139,711 research outputs found

    The Recommendation Architecture: Lessons from Large-Scale Electronic Systems Applied to Cognition

    Get PDF
    A fundamental approach of cognitive science is to understand cognitive systems by separating them into modules. Theoretical reasons are described which force any system which learns to perform a complex combination of real time functions into a modular architecture. Constraints on the way modules divide up functionality are also described. The architecture of such systems, including biological systems, is constrained into a form called the recommendation architecture, with a primary separation between clustering and competition. Clustering is a modular hierarchy which manages the interactions between functions on the basis of detection of functionally ambiguous repetition. Change to previously detected repetitions is limited in order to maintain a meaningful, although partially ambiguous context for all modules which make use of the previously defined repetitions. Competition interprets the repetition conditions detected by clustering as a range of alternative behavioural recommendations, and uses consequence feedback to learn to select the most appropriate recommendation. The requirements imposed by functional complexity result in very specific structures and processes which resemble those of brains. The design of an implemented electronic version of the recommendation architecture is described, and it is demonstrated that the system can heuristically define its own functionality, and learn without disrupting earlier learning. The recommendation architecture is compared with a range of alternative cognitive architectural proposals, and the conclusion reached that it has substantial potential both for understanding brains and for designing systems to perform cognitive functions

    A hybrid supervised/unsupervised machine learning approach to solar flare prediction

    Get PDF
    We introduce a hybrid approach to solar flare prediction, whereby a supervised regularization method is used to realize feature importance and an unsupervised clustering method is used to realize the binary flare/no-flare decision. The approach is validated against NOAA SWPC data

    Automated segmentation of tissue images for computerized IHC analysis

    Get PDF
    This paper presents two automated methods for the segmentation ofimmunohistochemical tissue images that overcome the limitations of themanual approach aswell as of the existing computerized techniques. The first independent method, based on unsupervised color clustering, recognizes automatically the target cancerous areas in the specimen and disregards the stroma; the second method, based on colors separation and morphological processing, exploits automated segmentation of the nuclear membranes of the cancerous cells. Extensive experimental results on real tissue images demonstrate the accuracy of our techniques compared to manual segmentations; additional experiments show that our techniques are more effective in immunohistochemical images than popular approaches based on supervised learning or active contours. The proposed procedure can be exploited for any applications that require tissues and cells exploration and to perform reliable and standardized measures of the activity of specific proteins involved in multi-factorial genetic pathologie

    Ordered Preference Elicitation Strategies for Supporting Multi-Objective Decision Making

    Full text link
    In multi-objective decision planning and learning, much attention is paid to producing optimal solution sets that contain an optimal policy for every possible user preference profile. We argue that the step that follows, i.e, determining which policy to execute by maximising the user's intrinsic utility function over this (possibly infinite) set, is under-studied. This paper aims to fill this gap. We build on previous work on Gaussian processes and pairwise comparisons for preference modelling, extend it to the multi-objective decision support scenario, and propose new ordered preference elicitation strategies based on ranking and clustering. Our main contribution is an in-depth evaluation of these strategies using computer and human-based experiments. We show that our proposed elicitation strategies outperform the currently used pairwise methods, and found that users prefer ranking most. Our experiments further show that utilising monotonicity information in GPs by using a linear prior mean at the start and virtual comparisons to the nadir and ideal points, increases performance. We demonstrate our decision support framework in a real-world study on traffic regulation, conducted with the city of Amsterdam.Comment: AAMAS 2018, Source code at https://github.com/lmzintgraf/gp_pref_elici

    DAMEWARE - Data Mining & Exploration Web Application Resource

    Get PDF
    Astronomy is undergoing through a methodological revolution triggered by an unprecedented wealth of complex and accurate data. DAMEWARE (DAta Mining & Exploration Web Application and REsource) is a general purpose, Web-based, Virtual Observatory compliant, distributed data mining framework specialized in massive data sets exploration with machine learning methods. We present the DAMEWARE (DAta Mining & Exploration Web Application REsource) which allows the scientific community to perform data mining and exploratory experiments on massive data sets, by using a simple web browser. DAMEWARE offers several tools which can be seen as working environments where to choose data analysis functionalities such as clustering, classification, regression, feature extraction etc., together with models and algorithms.Comment: User Manual of the DAMEWARE Web Application, 51 page

    Multimodal Hierarchical Dirichlet Process-based Active Perception

    Full text link
    In this paper, we propose an active perception method for recognizing object categories based on the multimodal hierarchical Dirichlet process (MHDP). The MHDP enables a robot to form object categories using multimodal information, e.g., visual, auditory, and haptic information, which can be observed by performing actions on an object. However, performing many actions on a target object requires a long time. In a real-time scenario, i.e., when the time is limited, the robot has to determine the set of actions that is most effective for recognizing a target object. We propose an MHDP-based active perception method that uses the information gain (IG) maximization criterion and lazy greedy algorithm. We show that the IG maximization criterion is optimal in the sense that the criterion is equivalent to a minimization of the expected Kullback--Leibler divergence between a final recognition state and the recognition state after the next set of actions. However, a straightforward calculation of IG is practically impossible. Therefore, we derive an efficient Monte Carlo approximation method for IG by making use of a property of the MHDP. We also show that the IG has submodular and non-decreasing properties as a set function because of the structure of the graphical model of the MHDP. Therefore, the IG maximization problem is reduced to a submodular maximization problem. This means that greedy and lazy greedy algorithms are effective and have a theoretical justification for their performance. We conducted an experiment using an upper-torso humanoid robot and a second one using synthetic data. The experimental results show that the method enables the robot to select a set of actions that allow it to recognize target objects quickly and accurately. The results support our theoretical outcomes.Comment: submitte

    Bag-Level Aggregation for Multiple Instance Active Learning in Instance Classification Problems

    Full text link
    A growing number of applications, e.g. video surveillance and medical image analysis, require training recognition systems from large amounts of weakly annotated data while some targeted interactions with a domain expert are allowed to improve the training process. In such cases, active learning (AL) can reduce labeling costs for training a classifier by querying the expert to provide the labels of most informative instances. This paper focuses on AL methods for instance classification problems in multiple instance learning (MIL), where data is arranged into sets, called bags, that are weakly labeled. Most AL methods focus on single instance learning problems. These methods are not suitable for MIL problems because they cannot account for the bag structure of data. In this paper, new methods for bag-level aggregation of instance informativeness are proposed for multiple instance active learning (MIAL). The \textit{aggregated informativeness} method identifies the most informative instances based on classifier uncertainty, and queries bags incorporating the most information. The other proposed method, called \textit{cluster-based aggregative sampling}, clusters data hierarchically in the instance space. The informativeness of instances is assessed by considering bag labels, inferred instance labels, and the proportion of labels that remain to be discovered in clusters. Both proposed methods significantly outperform reference methods in extensive experiments using benchmark data from several application domains. Results indicate that using an appropriate strategy to address MIAL problems yields a significant reduction in the number of queries needed to achieve the same level of performance as single instance AL methods
    corecore