283 research outputs found

    Self-Evolving Integrated Vertical Heterogeneous Networks

    Full text link
    6G and beyond networks tend towards fully intelligent and adaptive design in order to provide better operational agility in maintaining universal wireless access and supporting a wide range of services and use cases while dealing with network complexity efficiently. Such enhanced network agility will require developing a self-evolving capability in designing both the network architecture and resource management to intelligently utilize resources, reduce operational costs, and achieve the coveted quality of service (QoS). To enable this capability, the necessity of considering an integrated vertical heterogeneous network (VHetNet) architecture appears to be inevitable due to its high inherent agility. Moreover, employing an intelligent framework is another crucial requirement for self-evolving networks to deal with real-time network optimization problems. Hence, in this work, to provide a better insight on network architecture design in support of self-evolving networks, we highlight the merits of integrated VHetNet architecture while proposing an intelligent framework for self-evolving integrated vertical heterogeneous networks (SEI-VHetNets). The impact of the challenges associated with SEI-VHetNet architecture, on network management is also studied considering a generalized network model. Furthermore, the current literature on network management of integrated VHetNets along with the recent advancements in artificial intelligence (AI)/machine learning (ML) solutions are discussed. Accordingly, the core challenges of integrating AI/ML in SEI-VHetNets are identified. Finally, the potential future research directions for advancing the autonomous and self-evolving capabilities of SEI-VHetNets are discussed.Comment: 25 pages, 5 figures, 2 table

    Swarm of UAVs for Network Management in 6G: A Technical Review

    Full text link
    Fifth-generation (5G) cellular networks have led to the implementation of beyond 5G (B5G) networks, which are capable of incorporating autonomous services to swarm of unmanned aerial vehicles (UAVs). They provide capacity expansion strategies to address massive connectivity issues and guarantee ultra-high throughput and low latency, especially in extreme or emergency situations where network density, bandwidth, and traffic patterns fluctuate. On the one hand, 6G technology integrates AI/ML, IoT, and blockchain to establish ultra-reliable, intelligent, secure, and ubiquitous UAV networks. 6G networks, on the other hand, rely on new enabling technologies such as air interface and transmission technologies, as well as a unique network design, posing new challenges for the swarm of UAVs. Keeping these challenges in mind, this article focuses on the security and privacy, intelligence, and energy-efficiency issues faced by swarms of UAVs operating in 6G mobile networks. In this state-of-the-art review, we integrated blockchain and AI/ML with UAV networks utilizing the 6G ecosystem. The key findings are then presented, and potential research challenges are identified. We conclude the review by shedding light on future research in this emerging field of research.Comment: 19,

    The Cloud-to-Thing Continuum

    Get PDF
    The Internet of Things offers massive societal and economic opportunities while at the same time significant challenges, not least the delivery and management of the technical infrastructure underpinning it, the deluge of data generated from it, ensuring privacy and security, and capturing value from it. This Open Access Pivot explores these challenges, presenting the state of the art and future directions for research but also frameworks for making sense of this complex area. This book provides a variety of perspectives on how technology innovations such as fog, edge and dew computing, 5G networks, and distributed intelligence are making us rethink conventional cloud computing to support the Internet of Things. Much of this book focuses on technical aspects of the Internet of Things, however, clear methodologies for mapping the business value of the Internet of Things are still missing. We provide a value mapping framework for the Internet of Things to address this gap. While there is much hype about the Internet of Things, we have yet to reach the tipping point. As such, this book provides a timely entrée for higher education educators, researchers and students, industry and policy makers on the technologies that promise to reshape how society interacts and operates

    Internet of Drones (IoD): Threats, Vulnerability, and Security Perspectives

    Full text link
    The development of the Internet of Drones (IoD) becomes vital because of a proliferation of drone-based civilian or military applications. The IoD based technological revolution upgrades the current Internet environment into a more pervasive and ubiquitous world. IoD is capable of enhancing the state-of-the-art for drones while leveraging services from the existing cellular networks. Irrespective to a vast domain and range of applications, IoD is vulnerable to malicious attacks over open-air radio space. Due to increasing threats and attacks, there has been a lot of attention on deploying security measures for IoD networks. In this paper, critical threats and vulnerabilities of IoD are presented. Moreover, taxonomy is created to classify attacks based on the threats and vulnerabilities associated with the networking of drone and their incorporation in the existing cellular setups. In addition, this article summarizes the challenges and research directions to be followed for the security of IoD.Comment: 13 pages, 3 Figures, 1 Table, The 3rd International Symposium on Mobile Internet Security (MobiSec'18), Auguest 29-September 1, 2018, Cebu, Philippines, Article No. 37, pp. 1-1

    A survey of multi-access edge computing in 5G and beyond : fundamentals, technology integration, and state-of-the-art

    Get PDF
    Driven by the emergence of new compute-intensive applications and the vision of the Internet of Things (IoT), it is foreseen that the emerging 5G network will face an unprecedented increase in traffic volume and computation demands. However, end users mostly have limited storage capacities and finite processing capabilities, thus how to run compute-intensive applications on resource-constrained users has recently become a natural concern. Mobile edge computing (MEC), a key technology in the emerging fifth generation (5G) network, can optimize mobile resources by hosting compute-intensive applications, process large data before sending to the cloud, provide the cloud-computing capabilities within the radio access network (RAN) in close proximity to mobile users, and offer context-aware services with the help of RAN information. Therefore, MEC enables a wide variety of applications, where the real-time response is strictly required, e.g., driverless vehicles, augmented reality, robotics, and immerse media. Indeed, the paradigm shift from 4G to 5G could become a reality with the advent of new technological concepts. The successful realization of MEC in the 5G network is still in its infancy and demands for constant efforts from both academic and industry communities. In this survey, we first provide a holistic overview of MEC technology and its potential use cases and applications. Then, we outline up-to-date researches on the integration of MEC with the new technologies that will be deployed in 5G and beyond. We also summarize testbeds and experimental evaluations, and open source activities, for edge computing. We further summarize lessons learned from state-of-the-art research works as well as discuss challenges and potential future directions for MEC research

    Resource Allocation in Next Generation Mobile Networks

    Get PDF
    The increasing heterogeneity of the mobile network infrastructure together with the explosively growing demand for bandwidth-hungry services with diverse quality of service (QoS) requirements leads to a degradation in the performance of traditional networks. To address this issue in next-generation mobile networks (NGMN), various technologies such as software-defined networking (SDN), network function virtualization (NFV), mobile edge/cloud computing (MEC/MCC), non-terrestrial networks (NTN), and edge ML are essential. Towards this direction, an optimal allocation and management of heterogeneous network resources to achieve the required low latency, energy efficiency, high reliability, enhanced coverage and connectivity, etc. is a key challenge to be solved urgently. In this dissertation, we address four critical and challenging resource allocation problems in NGMN and propose efficient solutions to tackle them. In the first part, we address the network slice resource provisioning problem in NGMN for delivering a wide range of services promised by 5G systems and beyond, including enhanced mobile broadband (eMBB), ultra-reliable and low latency (URLLC), and massive machine-type communication (mMTC). Network slicing is one of the major solutions needed to meet the differentiated service requirements of NGMN, under one common network infrastructure. Towards robust mobile network slicing, we propose a novel approach for the end-to-end (E2E) resource allocation in a realistic scenario with uncertainty in slices' demands using stochastic programming. The effectiveness of our proposed methodology is validated through simulations. Despite the significant benefits that network slicing has demonstrated to bring to the management and performance of NGMN, the real-time response required by many emerging delay-sensitive applications, such as autonomous driving, remote health, and smart manufacturing, necessitates the integration of multi-access edge computing (MEC) into network sliding for 5G networks and beyond. To this end, we discuss a novel collaborative cloud-edge-local computation offloading scheme in the next two parts of this dissertation. The first part studies the problem from the perspective of the infrastructure provider and shows the effectiveness of the proposed approach in addressing the rising number of latency-sensitive services and improving energy efficiency which has become a primary concern in NGMN. Moreover, taking into account the perspective of application (higher layer), we propose a novel framework for the optimal reservation of resources by applications, resulting in significant resource savings and reduced cost. The proposed method utilizes application-specific resource coupling relationships modeled using linear regression analysis. We further improve this approach by using Reinforcement Learning to automatically derive resource coupling functions in dynamic environments. Enhanced connectivity and coverage are other key objectives of NGMN. In this regard, unmanned aerial vehicles (UAVs) have been extensively utilized to provide wireless connectivity in rural and under-developed areas, enhance network capacity, and provide support for peaks or unexpected surges in user demand. The popularity of UAVs in such scenarios is mainly owing to their fast deployment, cost-efficiency, and superior communication performance resulting from line-of-sight (LoS)-dominated wireless channels. In the fifth part of this dissertation, we formulate the problem of aerial platform resource allocation and traffic routing in multi-UAV relaying systems wherein UAVs are deployed as flying base stations. Our proposed solution is shown to improve the supported traffic with minimum deployment cost. Moreover, the new breed of intelligent devices and applications such as UAVs, AR/VR, remote health, autonomous vehicles, etc. requires a novel paradigm shift from traditional cloud-based learning to a distributed, low-latency, and reliable ML at the network edge. To this end, Federated Learning (FL) has been proposed as a new learning scheme that enables devices to collaboratively learn a shared model while keeping the training data locally. However, the performance of FL is significantly affected by various security threats such as data and model poisoning attacks. Towards reliable edge learning, in the last part of this dissertation, we propose trust as a metric to measure the trustworthiness of the FL agents and thereby enhance the reliability of FL

    Facilitating Internet of Things on the Edge

    Get PDF
    The evolution of electronics and wireless technologies has entered a new era, the Internet of Things (IoT). Presently, IoT technologies influence the global market, bringing benefits in many areas, including healthcare, manufacturing, transportation, and entertainment. Modern IoT devices serve as a thin client with data processing performed in a remote computing node, such as a cloud server or a mobile edge compute unit. These computing units own significant resources that allow prompt data processing. The user experience for such an approach relies drastically on the availability and quality of the internet connection. In this case, if the internet connection is unavailable, the resulting operations of IoT applications can be completely disrupted. It is worth noting that emerging IoT applications are even more throughput demanding and latency-sensitive which makes communication networks a practical bottleneck for the service provisioning. This thesis aims to eliminate the limitations of wireless access, via the improvement of connectivity and throughput between the devices on the edge, as well as their network identification, which is fundamentally important for IoT service management. The introduction begins with a discussion on the emerging IoT applications and their demands. Subsequent chapters introduce scenarios of interest, describe the proposed solutions and provide selected performance evaluation results. Specifically, we start with research on the use of degraded memory chips for network identification of IoT devices as an alternative to conventional methods, such as IMEI; these methods are not vulnerable to tampering and cloning. Further, we introduce our contributions for improving connectivity and throughput among IoT devices on the edge in a case where the mobile network infrastructure is limited or totally unavailable. Finally, we conclude the introduction with a summary of the results achieved
    • …
    corecore