terms of blocking probabilities. We propose an optimiza-tion methodology based on a hill climbing algorithm to find the optimum con-figuration for most policies. The results show that policies of the trunk reserva-tion class outperform policies that produce a product-form solution and the im-provement ranges approximately between 5 and 15 % in the scenarios studied.

    Journal of Telecommunications and Information Technology, 2018, nr 1

    Get PDF
    We consider a two-link system that accommodates Poisson arriving calls from different service-classes and propose a multirate teletraffic loss model for its analysis. Each link has two thresholds, which refer to the number of in-service calls in the link. The lowest threshold, named support threshold, defines up to which point the link can support calls offloaded from the other link. The highest threshold, named offloading threshold, defines the point where the link starts offloading calls to the other link. The adopted bandwidth sharing policy is the complete sharing policy, in which a call can be accepted in a link if there exist enough available bandwidth units. The model does not have a product form solution for the steady state probabilities. However, we propose approximate formulas, based on a convolution algorithm, for the calculation of call blocking probabilities. The accuracy of the formulas is verified through simulation and found to be quite satisfactory

    The role of admission control in assuring multiple services quality

    Get PDF
    Considering that network overprovisioning by itself is not always an attainable and everlasting solution, Admission Control (AC) mechanisms are recommended to keep network load controlled and assure the required service quality levels. This article debates the role of AC in multiservice IP networks, providing an overview and discussion of current and representative AC approaches, highlighting their main characteristics, pros and cons regarding the management of network services quality. In this debate, particular emphasis is given to an enhanced monitoring-based AC proposal for assuring multiple service levels in multiclass networks.Centro de CiĂȘncias e Tecnologias da Computação do Departamento de InformĂĄtica da Universidade do Minho (CCTC

    Admission control in multiservice IP networks : architectural issues and trends

    Get PDF
    The trend toward the integration of current and emerging applications and services in the Internet has launched new challenges regarding service deployment and management. Within service management, admission control (AC) has been recognized as a convenient mechanism to keep services under controlled load and assure the required QoS levels, bringing consistency to the services offered. In this context, this article discusses the role of AC in multiservice IP networks and surveys current and representative AC approaches. We address and compare the architectural principles of these AC approaches and their main features, virtues and limitations that impact on the quality control of network services. We identify important design aspects that contribute to the successful deployment of flexible and scalable AC solutions in multiservice networks

    State-Dependent Bandwidth Sharing Policies for Wireless Multirate Loss Networks

    Get PDF
    We consider a reference cell of fixed capacity in a wireless cellular network while concentrating on next-generation network architectures. The cell accommodates new and handover calls from different service-classes. Arriving calls follow a random or quasi-random process and compete for service in the cell under two bandwidth sharing policies: 1) a probabilistic threshold (PrTH) policy or 2) the multiple fractional channel reservation (MFCR) policy. In the PrTH policy, if the number of in-service calls (new or handover) of a service-class exceeds a threshold (difference between new and handover calls), then an arriving call of the same service-class is accepted in the cell with a predefined state-dependent probability. In the MFCR policy, a real number of channels is reserved to benefit calls of certain service-classes; thus, a service priority is introduced. The cell is modeled as a multirate loss system. Under the PrTH policy, call-level performance measures are determined via accurate convolution algorithms, while under the MFCR policy, via approximate but efficient models. Furthermore, we discuss the applicability of the proposed models in 4G/5G networks. The accuracy of the proposed models is verified through simulation. Comparison against other models reveals the necessity of the new models and policies

    Quality-of-service management in IP networks

    Get PDF
    Quality of Service (QoS) in Internet Protocol (IF) Networks has been the subject of active research over the past two decades. Integrated Services (IntServ) and Differentiated Services (DiffServ) QoS architectures have emerged as proposed standards for resource allocation in IF Networks. These two QoS architectures support the need for multiple traffic queuing systems to allow for resource partitioning for heterogeneous applications making use of the networks. There have been a number of specifications or proposals for the number of traffic queuing classes (Class of Service (CoS)) that will support integrated services in IF Networks, but none has provided verification in the form of analytical or empirical investigation to prove that its specification or proposal will be optimum. Despite the existence of the two standard QoS architectures and the large volume of research work that has been carried out on IF QoS, its deployment still remains elusive in the Internet. This is not unconnected with the complexities associated with some aspects of the standard QoS architectures. [Continues.
    • 

    corecore