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Abstract—Necessary optimality conditions for Call Admission
Control (CAC) problems with nonlinearly-constrained feasibility
regions and two classes of users are derived. The policies
are restricted to the class of coordinate-convex policies. Two
kinds of structural properties of the optimal policies and their
robustness with respect to changes of the feasibility region are
investigated: 1) general properties not depending on the revenue
ratio associated with the two classes of users and 2) more specific
properties depending on such a ratio. The results allow one to
narrow the search for the optimal policies to a suitable subset of
the set of coordinate-convex policies.

Index Terms—Call Admission Control, Feasibility Region,
Coordinate Convex Policies.

I. I NTRODUCTION

Call Admission Control (CAC) represents an important
mechanism to guarantee specific Quality of Service (QoS)
requirements. CAC determines when to accept or reject a new
connection, flow, or call request (depending on which technol-
ogy is used), thus limiting the load that enters a network. This
is accomplished by verifying if enough resources are available
to satisfy the performance requirements of a new call without
penalizing the ones already in progress.

A basic model for CAC is thestochastic knapsack [1].
In this model, one hasC units of resources andK classes
of users. The calls from each classk ∈ {1, . . . ,K} arrive
according to a Poisson process. If accepted by the system, each
of them occupiesbk units of resources, which are released
at the end of the call. The simplest CAC policy, known as
Complete Sharing (CS), consists in accepting a call whenever
the system has sufficient resources. However CS may lead to a
monopolistic use of resources by certain classes of users, thus
to a poor resource utilization [2, Section III]. This motivates
the interest in different admission policies (see the references
in [3, Section 7.1]).

In general, finding optimal policies for the stochastic knap-
sack model is a difficult combinatorial optimization problem
[4, Chapter 4]. The knowledge of structural properties of the
optimal policies is useful to simplify its solution or at least to
find good suboptimal policies. For instance, for two classesof
users and an objective given by a weighted sum of per-class
average revenues, structural properties were derived in [1]
for the optimal policies belonging to the class ofcoordinate-
convex policies. Coordinate-convex policies form a large class

of CAC policies characterized by a relatively simple structure
and interesting properties, such as their product-form steady-
state distribution [4, Chapter 4] and bounds on the per-class
blocking probabilities [5]. When the service rates and resource
requirements do not depend on the customer’s class (single
service), the optimal CAC policy is not coordinate-convex and
is calledtrunk reservation ([6], [7]). For such a case, [8] and
[9] provide recursive formulas to evaluate the performanceof
any trunk reservation policy and an iterative search algorithm
to find optimal policies. They exploit such an algorithm to
find coordinate optimalthreshold policies (a particular kind
of coordinate-convex policies) inmultiservice systems (for
which different classes may have different and heterogeneous
resource requirements and mean service times).

The stochastic knapsack model can be extended by in-
troducing the concept offeasibility region [10, pp. 46-49].
This is a regionΩFR in the call space where given QoS
requirements in terms of packet-loss/packet-delay probability
are statistically guaranteed. When some form ofstatistical
multiplexing is used, often this implies that the linear constraint
{
∑

k∈K nkbk ≤ C} for the stochastic knapsack model is
replaced by a more complicated constraint for the feasibility
region, e.g. of the form

∑

k∈K βk(nk) ≤ C [4, p. 212], where
the βk(·) are nonlinear functions (see Figure 1).
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Figure 1. The upper boundary(∂ΩFR)+ of a feasibility regionΩFR with
2 class or users in the case of (a) a linearly-constrainedΩFR (stochastic
knapsack) and (b) a nonlinearly-constrainedΩFR.

Up to our knowledge, till now the problem of finding struc-
tural properties of the optimal coordinate-convex policies in
the case of general nonlinearly-constrained feasibility regions
has received little attention, with the exception of [11], [12]
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(see Subsection III-B for a comparison of our results with
those of [12]).

The following is a summary of our contributions. For CAC
problems with nonlinearly-constrained feasibility regionsΩFR

and two classes of users, we provide
• some general structural properties holding for any optimal

coordinate-convex policy (Subsection III-A);
• more specific structural properties dependent on the rev-

enue ratio associated with the two classes of users;
• simulation results (Section IV).
In doing so, we extend some results of [1] to nonlinearly-

constrained feasibility regions; see Subsections III-A and
III-B. All the proofs are deferred to Section VI.

II. PROBLEM FORMULATION

In this section, we summarize the CAC problem studied in
[1], which will be extended in Section III to a nonlinearly-
constrained feasibility regionΩFR.

The state of the CAC system in [1] is described by a
2-dimensional vectorn, whose componentnk, k = 1, 2,
represents the number of connections from users of class
k that have been accepted by the system and are currently
in progress. For each classk, the inter-arrival times are
exponentially distributed with mean value1/λk(nk) and the
holding times of accepted connections are independent and
identically distributed (i.i.d.) with mean value1/µk. The CAC
system accepts or rejects a request of connection accordingto
a coordinate-convexpolicy. Here we recall its definition [4, p.
116].

Definition II.1. A nonempty set Ω ⊆ ΩFR ⊂ N
2
0 is called

coordinate-convex if and only if it has the following property:
for each n ∈ Ω with nk > 0 one has n − ek ∈ Ω, where
ek is a 2-dimensional vector whose k-th component is 1 and
the other one is 0. The coordinate-convex policy associated
with a coordinate-convex set Ω admits an arriving request of
connection if and only if after admittance the state process
remains in Ω.

As there is a one-to-one correspondence between coordinate-
convex sets and coordinate-convex policies, from now on we
use the symbolΩ to denote either a coordinate-convex set or
a coordinate-convex policy.

The objective to be maximized by the CAC system in the
spaceP(ΩFR) of coordinate-convex subsets ofΩFR is given
by

J(Ω) =
∑

n∈Ω

(n · r)PΩ(n) , (1)

where r is a 2-dimensional vector whose componentrk
represents the instantaneous positive revenue generated by any
accepted connection of classk that is still in progress and
PΩ(n) is the steady-state probability that the CAC system is
in staten. As Ω is coordinate-convex,PΩ(n) takes on the
product-form expression

PΩ(n) =

∏2
i=1 qi(ni)

∑

n∈Ω

∏2
i=1 qi(ni)

, (2)

where

qi(ni) :=

∏ni−1
j=0 λi(j)

ni!µ
ni

i

. (3)

For linearly-constrained feasibility regionsΩFR, [1] de-
scribes structural properties of the coordinate-convex policies
maximizing the objective (1) (e.g., the existence of one vertical
threshold, one horizontal threshold, or both kinds of thresh-
olds), which depend on the value assumed by the revenue ratio
R := r2/r1.

III. M AIN RESULTS

In our analysis, we allow the feasibility regionΩFR to have
a nonlinear upper boundary, denoted by(∂ΩFR)

+ (see Figure
1(b)). Similarly, we denote by(∂Ω)+ the (linear or nonlinear)
upper boundary of the coordinate-convex setΩ. The setΩFR

is assumed to be coordinate-convex, as it often happens for
feasibility regions defined in terms of QoS constraints [13,
Proposition 6.3]. Let us recall two definitions from [1].

Definition III.1. The tuple (α, β) ∈ ΩFR\Ω is a type-1 corner
point for Ω if and only if β ≥ 1, (α, β − 1) ∈ Ω, and either
α = 0 or (α − 1, β) ∈ Ω; the tuple (α, β) ∈ ΩFR \ Ω is a
type-2 corner point for Ω if and only if α ≥ 1, (α−1, β) ∈ Ω,
and either β = 0 or (α, β − 1) ∈ Ω.

Definition III.2. A nonempty set S− ⊂ ΩFR is incrementally
removable with respect to Ω (IRΩ) if and only if S− ⊂ Ω
and Ω \ S− is still a coordinate-convex set; a nonempty set
S+ ⊂ ΩFR is incrementally admissible with respect to Ω
(IAΩ) if and only if S+∩Ω = ∅ and Ω∪S+ is still a coordinate-
convex set.

In the following, we shall sometimes use the term “corner
point” to refer to either a type-1 or a type-2 corner point. By
the coordinate-convexity ofΩ, no two corner points can be on
the same vertical or horizontal line.
We recall from [1] that the definition of the objectiveJ(·)
in (1) can be extended consistently to all (not necessarily
coordinate-convex) setsS ⊆ ΩFR in the following way:

J(S) :=
H(S)

G(S)
, (4)

with

H(S) :=
∑

n∈S

(n · r)
2
∏

i=1

qi(ni) , (5)

G(S) :=
∑

n∈S

2
∏

i=1

qi(ni) . (6)

We also recall that, for a rectangular regionS := {a, a +
1, . . . , b} × {c, c+ 1, . . . , d}, by (3), (5), and (6) it follows

J(S) = r1x1(a, b) + r2x2(c, d) , (7)

where

xi(a, b) :=

∑b

k=a kqi(k)
∑b

j=a qi(j)
. (8)



A. General structural properties of the optimal coordinate-
convex policies

Let Ωo denote any optimal coordinate-convex policy (or
its associated coordinate-convex set). Proposition III.3, which
extends to nonlinearly-constrained feasibility regions asimilar
property stated in [1, Theorem 1] for linearly-constrainedones,
states that the corner points ofΩo are to be searched among the
vertices of a suitable grid (see Figure 2). We use the following
notations:

lΩ2 (n1) := max{k ∈ N0 such that (n1, k) ∈ Ω} , (9)

lΩ1 (n2) := max{h ∈ N0 such that (h, n2) ∈ Ω} . (10)

The valueslΩ1 (n2) andlΩ2 (n1) are, respectively, the maximum
number of type-1/type-2 connections allowed inΩ when we
have alreadyn2 type-2/n1 type-1 connections. It follows from
the definitions that the functionslΩi (·) are nonincreasing. Set
n1,max := lΩFR

1 (0), n2,max := lΩFR

2 (0), lΩFR

1 (n2,max + 1) +
1 := 0 and lΩFR

2 (n1,max + 1) + 1 := 0.

Proposition III.3. (i) If (α, β) is a type-2 corner point for
Ωo, then for some j = 1, . . . , n2,max we have

α = lΩFR

1 (j) + 1 . (11)

(ii) If (α, β) is a type-1 corner point for Ωo, then for some
j = 1, . . . , n1,max we get

β = lΩFR

2 (j) + 1 . (12)

We refer to the reader to [14] for other general structural
properties of the optimal coordinate-convex policies, notde-
pending on the revenue ratioR.

B. Structural properties of the optimal coordinate-convex poli-
cies depending on the revenue ratio R

Let us now consider for the optimal coordinate-convex
policies structural properties obtained for suitable values of
the revenue ratioR. We recall the following definition from
[1].

Definition III.4. Let i = 1 or 2. A coordinate-convex policy
Ω is threshold type-i if and only if for some ti = 0, . . . , ni,max

we get
Ω = {(n1, n2) ∈ ΩFR : ni ≤ ti} . (13)

Proposition III.5 is our extension of [1, Lemma 4] to general
nonlinearly-constrained feasibility regions. With respect to [1],
due to the different shape of the feasibility region, in general it
is not true thatj 6= k implieslΩFR

1 (j) 6= lΩFR

1 (k). As shown in
Figure 2, in general for everyj2 ∈ {0, . . . , n2,max} there exist
j(2,l) ≤ j2 andj(2,u) ≥ j2 such thatlΩFR

1 (·) is constant on the
set{j(2,l), . . . , j(2,u)} ⊆ {0, . . . , n2,max}. Similarly, for every
j1 ∈ {0, . . . , n1,max} there existj(1,l) ≤ j1 and j(1,u) ≥ j1
such thatlΩFR

2 (·) is constant on the set{j(1,l), . . . , j(1,u)} ⊆
{0, . . . , n1,max}. Let B1 := max{j(1,u) − j(1,l) : j1 =
0, . . . , n1,max} and B2 := max{j(2,u) − j(2,l) : j2 =
0, . . . , n2,max}. Recall thatR := r2/r1 is the revenue ratio.
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Figure 2. Potential locations of the corner points of an optimal coordinate-
convex policyΩo. According to Proposition III.3, the corner points ofΩo are
to be searched among the crosses in the figure.

Proposition III.5. (i) If (α, β) is a type-2 corner point for Ωo

and λ2(·) is nonincreasing, then for some j = 1, . . . , n2,max

(11) holds together with

Rx2(0, B2) ≥ x1(l
ΩFR

1 (j(2,l)) + 1, lΩFR

1 (j(2,l) − 1))

−x1(l
ΩFR

1 (j(2,u) + 1) + 1, lΩFR

1 (j(2,u))) . (14)

(ii) If (α, β) is a type-1 corner point for Ωo and λ1(·) is
nonincreasing, then for some j = 1, . . . , n1,max (12) holds
together with

1

R
x1(0, B1) ≥ x2(l

ΩFR

2 (j(1,l)) + 1, lΩFR

2 (j(1,l) − 1))

−x2(l
ΩFR

2 (j(1,u) + 1) + 1, lΩFR

2 (j(1,u))) . (15)

The following theorem states that under suitable conditions
one has threshold-type optimal policies. The result is an
extension of [1, Theorem 1] to feasibility regions with a
nonlinear upper boundary. Its proof exploits Proposition III.5.

Theorem III.6. Let λi(·) be nonincreasing for i = 1, 2.
(i) If 1

R
< L1, where

L1 : = min
j=1,...,n1,max

{

x2(l
ΩFR

2 (j(1,l)) + 1, lΩFR

2 (j(1,l) − 1))

x1(0, B1)

−
x2(l

ΩFR

2 (j(1,u) + 1) + 1, lΩFR

2 (j(1,u)))

x1(0, B1)

}

,

(16)

then Ωo is threshold type-1, and the threshold is equal to
some lΩFR

1 (j) for some j = 0, . . . , n2,max.



(ii) If R < L2, where

L2 := min
j=1,...,n2,max

{

x1(l
ΩFR

1 (j(2,l)) + 1, lΩFR

1 (j(2,l) − 1))

x2(0, B2)

−
x1(l

ΩFR

1 (j(2,u) + 1) + 1, lΩFR

1 (j(2,u)))

x2(0, B2)

}

,

(17)

then Ωo is threshold type-2, and the threshold is equal to
some lΩFR

2 (j) for some j = 0, . . . , n1,max.

(iii) If 1
L1

< R < L2, then Ωo = ΩFR.

The following corollary provides sufficient conditions for
threshold-type optimal policies.

Corollary III.7. Let λi(·) be nonincreasing for i = 1, 2.

(i) If R > x1(0, B1), then Ωo is threshold type-1,
and the threshold is equal to some lΩFR

1 (j) for some
j = 0, . . . , n2,max.

(ii) If 1
R

> x2(0, B2), then Ωo is threshold type-2,
and the threshold is equal to some lΩFR

2 (j) for some
j = 0, . . . , n1,max.

(iii) If x1(0, B1) < R < 1
x2(0,B2)

, then Ωo = ΩFR.

Remark III.8. In the particular case of a linearly-constrained
feasibility region withB2 = 1 (i.e., the one considered in
[1]), one hasj(1,l) = j(1,u) for eachj = 0, . . . , n1,max, and
L1 = 1

x1(0,B1)
. So in this case Theorem III.6 (i) reduces to

[1, Theorem 1] (i).

Remark III.9. Another extension of [1, Theorem 1] which
is similar to Proposition III.3 and Corollary III.7 is reported
in [11, Section 4] and refers to a less general nonlinearly-
constrained feasibility region and to a different assumption on
the holding time distribution of the calls.

IV. SIMULATION RESULTS

In the next numerical results we show that, under the
conditions of Corollary III.7 (i) and (ii) resp., the optimal
threshold for threshold type-1 policies is indeed equal to
lΩFR

1 (j) for somej = 0, . . . , n2,max, and the optimal threshold
for threshold type-2 policies is equal tolΩFR

2 (j) for some
j = 0, . . . , n1,max. In Figure 3 the feasibility region used to
make these simulations is depicted. We assume homogeneous
Poisson arrivals for both classes.

With this feasibility region we haveB1 = 16 andB2 = 10;
for λ1 = 50, λ2 = 150, µ1 = 0.5, µ2 = 5, r1 = 0.25, and
r2 = 2.5 we haveR = r2/r1 = 10 and x1(0, 10) ≃ 9.89.
Then R > x1(0, B1) and by Corollary III.7 (i) there exists
an optimal coordinate-convex policy that is threshold type-1.
According to Corollary III.7 (i), the optimal threshold belongs
to the set{0, 15, 22, 28}. Figure 3 (b) shows that this is indeed
the case, and that the optimal threshold ist1 = 15.

n1

n2

0 15 22 28

6

16

20

(a) (b)

Figure 3. (a) The feasibility region considered in Section IV. (b)

V. CONCLUSIONS

This paper provides several structural properties of the
corner points of the optimal coordinate-convex policies in
CAC problems with nonlinearly-constrained feasibility regions
and two classes of users. These properties can be used to
narrow the search for the optimal coordinate-convex policies.
For certain feasibility regions characterized by a nonlinear
constraint of the form

∑

k∈K βk(nk) ≤ C, the simplest
possible extension of the results to more than2 classes of users
consists in defining subproblems obtained by partitioning the
set of classes by using subsets of cardinality at most2 and
applying to each subproblem the results obtained here for2
classes of users.

VI. PROOFS

Due to the page limits, we refer the reader to [1] for the
statements of [1, Lemmas 1-3], which are used in some of the
following proofs. An inspection of the proofs of [1, Lemmas
1-3] shows that they hold for both linearly-constrained and
nonlinearly-constrained feasibility regions.

Proof of Proposition III.3. We prove only (i), since (ii) can be
obtained in the same way by exchanging the roles of the two
classes of users. Suppose that (11) is violated for everyj =
1, . . . , n2,max. Choosingn = lΩ

o

2 (α − 1) − β ≥ 0, S−(n) =
{(α−1, β+i) : i = 0, . . . , n} ⊆ Ωo, andS+(n) = {(α, β+i) :
i = 0, . . . , n} ⊆ ΩFR \ Ωo (see Figure 4), it follows that the
setsΩo \ S−(n) andΩo ∪ S+(n) are coordinate-convex, so
S−(n) is IRΩo andS+(n) is IAΩo . By formula (7), we get
J(S−(n)) = r1(α−1)+r2x2(β, β+n) < r1α+r2x2(β, β+
n) = J(S+(n)), but this contradicts the optimality condition
stated in [1, Lemma 2], so one concludes that there exists
somej = 1, . . . , n2,max such that (11) holds. �

Proof of Proposition III.5. Given a type-2 corner point
(α, β), we know from Proposition III.3 (i) thatα = lΩFR

1 (j)+
1 for somej = 1, . . . , n2,max. Choosingn = lΩ

o

2 (α−1)−β ≥
0, m = min{(lΩFR

2 (α)−β), n}, Ŝ−(n) = {lΩFR

1 (j(2,u)+1)+
1, . . . , lΩFR

1 (j(2,u))} × {β, . . . , β + n} ⊆ Ωo, and Ŝ+(m) =
{lΩFR

1 (j(2,l)) + 1, . . . , lΩFR

1 (j(2,l) − 1)} × {β, . . . , β +m} ⊆
ΩFR \ Ωo (see Figure 5), it follows that the setsΩo \ Ŝ−(n)



S−(n)
S+(n)

n1

n2

(α, β)

Ω

Figure 4. An example of a coordinate-convex setΩ having a type-2 corner
point (α, β) for which α 6= l

ΩFR
1

(j) + 1 for everyj = 1, . . . , n2,max.

and Ωo ∪ Ŝ+(m) are coordinate-convex, sôS−(n) is IRΩo

and Ŝ+(m) is IAΩo . By (7) we get

J(Ŝ−(n))

= r1x1(l
ΩFR

1 (j(2,u) + 1) + 1, lΩFR

1 (j(2,u))) + r2x2(β, β + n)

and
J(Ŝ+(m))

= r1x1(l
ΩFR

1 (j(2,l)) + 1, lΩFR

1 (j(2,l) − 1)) + r2x2(β, β +m) .

Combining these equalities with [1, Lemma 2] (which
implies J(Ŝ−(n)) ≥ J(Ŝ+(n))), we have

R(x2(β, β + n)− x2(β, β +m))

≥ x1(l
ΩFR

1 (j(2,l)) + 1, lΩFR

1 (j(2,l) − 1))

−x1(l
ΩFR

1 (j(2,u) + 1) + 1, lΩFR

1 (j(2,u))) . (18)

Since 0 ≤ n − m ≤ B2 and λ2(·) is nonincreasing, by [1,
Lemma 3] we get

x2(0, B2) ≥ x2(β, β + n)− x2(β, β +m)

which, when combined with (18), proves (14). Formula (ii) is
obtained in the same way by exchanging the roles of the two
classes of users. �

{ }

Ŝ−(n)
Ŝ+(n)

j(2,u)

j
j(2,l)

mn

lΩ
o

2 (α − 1)

β

l
ΩFR
1 (j(2,u) + 1) + 1

l
ΩFR
1 (j(2,u))

α = l
ΩFR
1 (j(2,l)) + 1

l
ΩFR
1 (j(2,l) − 1)

n2

Figure 5. A description of a step in the proof of Proposition III.5.

Proof of Theorem III.6. (i) If 1
R

< L1, then by Proposition
III.5 (ii) Ωo has no type-1 corner points, so it is a
threshold type-1 policy by [1, Lemma 1]. Lett1 denote the
corresponding threshold. Then eithert1 = n1,max = lΩFR

1 (0)
or (t1 + 1, 0) is a type-2 corner point forΩo. In the second
case, by Proposition III.3 (i) we havet1 + 1 = lΩFR

1 (j) + 1
for somej = 1, . . . , n2,max.

(ii) is proved similarly.

(iii) If 1
L1

< R < L2, then by parts (i) and (ii)Ωo is both
threshold type-1 and threshold type-2, so it coincides with
ΩFR.

�

Proof of Corollary III.7. For eachj = 0, . . . , n1,max, it
follows from the definitions ofx2(·, ·) and of j(1,l), j(1,u)

that

x2(l
ΩFR

2 (j(1,l)) + 1, lΩFR

2 (j(1,l) − 1)) ≥ lΩFR

2 (j(1,l)) + 1 ,

x2(l
ΩFR

2 (j(1,u) + 1) + 1, lΩFR

2 (j(1,u))) ≤ lΩFR

2 (j(1,u)) ,

and lΩFR

2 (j(1,u)) = lΩFR

2 (j(1,l)), soL1 ≥ 1
x1(0,B1)

. Similarly,
we haveL2 ≥ 1

x2(0,B2)
. �
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