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The increasing heterogeneity of the mobile network infrastructure together with the explosively

growing demand for bandwidth-hungry services with diverse quality of service (QoS) requirements

leads to a degradation in the performance of traditional networks. To address this issue in next-

generation mobile networks (NGMN), various technologies such as software-defined networking

(SDN), network function virtualization (NFV), mobile edge/cloud computing (MEC/MCC), non-

terrestrial networks (NTN), and edge ML are essential. Towards this direction, an optimal

allocation and management of heterogeneous network resources to achieve the required low

latency, energy efficiency, high reliability, enhanced coverage and connectivity, etc. is a key

challenge to be solved urgently. In this dissertation, we address four critical and challenging

resource allocation problems in NGMN and propose efficient solutions to tackle them.

In the first part, we address the network slice resource provisioning problem in NGMN for

delivering a wide range of services promised by 5G systems and beyond, including enhanced

mobile broadband (eMBB), ultra-reliable and low latency (URLLC), and massive machine-type



communication (mMTC). Network slicing is one of the major solutions needed to meet the

differentiated service requirements of NGMN, under one common network infrastructure. Towards

robust mobile network slicing, we propose a novel approach for the end-to-end (E2E) resource

allocation in a realistic scenario with uncertainty in slices’ demands using stochastic programming.

The effectiveness of our proposed methodology is validated through simulations.

Despite the significant benefits that network slicing has demonstrated to bring to the management

and performance of NGMN, the real-time response required by many emerging delay-sensitive

applications, such as autonomous driving, remote health, and smart manufacturing, necessitates

the integration of multi-access edge computing (MEC) into network sliding for 5G networks and

beyond. To this end, we discuss a novel collaborative cloud-edge-local computation offloading

scheme in the next two parts of this dissertation. The first part studies the problem from the

perspective of the infrastructure provider and shows the effectiveness of the proposed approach

in addressing the rising number of latency-sensitive services and improving energy efficiency

which has become a primary concern in NGMN. Moreover, taking into account the perspective of

application (higher layer), we propose a novel framework for the optimal reservation of resources

by applications, resulting in significant resource savings and reduced cost. The proposed method

utilizes application-specific resource coupling relationships modeled using linear regression analysis.

We further improve this approach by using Reinforcement Learning to automatically derive

resource coupling functions in dynamic environments.

Enhanced connectivity and coverage are other key objectives of NGMN. In this regard,

unmanned aerial vehicles (UAVs) have been extensively utilized to provide wireless connectivity

in rural and under-developed areas, enhance network capacity, and provide support for peaks or

unexpected surges in user demand. The popularity of UAVs in such scenarios is mainly owing



to their fast deployment, cost-efficiency, and superior communication performance resulting

from line-of-sight (LoS)-dominated wireless channels. In the fifth part of this dissertation, we

formulate the problem of aerial platform resource allocation and traffic routing in multi-UAV

relaying systems wherein UAVs are deployed as flying base stations. Our proposed solution is

shown to improve the supported traffic with minimum deployment cost.

Moreover, the new breed of intelligent devices and applications such as UAVs, AR/VR,

remote health, autonomous vehicles, etc. requires a novel paradigm shift from traditional cloud-

based learning to a distributed, low-latency, and reliable ML at the network edge. To this end,

Federated Learning (FL) has been proposed as a new learning scheme that enables devices to

collaboratively learn a shared model while keeping the training data locally. However, the

performance of FL is significantly affected by various security threats such as data and model

poisoning attacks. Towards reliable edge learning, in the last part of this dissertation, we propose

trust as a metric to measure the trustworthiness of the FL agents and thereby enhance the reliability

of FL.
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Chapter 1: Introduction

As mobile networks became heterogeneous, dynamic, and capable of organizing themselves,

efficient and effective management of network resources to achieve a high quality of service

(QoS) requires keeping track of and optimizing a far larger number of network elements and the

interactions between them. The 5G main service classes of enhanced mobile broadband (eMBB),

ultra-reliable and low-latency (uRLLC), and massive machine-type communication (mMTC),

demand very diverse and sometimes extreme requirements. Moreover, with the advent of new

services such as extended reality (XR), holographic communications, eHealth, etc., it is expected

that the next-generation mobile networks (NGMN) will be ultra-large-scale, highly dynamic, and

extremely heterogeneous. As a result, the resource management and optimization in NGMN

will become even more challenging calling for advancements in different domains. To this end,

various technologies such as software-defined networking (SDN), network function virtualization

(NFV), mobile edge/cloud computing (MEC/MCC), non-terrestrial networks (NTN), and edge

machine learning (ML) are arising as enablers for 5G networks and beyond. Thanks to the

flexibility that NFV brings to network resource management and the relatively very short reconfiguration

time of software-defined networks, network slicing offers a dynamic and on-demand infrastructure

resource provisioning that can support several virtual and isolated networks on top of shared

physical infrastructure. However, a challenging practical issue in network slicing is the uncertainties

1



in demands for resources required by different services. In this dissertation, we propose a novel

approach to handling the E2E network slicing problem under demand uncertainty using two-

stage stochastic programming. A two-timescale resource provisioning algorithm is developed to

allocate RAN and core network resources based on the dynamics in each of these domains.

Moreover, the explosion of intelligent and latency-sensitive applications such as AR/VR,

remote health, and autonomous driving, has resulted in a paradigm shift from mobile cloud

computing (MCC) to mobile edge computing (MEC) which enables the deployment and execution

of distributed computing capabilities at the network edge. In such a heterogeneous infrastructure,

compute and network resources realized through network slices are available at different tiers,

making the problem of service design and optimization very challenging. The problem becomes

even more challenging considering the recent advancements in the service orchestration framework

from monolithic application architecture to microservices architecture. A microservices-based

application encompasses multiple independent modules (components/functions) with arbitrary

interconnections, usually modeled as a graph. Each module requires different resources such as

computing and storage, and the overall performance of the application relies on the allocated

resources to all the application components. Thus, the resource management of multi-component

applications in NGMN is a very challenging problem. This problem can be viewed from the

perspective of InP or application developers, each with specific decision scope and objective.

Taking into account the perspective of InP, we propose a collaborative cloud-edge-local computation

offloading system for multi-component applications realized through microservices architecture.

The proposed scheme is capable of reducing the delay and energy cost while satisfying infrastructure

capacity and hard energy constraints and effectively accommodates both computationally intensive

and latency-sensitive mobile applications. Moreover, from the perspective of application (higher

2



layer), we propose two novel frameworks based on mathematical optimization and reinforcement

learning (RL) for the optimal reservation of resources by applications in a dynamic environment

resulting in significant resource savings and reduced costs for service providers. In this solution,

we introduce a novel concept of resource coupling, which captures the relationships between the

usage of different pairs of resources and their impact on application performance. The introduced

coupling functions are exploited in the resource reservation of applications requested to the InPs

and delivered via network slices.

Furthermore, the NGMN is envisioned to support 3D network coverage due to integrating

terrestrial and non-terrestrial technologies (e.g., UAV-assisted and satellite communications).

The opportunity to realize UAV-mounted flying BSs that can relocate themselves in an on-

demand manner to boost coverage, connectivity, and spectral efficiency has been extensively

explored in recent years. Aerial Platforms (APs) can be deployed to provide wireless connectivity

in rural and under-developed areas, enhance network capacity and provide support for peaks

or unexpected surges in user demand. Considering that the UAVs potentially form a multi-

hop aerial network, capacity and connectivity constraints have significant impacts on the end-

to-end network performance. To this end, the problem of UAV placement, relocation, and

traffic routing in a UAV-assisted mobile network is explored in this dissertation. Similar to the

terrestrial network, APs can benefit from SDN/NFV and more specifically, the network slicing

characteristic of 5G and 6G networks by enabling virtually isolated on-board processing systems

on UAVs, HAPs, and satellites, making an extension of 5G/6G network slices to remote areas

possible.

On the other hand, the new breed of intelligent devices and high-stake applications such

as drones, and AR/VR, autonomous systems require a novel paradigm change from cloud-based
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ML to distributed, low-latency, and reliable ML at the network edge (referred to as edge ML).

Federated learning (FL) is a new learning framework that enables edge devices to collaboratively

learn a shared prediction model while keeping all local training data on device, decoupling the

ability to do ML from the need to store the data in the cloud. The main advantages of FL

especially in edge computing environments are smarter models, lower latency, and less power

consumption, all while ensuring privacy. Moreover, in addition to providing an update to the

shared model, the improved model on edge devices can be used immediately, powering experiences

personalized by the way the users use their mobile equipment. However, the performance of FL

is significantly affected by various security threats such as data and model poisoning attacks.

Towards reliable edge ML, in the last part of this dissertation, we propose trust as a metric to

measure the trustworthiness of the FL agents and thereby enhance the security of FL.

1.1 Contributions and Organization of the Dissertation

This dissertation is organized into five chapters, covering different and interrelated resource

allocation problems in NGMN. Chapter 2 addresses the problem of mobile network slicing.

While the literature on the resource allocation problem of network slicing in the RAN and

core domains is rich, we consider the end-to-end mobile network slicing problem. Moreover, in

contrast to most of the existing works with the assumption of full knowledge about slice demands,

we assume a realistic scenario with demand uncertainty. Thus, we formulate the end-to-end

resource allocation problem for mobile network slicing with demand uncertainty. We propose a

novel robust two-timescale framework to provision resources over core and radio access networks

using two-stage stochastic programming. Our simulations show the effectiveness of the proposed
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methodology in supporting the observed real-time traffic demand in a robust manner.

In Chapter 3, we study the resource orchestration problem of next-generation cloud and

edge computing systems for the deployment of multi-component applications realized through

microservices architecture. Taking into account the perspective of the infrastructure providers

and considering generic applications with arbitrary structure and usage domain, we illustrate

for the first time that a collaborative cloud-edge-local computation offloading scheme for multi-

component applications results in a higher acceptance ratio with lower average energy and delay,

compared to the baseline solutions relying on edge-local or cloud-local offloading. Our solution

is based on solving a MILP and in order to deal with the time-complexity of the proposed scheme,

we employ a heuristic algorithm which is shown to perform in close proximity to the MILP-based

solution while being scalable.

In Chapter 4, the resource orchestration of multi-component applications is studied from

the viewpoint of application developers. We propose a novel optimization method for the resource

reservation problem of applications, above a network slice abstraction, that achieves significant

resource savings while maintaining application performance requirements. The proposed solution

incorporates a novel concept, namely resource coupling, that captures the relationship between

the usage of different resources (such as network and compute) and their impact on the application

performance. While we present the practical results of the proposed methodology for real-

life application examples of intelligent transportation systems and watchlist applications, our

framework is generic and could be applied to any application deployed in a microservices architecture.

Compared to the existing solutions which ignore the resource couplings, our method saves significant

network and computation as the infrastructure condition changes. In a further step, we extend our

solution to an online setup in a dynamic environment ( changing video scenes for video analytics
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applications) by using RL. We show that the RL-based solution is capable of automatically

deriving the nonlinear resource couplings and environmental conditions, and by doing so, it

outperforms our first method.

In Chapter 5, we study the design and resource allocation problem of multi-UAV relaying

systems in NGMN. In contrast to many existing frameworks for aerial platforms which consider

only a single-hop or a two-hop aerial communication, we allow multi-hop aerial paths to carry

the ground traffic. Moreover, we consider the end-to-end traffic guarantee by imposing capacity

and routing constraints in our formulation while most of the existing solutions study the UAV

placement problem with connectivity constraints/objectives and ignore the end-to-end traffic

delivery. We propose a joint UAV placement and traffic routing solution that deploys the minimum

number of UAVs as flying base stations to satisfy the traffic demand of a ground mobile network.

We demonstrate that the proposed solution improves the average supported traffic compared to

the state-of-the-art.

In Chapter 6, we address the problem of reliable edge learning in NGMN. Focusing on

the FL framework as a key enabler for intelligent edge networks, we propose a trust-aware

decentralized FL scheme wherein trust is used as a metric to measure the reliability of model

updates shared by an agent in the FL training process. Our proposed solution is shown to

effectively capture the malicious behavior of agents attacking the learning model through model

poisoning attacks.

In Chapter 7, we conclude the dissertation and discuss future directions
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Chapter 2: Resource Allocation for Mobile Network Slicing

2.1 Overview

Network softwarization based on network function virtualization (NFV) and software-

defined networking (SDN) is promised to realize programmable control and agile management of

network resources in NGMN [2]. While NFV enables the virtualization and segmentation of the

underlying physical infrastructure devices, SDN introduces a novel way of controlling the routing

of data packets through a logically centralized controller and by decoupling the network data and

control planes. This new paradigm differs from that of traditional networks which use proprietary

hardware devices for different network functions (e.g. routers and switches). Building on SDN

and NFV, network slicing enables the segmentation of the physical infrastructure into a number of

logically isolated sub-networks resulting in significant network management and equipment cost

reductions [3]. One of the key applications of network slicing is the realization of the promised

use cases by the fifth generation (5G) of mobile networks as shown in Fig. 2.1. To support a wide

range of services in the categories of enhanced mobile broadband (eMBB), ultra-reliable and low

latency (uRLLC) and massive machine-type communication (mMTC) in 5G networks, dedicated

resources must be provisioned for each service in a dynamic and efficient way. In the paradigm of

5G mobile systems enhanced by network slicing, mobile network operators (MNOs) manage and

set up network slices and provide service providers (SPs) with customized and scalable network
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Figure 2.1: Envisioned 5G Use Cases Realized Through Network Slicing

slices [4]. The SPs, namely tenants, dedicate network slices to the customers of different services

with specific QoS requirements in a sustainable way. A network slice spans across different parts

of the network such as radio access network (RAN), core network (CN), and transport network

(TN), forming an end-to-end (E2E) sub-network. 3GPP has put efforts into incorporating network

slicing in the specification of both RAN and CN domains [5]. In 5G, RAN slicing introduces the

capability of sharing physical network infrastructure among mobile virtual network operators

(VMNOs). This is in contrast to the traditional static allocation of resources such as frequency

and power by reserving them on the fly with network slicing based on the user demand and radio

channel variations [6].

A network slice corresponding to a sub-network consists of service function chains (SFCs),

each including multiple virtual network functions (VNFs) with interconnections between them. A

VNF is a service running usually in a virtual machine (VM) on a common virtualization platform.

Examples of VNFs include virtualized routers, firewalls, and network address translation (NAT)

8



Figure 2.2: An Example of a Network Slice

services. Fig.2.2 depicts an example of a 5G network slice SFC. It includes 5G core (5GC)

functions such as session management function (SMF), access and mobility function (AMF),

and user plane function (UPF). Design and optimization of E2E network slices requires resource

provisioning across heterogeneous physical and virtual network infrastructure, each with specific

technical constraints. Moreover, with the proliferation of advanced and diverse digital services

such as hologram video streaming and multisensory extended reality, the sixth-generation (6G)

mobile system is envisioned to realize massive and extremely heterogeneous network slicing,

where tenancy would be extended further to the end user [7]. In such architectures with slicing-

aware user equipment (UE), new challenges are introduced. For instance, UE mobility should be

considered by the SPs as part of slice setup and management [8]. In Fig. 2.3, the deployment of

5G network slices a shared infrastructure is shown. Each VNF is placed on an infrastructure node

and interconnections between VNFs representing data communication requirements are mapped

to substrate paths (single or multi-hop paths). Moreover, the RAN domain is enhanced by cloud-

RAN (C-RAN) architecture [9] which is a promising solution to reach the ambitious capacity

and energy efficiency goals of next-generation RAN (NG-RAN) systems. In C-RAN, the RAN

is decomposed into two parts: the distributed remote radio heads (RRHs) and the centralized
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Figure 2.3: End-to-end Resource Provisioning of Network Slices

baseband units (BBUs) pool. RRHs provide basic radio functionalities (encompassing lower-

level network functionalities such as RF and low PHY) and cover UE over a large area. On

the other hand, BBUs manage the network resources cooperatively and handle the required

signal processing (corresponding to higher-level functionalities such as high PHY, MAC, RLC,

PDCP, RRC, and SDAP). Further improvements are proposed in stand-alone 5G systems by

breaking BBUs into centralized unit (CU) (which includes high PHY, MAC, and RLC) and

distributed unit (DU) (that handles PDCP, RRC, and SDAP RAN protocol layers). The BBU

pool performs dynamic resource allocation according to the real-time demands based on the

virtualized resources in cloud computing.

Although network slicing enhances the service agility, assurance, and security in NGMN,

dynamic and efficient network slice orchestration and optimization face critical challenges. One

of the most challenging issues is uncertainties in the demand for different services supported

through network slices. Today, resource provisioning for network slices is typically done in a

best-effort manner [10]. However, there is no guarantee that resources allocated to different
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slices will be sufficient to support a fluctuating number of users with varying demands. Elasticity

which refers to the availability of resources in an adaptive way according to user demands plays

a critical role in avoiding resource under-utilization or over-utilization [11]. The slice demand

variations as well as the dynamics in resource availability may degrade the slice QoS compared

to the service level agreement (SLA) promised by the SPs [12].

The main focus of this chapter is the E2E network slice resource provisioning taking into

account demand uncertainties. We assume that the forecasted traffic patterns are given from

existing prediction solutions such as [13], and propose a novel resource provisioning method for

E2E network slicing using stochastic programming. Stochastic programming [14] is a powerful

tool to address optimization under uncertainties. We aim at formulating the joint resource allocation

in the domain of NG-RAN and mobile packet core (5GC) in a dynamic environment and then

adjusting the RAN slice resource allocation as needed. Indeed, the proposed adaptive RAN

slicing is triggered more frequently (shorter life cycle) compared to the 5GC segment, due to the

existence of more dynamic factors in the wireless network, such as user mobility and channel

condition changes. In accordance with this adaptation requirement, we propose a two-timescale

approach for the E2E network slicing resource provisioning. The objective of the proposed

formulation is to minimize the total provisioning cost, while satisfying capacity constraints and

distinct QoS requirements of network slices.

The rest of this chapter is organized as follows. In section 2.2, we present the literature

review. Section 2.3 provides an overview of stochastic programming which builds the necessary

mathematical background for the rest of the chapter. Section 2.4 describes system model and

problem formulation. The proposed solution is presented in Section 2.5. Numerical results are

provided in Section 2.6. We highlight the conclusions and future directions in Section 2.7.
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2.2 Related Work

In order to realize network slicing in NGMN, infrastructure providers need to perform

efficient resource management to meet the QoS and QoE requested by different slices. To this

end, various resource management mechanisms have been investigated in the literature, including

(i) admission control, (ii) resource allocation, (iii) resource scheduling, and (iv) resource orchestration

[15]. In the first and second problems which are the main focus of this chapter, the decision

on whether a requested network slice is accepted or rejected according to various predefined

policies and assigning resources to the admitted requests are addressed. Authors in [16] focus on

developing an admission control scheme for effective allocation of network resources for sliced

5G network considering inter-slice and intra-slice priorities, to improve QoE, enhance resource

utilization efficiency and improve the UEs’ throughput. In [17], the E2E resource orchestration

problem of 5G networks is addressed. In [18], the resource allocation problem in 5G networks

leveraging both network slicing and MEC is studied. However, all of the above works assume

that the demand for different slices is known in advance and optimize the resource allocation or

admission control problem given this unrealistic assumption. In practice, however, the task of

accurately estimating future traffic behavior is challenging due to the dynamic nature of NGMN

services [19]. Authors in [20] propose an energy-efficient solution for the joint online admission

control and resource allocation problem using Γ-Robustness concept to consider the uncertainties

in computation and communication demands. The main drawback of this method is that they

only consider the core network slicing problem and ignore the correlation between demand for

different slices. Similarly, a robust model in proposed in [21] for the network slice design problem

under demand uncertainty. In this work, the authors consider both uncorrelated and correlated
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traffic case which resembles the spatial demand correlations, but they only study the core network

design problem. Moreover, they do not consider delay constraints and the differentiation between

different slices based on delay requirements. In this chapter, we study the resource allocation

problem of E2E mobile network slicing with demand uncertainties and consider both traffic and

delay as QoS requirements.

2.3 Background: Stochastic Programming

In this section, we provide an overview of stochastic programming based on [14]. Stochastic

linear programs (SLP) are linear programs (with continuous decision variables) in which some

problem data are considered to be uncertain. The data with uncertainty can be represented as

random variables, with accurate probabilistic description given as probability measures. Since the

value of the random variables are known only after the random experiment, the set of optimization

decision variables in SLP is divided into two groups: (i) first-stage decision variables, and (ii)

second-stage decision variables. While the first-stage variables are determined before the random

experiment, the second-stage decisions are taken after the random experiment becomes known.

Let x ∈ Rn1×1 and ξ = ξ(ω) denote the vector of first-stage optimization variables and data

random variables respectively with ω ∈ Ω representing a random event. The vector of second-

stage decision variables is denoted by y(ω,x). We assume that the probability distribution F on

Ω is known in the first stage. The classical two-stage SLP with fixed recourse is formulated as
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follows:

minimize cTx+ EF [min q(ω)Ty(ω,x)] (2.1)

s.t. Ax = b (2.2)

T (ω)x+Wy(ω,x) = h(ω) (2.3)

x,y(ω,x) ≥ 0. (2.4)

where c ∈ Rn1 , b ∈ Rm1×1, A ∈ Rm1×n1 . When the random event ω is realized T (ω) ∈

Rm2×n2 ,h(ω) ∈ Rm2×1, q(ω) ∈ Rn2×1 become known. In particular ξ(ω) = (q(ω),h(ω), T1(ω), . . . , Tm2(ω))

represents the random data vector where T1(ω), . . . , Tm2(ω) are the rows of T (ω). The objective

function (2.1) contains a deterministic term cTx and the expectation of the term q(ω)Ty(ω,x)

over all realizations of the random event ω. For a given ω, let Q(x, ξ(ω)) denote the value of the

second-stage problem, defined as:

Q(x, ξ(ω)) = miny≥0{q(ω)Ty|Wy = h(ω)− T (ω)x} (2.5)

Moreover, the second-stage expected value function is defined as:

Q(x) = EF [Q(x, ξ(ω))] (2.6)
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Then, the deterministic equivalent program (DEP) corresponding to (2.1)-(2.4) is defined as:

min cTx+Q(x) (2.7)

s.t. Ax = b (2.8)

x ≥ 0 (2.9)

The DEP formulation illustrates the major difference between deterministic linear programs and

a SLP and its difficulty. Given Q(x), a SLP is an ordinary nonlinear program. However, the

computation ofQ(x) requires the evaluation of Q(x, ξ(ω)) for all x and ω which is not possible

in practice. The problem becomes more challenging considering integer first-stage or second-

stage variables, i.e. x ∈ Zn1
+ , y ∈ Zn2

+ . In the next section, we present our system model for

the problem of network slicing with demand uncertainties followed by our formulation based on

two-stage stochastic mixed-integer programming.

2.4 System Model and Problem Formulation

We consider the resource provisioning problem of mobile network slicing across both RAN

and core components. In this section, the network and slice models are presented followed by

problem formulation.

2.4.1 Infrastructure Network Model

The infrastructure (a.k.a. substrate network) encompasses next-generation nodeBs (gNBs)

supporting 5G NR and core nodes implementing 5GC components. In a mobile network empowered
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by NFV and SDN, the substrate nodes are general purpose servers that host different VNFs. Fig

2.3 illustrates such an infrastructure. Let G = (V,E) denote the substrate network graph, where

V is the set of substrate nodes and E denotes the set of infrastructure links. The set of gNB and

non-gNB nodes are denoted by VgNB and V−gNB, respectively, and V = VgNB ∪ V−gNB. Each

gNB is characterized by its maximum supported traffic which is computed based on its available

bandwidth (physical resource blocks or PRBs) and MIMO antenna configuration. Non-gNBs are

general-purpose servers providing essential capabilities for running core VNFs. A substrate node

is characterized by its available CPU, storage, and RAM resources. We define the set of resources

as T = {CPU, STO,RAM}, and the vector Wj = (WCPU
j ,W STO

j ,WRAM
j ) representing the

capacity of the substrate node j ∈ V . These amounts correspond to the initial capacity of the

node reduced by the amount allocated to previously accepted concurrent requests. Moreover, the

cost of each infrastructure node j being used by a VNF consists of two parts: (i) a fixed part Cj

paid for each VNF deployed on node j, (ii) a variable part associated with the per-unit usage of

each resource which depends linearly on the amount of the resource consumed by a VNF. The

per-unit cost corresponding to CPU, storage and memory of node j are denoted by CCPU
j , CSTO

j

and CRAM
j .

We assume that the available spectrum of gNB j ∈ VgNB divided into a set of W r
j PRBs

can be allocated to different users of different slices [22]. Furthermore, the set of infrastructure

link E = EFH ∪ EBH where EFH and EBH stand for the links between gNB nodes and the

core network and the remaining link, respectively. Each substrate link e ∈ E has a bandwidth

capacity and propagation delay denoted by WBW
e and τPRO

e in respective order. Moreover, a

per-unit bandwidth cost is associated with the infrastructure link e denoted by CBW
e . In order to

meet the traffic transmission between two VNFs of a network slice, we consider a set of substrate
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paths denoted by P . Let P(i → j) denote the set of substrate path between i and j. Therefore,

P = ∪i,j∈V,i ̸=jP(i→ j).

We consider an environment in which UEs send their request for different services to SPs.

For the sake of simplicity, we assume that each UE requests at most one service. This can be

readily extended to the case with multiple requests per UE by using UE duplication. Each service

is realized through network slices managed by SPs. The SPs meet their customers requested

services by dedicating network slices with specified QoS requirements deployed on the substrate

network which is owned and managed by InPs. Let U denote the set of UEs distributed across

the considered geographical area. We assume that each UE is served by a gNB according to the

nearest association rule. In the nearest association rule, a UE is assigned to the gNB achiving the

maximum SNR.

2.4.2 Network Slice Model

In this section, we present the network slice model. We assume that a slice request is

modeled as one or multiple SFCs, each consisting of a number of VNFs (e.g. gNB , AFM,

UPF, SMF) and virtual links (VLs) between them. The set of network slices is represented by

K = {1, ..., K}. Let the undirected graph G′
k = (V ′

k , E
′
k) represent the kth slice SFC. Receiving

a number of slice/SFC requests, the InP embeds them to the substrate network and allocates

sufficient amount of different resources, while making sure that the requirements of the SFCs

are satisfied and the network resources are used in an efficient manner. Similar to the substrate

network, we assume that the nodes of slice k SFC consist of two types of nodes, gNB, and

non-gNB. Therefore, V ′
k = V ′

k,gNB ∪ V ′
k,−gNB where V ′

k,gNB and V ′
k,−gNB correspond to the set of
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gNBs and non-gNB functions of slice k. Moreover, E ′
k = E ′

k,FH∪E ′
k,BH where E ′

k,FH and E ′
k,BH

denote the fronthaul and backhaul VLs, respectively. We assume that each instance of the SFC

corresponding to slice k has QoS requirements expressed as network-level UE throughput and

maximum E2E tolerable latency. In order to guarantee the performance requirement of different

slices, we assume that the network-level performance metric of a slice is translated to cell-level

radio resource requirement [23]. Let Rk
j denote the average required number of PRBs for slice

k ∈ K users in the geographical region covered by gNB j ∈ VgNB. The value of Rk
j depends on

the overall cell load, mobility patterns, antenna design, channel condition, modulation and coding

scheme (MCS), and slice performance requirements. The details of such a translation mechanism

is out of the scope of this chapter and solutions such as [24], [25] are proposed for the translation

algorithm. In accordance with the slice management architecture of [26], the overall network

slice performance is decomposed into core and RAN domain requirements. Thus, Rk
j captures the

RAN throughput and delay performance requirements. Moreover, the value of Rk
j is dynamically

determined as the condition of different affecting parameters vary. Slice isolation is a critical

feature of network slicing which prevents any impact on the performance of a network slice as

the condition in other slices changes. To guarantee slice isolation, we use an SLA parameter R
k

defined as the maximum allowed number of PRBs for slice k ∈ K. We assume that the traffic

flow of each e′ ∈ E ′
k is routed through substrate paths (single or multi-hop). Therefore, we

represent the set of substrate paths considered for slice k edges by Pk, where Pk ⊆ P .

Let P ′
k denote the set all paths for slice k ∈ K. The P ′

k’s constituting paths are for either

CP or UP data flows. For instance, the path gNB-AMF-SMF of the network slice example shown

in Fig. 2.2 is a CP path while gNB-UPF is a UP path. Let P ′
k,UP and P ′

k,CP denote the set of

paths in G′
k which are composed of UP and CP functions. Thus P ′

k = P ′
k,UP ∪ P ′

k,CP . In terms
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of QoS requirements, each network slice is characterized by its maximum tolerable UP and CP

latencies denoted by dUP
k , dCP

k .

In order to guarantee the demands of all users requesting different network slices, multiple

instances of each slice may be needed to be deployed. Let Uk ⊆ U denote the set of UEs

requesting slice k ∈ K. We define uk,i
j to be equal to 1 if user i of slice k ( i ∈ Uk) is covered by

gNB j ∈ VgNB and 0 otherwise. Moreover, the parameter Ik indicates the number of instances

of slice k needed to be deployed in order to support the demand for slice k. In addition, each

VNF instance of the node j′ ∈ V ′
k requires CPU, storage, and RAM resources. The required

amount of these resources depends on the number of UEs and the resource sharing factor which

determines how much of the workload of a VNF can be shared among multiple UEs. Let the

vector Rj′ = (RCPU
j′ , RSTO

j′ , RRAM
j′ ) denote the required per-unit amount of CPU, STO and RAM

resources for VNF j′. Similarly, each VL e′ ∈ E ′
k is characterized by its per-unit bandwidth

requirement RBW
e′ to meet the demand for data transmission between the two end-points VNFs of

e′. In addition, the number of resources allocated to the VNFs and VLs of a network slice must

be dimensioned according to the traffic demand that is going through them [27]. We define χt
k to

be the scaling factor of resource ν (ν ∈ T for VNFs and ν = BW for VLs) for slice k which

depends on the slice load and sharing factor. Therefore, χν
k is proportional to uk,i

j and Ik.

During the resource provisioning phase of network slices, the true values of uk,i
j and Ik

are not known. However, given the historical data on the demand and mobility patterns of

UEs, the SP and InP are capable of forecasting the statistical characteristics of uk,i
v and Ik.

Let {Fk(x, y), k ∈ K} denote the spatial demand density function of network slices across the

considered geographical area. A key feature of the proposed resource provisioning approach

is that the demand distribution function can be very generic and different methods can be used
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Table 2.1: System Model Parameters

Network Parameters Description
G = (V,E) Substrate network graph
VgNB, V−gNB Set of substrate gNB and non-gNB nodes
EFH , EBH Set of fronthaul and backhaul links
Pk Set of substrate paths considered for slice k
W r

j Available spectrum of gNB j
Uk, Uk Set and number of users of slice k

WCPU,STO,RAM
j CPU, Storage and RAM capacities of the substrate node j

WBW
e BW capacity of the substrate link e

Slice Parameters Description
K, K Set and number of requested slices

G′
k = (V ′

k , E
′
k) The kth slice SFC graph

V ′
k,gNB, V

′
k,−gNB Set of virtual RAN and core VNFs

E ′
k,FH , E

′
k,BH Set of fronthaul and backhaul virtual links

P ′
k Set of slice k E2E paths

R
k

j Slice k maximum allowed radio resource in gNB j

Rk
j Slice k radio resource requirement in gNB j

RCPU,STO,RAM
j′ CPU, Storage and RAM resource requirements of the VNF j′

RBW
e′ BW requirement of the virtual link e′

dUP
k , dCP

k UP and CP latency requirement of slice k

to predict F functions. Moreover, the usage of spatial probability distributions can potentially

resemble a flash-crowd or a traffic surge where some spatial correlation exists between different

traffic demands for a network slice. There exist also different methods to obtain the density

functions. For instance, the prior art in [28], [29], [30], [31] have proposed different ML methods

such as GMM, Holt-Winters forecasting, neural networks, and maximum likelihood approach to

predict traffic demands that are utilized in different network resource management problems.

A summary of the used notations in this chapter is provided in Table 2.1.
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2.4.3 Problem Formulation

Given the substrate and slice graph models, we formulate the problem of E2E network

slicing under demand uncertainty as a two-stage SMIP. We define the following decision variables

for the problem formulation:

• A set of binary variables xk, where xk,j′

j is equal to 1 if the VNF j′ of the kth slice is placed

on the substrate node j.

• A set of binary variables yk, where yk,e′p is equal to 1 if the VL e′ of the kth slice is mapped

to substrate path p ∈ Pk.

• A set of continuous decision variables zk, where zkj represents the fraction of gNB j

spectrum allocated to slice k UEs.

It is important to note that the value of the vector z = (z11 , ..., z
1
|VgNB |, ..., z

K
1 , ..., zK|VgNB |) represents

the RAN slicing policy defined as the fraction of each cell available radio resource that is assigned

to each slice. For instance, in the case of having three network slices, the resulted RAN slice

allocation for a gNB can be 20%, 50%, and 30%. Once this spectrum assignment policy is

determined, the actual radio resource allocation in terms of the scheduled PRBs for the users

of each slice to fulfill the RAN performance requirement of the corresponding slice is obtained

from a separate problem that is out of the scope of this chapter. In this regard, different solutions

have been proposed in the literature. For instance, authors in [32] proposed a RAN resource

allocation solution given the spectrum assignment policy, with the objective of minimizing the

interference between different mobile virtual network operators.

We model the resource provisioning problem for the requested slices as a two-stage SMIP,
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described in the following sections. We refer to this method as stochastic network slicing resource

provisioning, i.e. SNSR.

2.4.3.1 First-Stage Problem

The first-stage objective in SNSR is the minimization of the total provisioning cost which

consists of node and link deployment costs for all slices. Let CNk and CLk denote the node and link

costs corresponding to slice k, respectively. Consequently, we have:

CNk (xk) =
∑
j∈V

∑
j′∈V ′

k

Ck
j x

k
j +

∑
j∈V

∑
j′∈V ′

k

∑
ν∈T

γνR
ν
j′C

ν
j x

k,j′

j (2.10)

CLk (yk) =
∑
p∈P

∑
e∈p

∑
e′∈E′

k

γBWRBW
e′ CBW

e yk,e
′

p (2.11)

where

xk
j =


1 if

∑
j′∈V ′

k
xk,j′

j ≥ 0

0 otherwise

(2.12)

Hence, the first-stage objective is:

C1(x,y) =
∑
k∈K

CNk (xk) +
∑
k∈K

CLk (yk) (2.13)

where γν , ν ∈ T ∪ {BW} are weight constants to balance between different objective terms of

(2.10) and (2.11). In a valid network slicing solution, each gNB VNF is placed at substrate gNB

nodes only and each non-gNB VNF runs on a substrate non-gNB node. Thus, the resulting VNFs
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deployment must satisfy the following constraints:

∑
j∈V−gNB

xk,j′

j = 1, ∀k ∈ K, j′ ∈ V ′
k,−gNB (2.14)

xk,j′

j = 0, ∀k ∈ K, j ∈ V−gNB, j
′ ∈ V ′

k,gNB (2.15)

The flow conservation constraints are guaranteed by equations (2.16) and (2.17).

∑
p∈Pk(i→j)
q∈Pk(j→i)

j∈V

yk,e
′

p − yk,e
′

q = xk,i′

i − xk,j′

i , ∀k ∈ K, e′ ∈ E ′
k,BH , src(e

′) = i′, dst(e′) = j′ (2.16)

∑
p∈Pk(i→j)
q∈Pk(j→i)

j∈V

yk,e
′

p − yk,e
′

q = (xk,i′

i − xk,j′

i )Ik, ∀k ∈ K, i ∈ V−gNB, e
′ ∈ E ′

k,FH , src(e
′) = i′, dst(e′) = j′

(2.17)

Finally, the domain constraints are as follows:

xk,j′

j , yk,e
′

p ,∈ {0, 1} ∀k ∈ K, j ∈ V, j′ ∈ V ′
k , p ∈ Pk, e

′ ∈ E ′
k (2.18)
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2.4.3.2 Second-Stage Problem

The goal of the second-stage problem is to minimize the total cost of gNBs’ radio resources

allocated to different network slices. The second-stage objective is:

C2(z) =
∑
k∈K

∑
j∈VgNB

Ck
j z

k
jW

r
j (2.19)

The processing delay of VNF j′ ∈ V ′
k on an infrastructure node is represented by τ k,j

′ .

Given the VL mapping decision variables yk,e
′

p , the data transmission latency corresponding to

the infrastructure edge e ∈ E given its aggregated load is calculated as:

∑
k∈K

∑
p∈Pk:e∈p

∑
e′∈E′

k

yk,e
′

p

χBW
k RBW

e′

WBW
e

Thus, the latency of the VL e′ ∈ E ′
k mapped to the path p ∈ Pk is:

∑
e∈p

∑
k∈K

∑
p∈Pk:e∈p

∑
e′∈E′

k

yk,e
′

p

χBW
k RBW

e′

WBW
e


Therefore, the latency of VL e′′ is calculated as follows:

∑
p∈Pk

yk,e
′′

p

∑
e∈p

∑
k∈K

∑
p∈Pk:e∈p

∑
e′∈E′

k

yk,e
′

p

χBW
k RBW

e′

WBW
e


Thus, the maximum UP/CP latency of slice k instances are guaranteed to be lower than the
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required latency dUP
k /dCP

k in the following constraint:

∑
e′′∈p′

∑
p∈Pk

yk,e
′′

p

∑
e∈p

∑
k∈K

∑
p∈Pk:e∈p

∑
e′∈E′

k

yk,e
′

p

χBW
k RBW

e′

WBW
e

+
∑
j′∈p′

[∑
j∈V

xk,j′

j τ k,j
′

]
≤ d

UP/CP
k ,

∀p′ ∈ P ′
k,UP/CP , k ∈ K

The above constraint ensures that the maximum latency of each slice is less than its tolerable

latency by enforcing the inequality for all paths of G′
k. By doing so, the latency over the critical

path defined as the path inducing the maximum latency among all paths is enforced to be less

than the tolerable latency. This constraint is a quadratic constraint. Thus, we linearize it by

introducing a set of additional continuous variables ηp ≥ 0 and ηk,e
′

p ≥ 0, defined as the latency

of path p ∈ P and the latency of VL e′ ∈ E ′
k of slice k on path p, respectively. Therefore, the

latency constraint is converted to the following set of constraints:

∑
e∈q

∑
k∈K

∑
p∈Pk:e∈p

∑
e′∈E′

k

yk,e
′

p

χBW
k RBW

e′

WBW
e

− ηq = 0, ∀q ∈ P (2.20)

ζyk,e
′

p + ηp − ηk,e
′

p ≤ ζ, ∀p ∈ Pk, e
′ ∈ E ′

k, k ∈ K (2.21)∑
e′∈p′

∑
p∈Pk

ηk,e
′

p +
∑
j′∈p′

∑
j∈V

xk,j′

j τ k,j
′ ≤ d

UP/CP
k , ∀p′ ∈ P ′

k,UP/CP , k ∈ K (2.22)

where ζ is a big constant. We also add the term ϵD to the objective function where D(η) =∑
k∈K

∑
p∈Pk

∑
e′∈E′

k
ηk,e

′
p and ϵ is a very small value in order to make sure that the main objective

of minimizing the resource provisioning cost is not affected by adding D. By doing so, it is

ensured that the value of ηk,e′p is positive if and only if yk,e′p = 1.

Given the network-level performance translation to cell-level metric Rk
j , the RAN slice
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resource allocation is enforced by constraints (2.23).

Uk∑
i=1

uk,i
j Rk

j ≤ xk,j′

j zkjW
r
j , ∀k ∈ K, j ∈ VgNB, j

′ ∈ V ′
k,gNB (2.23)

Constraints (2.23) is nonlinear due to the term xk,j′

j zkjW
r
j . We use the big-M method and convert

(2.23) to the following:

Uk∑
i=1

uk,i
j Rk

j ≤ zkjW
r
j + (1− xk,j′

j )M, ∀k ∈ K, j ∈ VgNB, j
′ ∈ V ′

k,gNB (2.24)

where M ∈ R is a large number. Moreover, in order to satisfy the slice isolation constraint

and given the maximum allowable number of PRBs allocated to each slice at each gNB, R
k

j , we

formulate the slice isolation constraint using the following inequality:

zkjW
r
j ≤ R

k

jx
k,j′

j , ∀k ∈ K, j ∈ VgNB, j
′ ∈ V ′

k,gNB (2.25)

Moreover, for each infrastructure node and link, we have capacity constraints as follows:

∑
k∈K

∑
j′∈V ′

k

xk,j′

j Rν
j′χ

ν
k ≤ W ν

j , ν ∈ T ,∀j ∈ V (2.26)

∑
k∈K

∑
p∈Pk:e∈p

∑
e′∈E′

k

yk,e
′

p RBW
e′ χBW

k ≤ WBW
e , ∀e ∈ E (2.27)

Furthermore, the capacity constraint of gNB j ∈ VgNB is enforced by the following inequality:

K∑
k=1

zkj = xk,j′

j , ∀j ∈ VgNB, j
′ ∈ V ′

k,gNB (2.28)

26



The gNB placement constraint is enforced by equation (2.29).

xk,j′

j ≥ I{
Uk∑
i=1

uk,i
j ≥ 1}, ∀k ∈ K, j ∈ VgNB, j

′ ∈ V ′
k,gNB (2.29)

Finally, the domain constraints of the second-stage problem are:

zkj ∈ [0, 1], ∀k ∈ K, j ∈ VgNB

ηk,e
′

p , ηp ≥ 0, ∀k ∈ K, e′ ∈ E ′
k, p ∈ Pk (2.30)

2.4.3.3 E2E Network Slice Resource Provisioning Problem (SNSR)

The E2E network slicing problem with demand uncertainties is formulated as a two-stage

SMIP presented below:

minimize ϕ1C1(x,y) + ϕ2 Eξ[min C2(z) + ϵD(η)] (2.31)

s.t. (2.14)− (2.30) (2.32)

The objective (2.31) minimizes the summation of the core slice provisioning cost and the expectation

of the second stage objective which is the RAN slice provisioning cost. ϕ1, ϕ2 are constant

parameters that determine the balance between the objectives of the first and second stage problems.

The above problem is interpreted as follows:

• The InP must provisions the core network resources for different network slices, represented
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by the decision variables x,y, before the actual value of the random vector

ξ = (U1, . . . ,UK , u1,1
1 , . . . , u1,U1

1 , . . . , uK,UK

|VgNB |, χ
ν
1, . . . , χ

ν
K , ν ∈ T ∪ {BW})

is known.

• After the value of the random vector ξ becomes known, the RAN resource provisioning

and delay decision variables, denoted by z, η, are determined.

The expectation term in (2.31) requires an integration over the high-dimensional random vector

ξ. To tackle this challenge, we use the sample average approximation technique and replace the

expectation in (2.31) with the sample average. The samples can be viewed as historical observed

data or can be generated using Monte Carlo sampling techniques.

2.4.4 Deterministic Equivalent Reformulation

In this section, we introduce the deterministic reformulation of the modeled SNSR and

then propose a solution based on the sample average approximation (SAA). The SAA method

is an approach for solving stochastic optimization problems by using Monte Carlo simulation.

Suppose that H i.i.d observations of the random variables uk,i
j , Uk, and χν

k are available from

sampling F . We denote them by ũk,i
j,h,Ũk,h, χ̃ν

k,h, h = 1, . . . , H . For each realization, we define

a separate set of second-stage decision variables zkj,h, ηp,h, η
k,e′

p,h . Thus, we convert SNSR to its
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sampled deterministic equivalent problem, defined as follows:

minimize ϕ1C1(x,y) + ϕ2

H∑
h=1

1

H
(C2(zh) + ϵD(ηh)) (2.33)

s.t. (2.14)− (2.18) (2.34)

∑
e∈q

∑
k∈K

∑
p∈Pk:e∈p

∑
e′∈E′

k

yk,e
′

p

χ̃BW
k,h RBW

e′

WBW
e

− ηq,h = 0, ∀q ∈ P , h ∈ H (2.35)

ζyk,e
′

p + ηp,h − ηk,e
′

p,h ≤ ζ, ∀p ∈ Pk, e
′ ∈ E ′

k, k ∈ K, h ∈ H (2.36)∑
e′∈p′

∑
p∈Pk

ηk,e
′

p,h +
∑
j′∈p′

∑
j∈V

xk,j′

j τ k,j
′ ≤ d

UP/CP
k , ∀p′ ∈ P ′

k,UP/CP , k ∈ K, h ∈ H (2.37)

∑
k∈K

∑
j′∈V ′

k

xk,j′

j Rν
j′χ̃

ν
k,h ≤ W ν

j , ∀ν ∈ T , j ∈ V, h ∈ H (2.38)

∑
k∈K

∑
p∈Pk:e∈p

∑
e′∈E′

k

yk,e
′

p RBW
e′ χ̃BW

k,h ≤ WBW
e , ∀e ∈ E, h ∈ H (2.39)

Ũk,h∑
i=1

ũk,i
j,hR

k
j ≤ zkj,hW

r
j + (1− xk,j′

j )M, ∀k ∈ K, j ∈ VgNB, j
′ ∈ V ′

k,gNB, h ∈ H (2.40)

zkj,hW
r
j ≤ R

k

jx
k,j′

j , ∀k ∈ K, j ∈ VgNB, j
′ ∈ V ′

k,gNB, h ∈ H (2.41)

K∑
k=1

zkj,h ≤ 1, ∀j ∈ VgNB, h ∈ H (2.42)

xk,j′

j ≥ 1{
Ũk,h∑
i=1

ũk,i
j,h ≥ 1}, ∀k ∈ K, j ∈ VgNB, j

′ ∈ V ′
k,gNB, h ∈ H (2.43)

zkj,h ∈ [0, 1], ∀k ∈ K, j ∈ VgNB, h ∈ H (2.44)

We refer to the above problem as DET SNSR(H). The first term in the objective function

(2.33) is the same as the first term of the objective function (2.31). The second term is the

weighted average of the second stage objective function over the H realized samples of the

random variables χk, uk
i,j and Uk. Constraints (2.35)-(2.44) replace their counterparts. As the
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sample size H increases and under certain mild conditions as discussed in [33], the solution to

DET SNSR(H) converges to that of the original SNSR problem.

2.5 Two-Timescale Resource Allocation Algorithm

We propose a two-timescale resource allocation scheme that utilizes the resource provisioning

methodology discussed in Section 2.4. In this approach, the resource allocation problem during

the lifecycle of network slices is addressed through two long and short time slots. We assume

that the lifecycle of a network slice is divided into a number of long time slots denoted by T .

During each long time slot, the demand distribution for network slices is known and fixed. Let

FT = {FT
1 , . . . ,FT

K} denote the demand distribution of K network slices in the long time slot T .

GivenFT , we solve the resource provisioning problem proposed in Section 2.4, DET SNSR(H).

We further divide each long time slot into NT short time slots. At each short time scale t, an

observation of the demands is realized characterized by values of ξ̂ = (Ûk, ûk,i
j , χ̂ν

k, k ∈ K, i ∈

Ûk, j ∈ VgNB, ν ∈ T ∪ {BW}). We define a new variable σk
j , k ∈ K, j ∈ VgNB as the fraction

of unsupported demand requested for slice k in gNB j. Given the observed realization at each

short time slot, and the solution to the first-stage problem x,y, we adjust the RAN resource

provisioning decision by solving the following optimization problem:
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minimize
∑
k∈K

∑
j∈VgNB

θ(C2(z)) + (1− θ)σk
j (2.45)

(1− σk
j )(

Ûk∑
i=1

ûk,i
j )Rk

j ≤ zkjW
r
j + (1− xk,j′

j )M, ∀k ∈ K, j ∈ VgNB, j
′ ∈ V ′

k,gNB (2.46)∑
j∈VgNB

(1− σk
j )

∑Ûk

i=1 û
k,i
j

Ûk

 χ̂ν
k ≤ χν

k,prov, ∀k ∈ K, ν ∈ T ∪ {BW} (2.47)

zkjW
r
j ≤ R

k

jx
k,j′

j , ∀k ∈ K, j ∈ VgNB, j
′ ∈ V ′

k,gNB (2.48)∑
k∈K

zkj ≤ 1, ∀j ∈ VgNB (2.49)

zkj , σ
k
j ∈ [0, 1], ∀k ∈ K, j ∈ VgNB (2.50)

We refer to this LP as the radio network slicing resource allocation, denoted by RNSR(x,y, ξ̂).

The objective of (2.45) minimizes the weighted summation of RAN resource allocation cost and

total unsupported traffic. The weight parameter θ ∈ [0, 1] is used to balance between the two

objective terms. Constraint (2.46) ensures that the radio resource reservation for a network slice

is greater than the supported traffic on each gNB. M is a big positive real value used for the big-M

method, enforcing constraint (2.46) for a tuple (j′, k, j) only if xk,j′

j = 1, i.e. a RAN VNF of slice

k is instantiated on gNB j. Constraint (2.47) guarantees the availability of core network resources

to support the admitted traffic of each slice. The slice isolation constraint is enforced by (2.48).

Constraint (2.49) ensures the capacity constraint for each gNB, and the domain constraints are

expressed by (2.50).

Figure 2.4 illustrates our proposed two-timescale resource allocation scheme. Given the

demand distribution FT for each long time slot, we solve an instance of DET SNSR(H) that
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Figure 2.4: Two-Timescale Resource Provisioning Scheme

provides the resource provisioning solution for the core network. Given the core network slicing

solution and a realization of the slices’ demand points at each short time slot, the RNSR(x,y, ξ̂)

problem is solved to obtain the E2E resource allocation solution. The instantaneous demand for

different network slices at each short time slot is used to scale down/up the core network slices if

needed.

2.6 Numerical Results

In this section, we present the evaluation of the proposed two-timescale methodology

through simulations.

2.6.1 Simulation Setup

The evaluation environment is implemented in Java. We consider a mobile network encompassing

7 servers at four levels of hierarchy and 6 gNB nodes connected to the third-level servers as

illustrated in Fig. 2.6. L1, L2, L3 and L4 servers have CPU (cycle/s), Storage (GB) and RAM
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(GB) capacities of (72, 144, 288), (36, 72, 144), (18, 36, 72), and (6, 12, 24) respectively. The

backhaul and fronthaul links have the capacity of 2Gbps and 1Gbps respectively. For the sake of

simplicity, the resource scaling factor χν
k is assumed to be the same for all resource types t ∈ T

and be equal to the number of users requesting slice k. Each VNF requires (0.1χk, 0.2χk, 0.4χk)

units of CPU, STO and RAM resources. We use the CPLEX commercial solver for solving the

DET SNSR model using the branch-and-bound method. The RNSR problem is also solved by

CPLEX using the Simplex method. All experiments are carried out on an Intel Xeon processor

at 2.3 GHz with 8GB memory.

We assume that the UEs are distributed in a square area of dimension 10 Km × 10 Km.

The demand densities FT are obtained by applying bivariate kernel density estimation (KDE) to

the synthetic data generated for each slice demand in the considered geographical area. Due to

the unavailability of spatially distributed and correlated datasets for network slice demands, we

generate synthetic data. We use Matérn cluster point process [34] to generate the UE locations

for each slice. In this process, a number of parent points are first generated using a Poisson point

process and for each parent point (representing a cluster center), another Poisson point process

is used to generate the UE distribution within a radius of the parent point. The clusters of users

represent the hot spot area for different network slices. We assume that the demand distributions

change hourly and a 24-hour (T ∈ {0, . . . , 23}) periodic demand pattern is considered. This

can be adjusted depending on the environmental dynamics such as channel conditions or the

user mobility behavior. In other words, a shorter/longer duration for the long times slots can be

adopted if the dynamics in the traffic distribution for a slice are fast/slow. Fig. 2.5 illustrates an

example of a demand distribution for a network slice obtained by using kernel density estimation

method. The simulation parameters for network slices are shown in Table 2.2.
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Figure 2.5: An Example of a Slice Demand Probability Distribution

Table 2.2: System Model Parameters

Slice Type dUP
k /dCP

k mean value of Rk
j R

k

j

eMBB 100/20 ms 50 0.6
URLLC 25/5 ms 10 0.2
mMTC 300/60 ms 5 0.2

2.6.2 Provisioning Cost vs. Robustness

In this section, we evaluate the performance of the proposed SNSR formulation in terms

of the resource provisioning cost and robustness. We define robustness as the percentage of the

realized traffic demands for which the obtained solution of DET SNSR is feasible. Figure 2.7

illustrates the relative cost and robustness as the number of sampled realization changes from

H = 1 to H = 30. As expected, increasing the value of H enhances the robustness of the

solution at the expense of increasing the resource provisioning cost.
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Figure 2.6: Simulation Infrastructure

2.6.3 Performance of the Two-Timescale Solution

In this section, we present the performance of the proposed two-timescale resource provisioning

scheme, in terms of latency and acceptance ratio. We consider a duration of 60 short time slots

and show the obtained latency and acceptance ratio for different slices. The results are averaged

over 5 runs. Figure 2.8 and 2.9 illustrate the UP and CP latency for the URLLC, eMBB, and

mMTC slices for the number of realizations (H parameter) equal to 5, 10, and 30. We observe

that in all cases, the latencies are below the specified QoS boundaries shown in Table 2.2.

The percentage of accepted slice demands (supported traffic) defined as
∑

j∈VgNB
σk
j /|VgNB|

is shown in Fig. 2.10, 2.11, and 2.12 for eMBB, URLLC, and mMTC slices respectively. In this

experiment, we change the number of realizations from 1 to 30. It is observed that as the number

of realizations in problem DET SNST increases, the acceptance ratio enhances for all slices.
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Figure 2.7: Relative Provisioning Cost vs. Robustness

2.7 Conclusion

E2E Network slicing is an emerging technology to carry flexible resource provisioning

for various services with diverse QoS requirements in NGMN. While the resource provisioning

for network slices is typically done in a best-effort manner, in this chapter, we studied the

problem of mobile network slicing under demand uncertsinties. To this end, we propose a two-

timescale framework including long and short time slots for the E2E network slicing by exploiting

stochastic programming. In this method, we solve the network slice resource provisioning problem

across the core network and RAN at each long time slot, modeled as a two-stage stochastic mixed

integer linear program. We then adjust the RAN slices and scale down/up the core network slices

if necessary, at each short time slot. We show the effectiveness of our proposed method through

simulation.
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Figure 2.8: UP Latency for URLLC, eMBB and mMTC Slices

Figure 2.9: CP Latency for URLLC, eMBB, and mMTC Slices
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Figure 2.10: Average Acceptance Ratio for eMBB Slice

Figure 2.11: Average Acceptance Ratio for URLLC Slice

Figure 2.12: Average Acceptance Ratio for mMTC Slice
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Chapter 3: Collaborative Cloud-Edge-Local Computing for Multi-Component

Applications: An Infrastructure Provider Perspective

3.1 Overview

Driven by the needs of 5G to support a wide range of services in the domain of eMBB,

URLLC, and mMTC, mobile cloud computing (MCC) has become a key solution to offload

the heavy computation load of next-generation applications by pushing substantial amounts of

computing functionality of mobile devices (MDs) to a remote cloud data center. However,

the high E2E latency in MCC resulting from the large distance between an MD and the data

center violates the low-latency requirement of many emerging applications such as autonomous

driving, and virtual/augmented reality (VR/AR), and online gaming. This has led to a shift in the

computing paradigm, namely mobile edge computing (MEC) [35]. The capability of utilizing

the idle computation space distributed at the network edge has empowered MEC to become a

promising element of 5G and 6G to realize a broad range of heterogeneous and computationally

heavy use cases with reduced energy consumption end latency. On the other hand, edge servers

have limited resources compared to the central cloud in MCC and can easily become overloaded.

Therefore, it is usually not feasible to offload all the heavy computation loads to the MEC

resources only, and a collaborative cloud-edge-local computation offloading scheme both enhances
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Figure 3.1: Video Surveillance Use Case: Watchlist Application

users’ QoE and reduces providers’ costs [36, 37]. While the problem of computation offloading

and resource orchestration in a two-tiered infrastructure encompassing only two computing entities,

either cloud-local or edge-local, has been extensively explored to date, there are less considerable

works available on the collaborative multi-tiered computation offloading problem. Moreover,

with the recent paradigm shift in the application deployment model from a monolithic service

environment to the microservices architecture, most of the existing solutions for the resource

orchestration of applications in MCC, MEC, or collaborative systems need to be re-examined

[38]. In a microservices architecture, an application consists of multiple components, a.k.a.

functions, with arbitrary component dependencies. Each component can be processed at any

available infrastructure node including MD, edge servers, or the remote central server. Thus,

the deployment of a multi-component application entails (i) deployment of individual functions,

and (ii) management of data communication between various functions. It is worth noting

that in a multi-tiered architecture, different kinds of networking capabilities such as 5G, MAN,

and WAN, may exist at different tiers. Fig. 3.1 shows the pipeline of a microservices-based

watchlist application, for video surveillance use cases. The application includes video ingress,

face detection, feature extraction, face matching, biometrics manager, and alerts manager functions.

Each individual function for this application has demands for different resources such as compute,
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storage, bandwidth for the incoming streams, etc. The overall performance of the application

depends on the allocated resources to all the microservices. This introduces a coupling relationship

between the usage of different resources (such as networking and computation) and the application

performance which should be considered in the resource orchestration phase for optimal output.

While computation and communication are decoupled in 5G and it is not expected to be addressed

in the future releases of 5G, 6G is foreseen to bring a tight integration of computing and communication

in a distributed cloud platform [39]. However, the resource optimization of multi-component

applications in such a complex infrastructure taking into account the resource coupling relationships

is very challenging. An instance of such applications and their deployment in a collaborative

cloud-edge-local environment is shown in Fig. 3.2. In this example, components {0, 1, 11},

{2, 4, 5, 6, 9} and {3, 7, 8, 10} are executed locally, at the edge server, and at the central cloud,

respectively. In addition to the component assignment, network resources should be provisioned

for the transmission of the data between two interacting components in multi-component applications.

For instance, network bandwidth across a path from MD to the central cloud is reserved in the

example of Fig. 3.2 to accommodate the data communication between components 0 and 3.

A multi-tiered infrastructure opens up several possibilities for the deployment of multi-

component applications. In this chapter, we address the design and optimization of a cloud-edge-

local collaborative offloading scheme for multi-component applications [40]. This problem can

be studied from two viewpoints, (i) the InP perspective, and (ii) the application perspective. Each

of these viewpoints has specific assumptions and objectives. While we study the first problem in

this chapter, next chapter is dedicated to the second viewpoint. Given the requests for different

services, the InP must answer the following questions:
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Figure 3.2: An Example of an Application Graph Deployment on a Collaborative Cloud-Edge-
Local Computing System

• For each application request, which components are computed locally, offloaded to the

edge, or to the central cloud in order to better utilize available computing, storage, and

networking resources and achieve a higher level of QoS?

• How should the networking resources be provisioned in order that the data communication

between different application components is realized?

• How the above decisions can be optimized such that the total deployment cost is minimized

while adhering to the resource capacity and application QoS hard constraints?

Our objective for the collaborative cloud-edge-local computation offloading is to minimize the

total cost defined as consumed energy and end-to-end applications’ latency. The energy demand

of the communications industry is projected to increase from 200-300 TWh in 2017 to 1200

or even 3000 TWh by 2025 [41], and the global network electricity bill is growing rapidly

by 10% each year. Today’s network devices are often powered 24/7 for a high availability

42



guarantee of network services. While energy efficiency in cloud data centers and for an MD

with a limited battery has been broadly explored, it is largely left uninvestigated in multi-tiered

computing environments due to the complicated interactions between MDs, edge servers, and the

centralized cloud [42]. On the other hand, thanks to the flexibility of NFV and the very short

reconfiguration time in software-defined mobile networks (SDMN), we are able to exploit the

global network status information of the SDN controllers in order to re-route traffic in a dynamic

manner and save energy by turning on just a minimal amount of network devices to carry the

demanded traffic, instead of powering on all backbone network devices all the time. To this end,

we formulate an optimization model for the resource allocation of multi-component applications

in a collaborative cloud-edge-local offloading system. Our proposed approach is presented for a

generic application and therefore can be used for any multi-component application with arbitrary

component dependencies, as long as it can be modeled by a directed acyclic graph (DAG), which

is applicable to most real-world applications. The formulated optimization problem is a MILP

which impedes the effectiveness of the proposed approach in a dynamic and scalable manner

due to time complexity. Thus, we also devise an efficient approximation algorithm based on LP

relaxation and rounding (LPRR) to solve the problem efficiently.

The rest of this chapter is organized as follows. Section 3.3 presents the system model.

Problem formulation and the proposed heuristic algorithm are discussed in Sections 3.4 and 3.5,

respectively. We present the numerical results in Section 3.6. Finally, the main conclusion and

future directions is Section 3.7.

We assume a collaborative cloud-edge-local environment as shown in Fig. 3.2, where the

components of a mobile application can be computed locally, in edge servers, or in a central

cloud. The proposed scheme is applicable to multi-component applications which [43] can be
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classified into the following three major categories of data-partitioned-oriented, code-partitioned-

oriented, and continuous-execution applications. The applications are realized through microservices

architecture. From a practical point of view, two settings can be assumed: (i) an offline scheme

in which all application requests are known in advance, and (ii) an online scheme where the

applications arrive and depart the system over time and the requests are admitted or rejected upon

arrival [44]. We consider an online setting that is more realistic and challenging. The goal is to

optimize the resource allocation of the requested applications while minimizing the system-wide

energy consumption and applications E2E latency.

The rest of this chapter is organized as follows. Section 3.2 provides an overview of the

related works. We present system model and problem formulation in Section 3.3 and Section 3.4,

respectively. The proposed heuristic solution is discussed in Section 3.5. Section 3.6 presents the

numerical results. We conclude this chapter in Section 3.7.

3.2 Related Work

The related research on the MEC computation offloading can be divided into two categories,

full offloading and partial offloading. Full offloading has been considered extensively in the

literature such as in [45]. Partial offloading which traditionally deals with partitioning the considered

task into two subtasks, one running locally and the other one remotely, has also been investigated

in the existing works such as [46]. Recently, authors in [47] consider partitioning computation

tasks into multiple subtasks each executed locally, at the edge or central cloud and model the

latency minimization problem as a MILP with dual decomposition and matching-based algorithms

proposed to derive near-optimal solutions. However, the the proposed solution is not applicable
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to general subtask dependency. In the context of multi-component application which potentially

extends partial offloading to arbitrary decomposition of applications, authors in [48] design an

integer particle swarm optimization-based algorithm followed by a heuristic for the deployment

of code-partitioned and MEC-enabled AR services. In [49], the problem of multi-component

application placement in MEC systems is addressed considering the users mobility and network

capabilities. The computation offloading problem in a collaborative environment has also been

studied in the literature. Authors in [50] study computation offloading in a fog computing

network, where the end users offload part of their tasks to a fog node and the fog node further

offloads the task to neighboring fog nodes or a remote cloud server. An efficient collaborative

task offloading scheme is proposed in [36] in which the MEC server collaborate with MDs and

a remote cloud to provide better QoS. In contrast to the existing works targeting single task

offloading in collaborative cloud-edge-local domains or multi-component application deployment

in edge-local or cloud-local systems, we study the problem of multi-component application

deployment in a collaborative multi-tiered environment.

3.3 System Model

We present the system model in this section. An edge cloud is defined as a pool of

virtualized computing resources, usually co-located with a cellular BS. We consider a cellular

system in which edge servers are co-located with BSs. The MDs within the coverage of a BS

communicate with the corresponding BS (edge server) for offloading the necessary computation

load. Moreover, edge servers are connected to a central cloud via multi-hop paths. Let VN

and VM = {0, ...,M} denote the set of backbone network devices and infrastructure computing
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nodes, respectively. The indices 0, {1, ...,M − 1} and M stand for the MD, the edge servers, and

the central cloud respectively.

3.3.1 Definitions

Substrate Graph: We model the physical infrastructure as a directed graph GS = (VS, ES), where

VS = VM ∪ VN and ES denotes the substrate links. For each server u ∈ VM , let fu and W STO
u

denote its computation and residual storage capacity. Moreover, the data rate (in bit/sec) of the

link l ∈ ES is represented by Rl.

Application Graph: We model the mobile application as a DAG, GA = (VA, EA), where the

vertices in VA denote the application components and an edge e ∈ EA represents the data

dependency between two components. The required workload and storage of the node i ∈ VA

and the data size (in bit) requirement of an edge e ∈ EA are denoted by DCPU
i , DSTO

i , De,

respectively. The application deployment process is considered as mapping the application graph

GA to the substrate graph GS and it consists of two mappings: (i) node mapping which determines

the assignment of the application components to substrate nodes, and (ii) path mapping that

entails the assignment of the application edges to the substrate paths.

3.3.2 Computation Model

Let tiu and Ei
u denote the processing time and energy consumption of component i running

on u ∈ VM . Given the required workload of procedure i, tiu is expressed as:

tiu =
DCPU

i

fu
, u ∈ {0, 1, ...,M − 1} i ∈ VA (3.1)
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In addition to the CPU processing time, the queuing delay should also be accounted for by the

substrate nodes with a partially smaller computation capacity. Therefore, a more holistic model

addressing the queuing delay is stated as:

ti,ku =
∑
j≤k

DCPU
j,k

fu
, u ∈ {1, ...,M − 1} i ∈ VA (3.2)

where k stands for the processing order (based on FCFS) for application graphs components.

For a component offloaded to the central cloud, the processing time can be ignored since the

computation power of the cloud data center is relatively big compared to the local or edge servers,

i.e f0 << fu << fM , u ∈ {1, ...,M − 1}. Following the model in [51], the energy consumption

corresponding to the component i running on the substrate node u is expressed as:

Ei
u = κDCPU

i f 2
ut

i
u (3.3)

where κf 2
ut

i
u is the energy consumption per CPU cycle and κ is a constant arising from the

hardware architecture.

3.3.3 Communication Model

In this section, we introduce the communication model. Let tel denote the transmission

latency corresponding to mapping e ∈ EA to the substrate link l ∈ ES , expressed as:

tel =
De

Rl

, ∀e ∈ EA, l ∈ ES (3.4)
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We assume that frequency division duplex (FDD) is used as the transmission mode and WD and

WU denote the uplink and downlink channel bandwidths respectively. Hence according to the

Shannon formula, the achievable data rate of the uplink/downlink (U/D) wireless links can be

expressed as:

R
D/U
l = WD/U log2(1 +

P TX
s(l) d

−ν |hD/U |2

N0

) (3.5)

where P TX
s(l) is the transmission power of the transmitter of link l, and the uplink and downlink

channels are assumed to be frequency-flat block-fading Rayleigh channels with a block length

larger than the maximum latency requirement of the application. Throughout the section, we

refer to the transmitter and receiver of the link l as s(l), d(l). The path loss between MDs and

BSs is modeled as d−ν where d and ν are the corresponding distance and the path loss exponent

respectively. Furthermore, the uplink and downlink channel fading coefficients are denoted by

hU and hD modeled as circularly symmetric complex gaussian random variables.

Let PS denote the set of K-shortest paths between any pair of nodes u, v ∈ VM , u ̸= v,

i.e. PS contains all K-shortest paths between MD and edge servers, MD and central cloud, and

edge servers and central cloud. We also represent the total energy consumption corresponding

to mapping the edge e ∈ EA to the substrate path ps ∈ PS as Ee
ps . Ee

ps comprises the energy

consumption for application components processing and data transmission between two components.

Assuming that Pl = P TX
s(l) +PRX

d(l) is the total consumed power of link l’s transmitter and receiver,
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Ee
ps is computed as follows:

Ee
ps =

∑
l∈ps

Plt
e
l +

∑
u∈ps

Ponf(u) (3.6)

where f(u) is an indicator function representing the required power Pon to turn on a network

node that has been idle. Thus,

f(u) =


0 u ∈ VS is active

1 u ∈ VS is idle

 (3.7)

3.4 Problem Formulation

In this section, we present the problem formulation. Given GA, GS and PS , we define the

following decision variables for the problem formulation:

• A set of binary decision variables x, where xi
u equals 1 if the application node i ∈ VA is

mapped to the substrate node u ∈ VM .

• A set of binary decision variables y, where yeps is 1 if the application edge e ∈ EA is

mapped to the substrate path ps ∈ PS .

The system total consumed energy is computed as:

E(x,y) =
∑
i∈VA

∑
u∈VM

Ei
ux

i
u +

∑
e∈EA

∑
ps∈PS

Ee
psy

e
ps (3.8)

Let PA denote the set of all directed paths in GA and pA ∈ PA. The overall latency of pA denoted

by LpA(x,y) equals the summation of its nodes (components) processing times and the data
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transmission delay of its edges, i.e.:

LpA(x,y) =
∑
e∈pA

(
∑
ps∈PS

tepsy
e
ps) +

∑
i∈pA

(
∑
u∈VM

tiux
i
u) (3.9)

where teps =
∑

l∈ps t
e
l + tpropl is the overall latency of mapping the edge e ∈ EA to the substrate

path ps ∈ PS , and tpropl is the propagation delay of link l ∈ ES . Given PA, we define the

critical path to be the path inducing the maximum latency among all paths of the application.

It is important to note that since the latency incurred by an application component or edge is a

function of the available resources of the selected substrate node and path for mapping, it is not

trivial to determine the critical path in advance. Therefore, the overall latency of an application

(the latency of its critical path) is given as:

L(x,y) = maxpA∈PA
LpA(x,y) (3.10)

The constraints defining the feasible region of our optimization problem are defined below.

Starting with the mapping constraints, we have:

∑
u∈VM

xi
u = 1, ∀i ∈ VA (3.11)

x1
0 = 1, x

|VA|
0 = 1 (3.12)

∑
v∈VM

ps(u→v)∈PS

y
e(i→j)
ps(u→v) − y

e(i→j)
ps(v→u) = xiu − xju ∀e ∈ EA, u ∈ VM (3.13)
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Constraints (3.11) ensure that each application node is assigned to one substrate server. In

(3.12), we enforce that the first and last components are computed locally. Constraints (3.13)

guarantee the assignment of paths to the application edges for data communication between

interacting components which are mapped to two different substrate nodes. The MD energy

budget constraint is defined as follows:

∑
i∈VA

Ei
0x

i
0 +

∑
v∈VM

∑
e∈EA

P TX
0 tel y

e(i→j)
ps(0→v)+

∑
v∈VM

∑
e∈EA

PRX
0 tepsy

e(j→i)
p(v→0) ≤ RE0 (3.14)

where RE0 is the MD’s residual energy. The capacity constraints are given below:

∑
i∈VA

DSTO
i xi

u ≤ W STO
u , ∀u ∈ VM (3.15)

Finally, the domain constrains are given as:

xi
u, y

e
ps ∈ {0, 1}, ∀i ∈ VA, e ∈ EA, u ∈ VM , ps ∈ PS (3.16)

The objective is to minimize the weighted summation of the total consumed energy and application

end-to-end latency. The problem formulation is as follows:

[P1] minimizex,y λ
E(x,y)

E0

+ (1− λ)
L(x,y)

L0

(3.17)

s.t. (3.11)− (3.16)
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Table 3.1: Table of the Used Notations

Parameter Description
GS = (VS, ES) Substrate graph
VM = {0, ...,M} Set of infrastructure nodes for computation offloading

W STO
u Storage capacity of node u ∈ VM

Rl Data rate of link l ∈ ES

tpropl Propagation delay of l ∈ ES

fu Computation capability (CPU-cycle) of node u ∈ VS

PS Set of K-shortest paths between nodes of VM

GA = (VA, EA) Application graph
DCPU

i , DSTO
i Computing and storage requirement of node i ∈ VA

De Data size requirement of e ∈ EA

PA Set of all directed paths of GA

tiu Processing time of the procedure i running on node u
tel latency of De transmission on link l
Ei

u Energy consumption of i running on u
Ee

p Energy consumption of mapping edge e ∈ EA to path p ∈ PS

P TX
u , PRX

u Transmission and reception power of node u ∈ VM

where E0 and L0 are the total consumed energy and application latency when all application

components are executed locally and are used to balance the two objective terms. λ is a non-

negative constant that determines the tradeoff between energy and latency. In order to linearize

(3.17), we use an auxiliary continuous variable z. It is straightforward to observe that [P ] is

equivalent to the following MILP:

[P ′
1] minimizex,y λ

E(x,y)

E0

+ (1− λ)
z

L0

(3.18)

s.t.

LpA(x,y) ≤ z, ∀pA ∈ PA (3.19)

(3.11)− (3.16)

Table 3.1 provides a summary of all used notations.
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3.5 Heuristic Algorithm

Since the MILP model is NP-hard, we propose a heuristic algorithm based on LP relaxation

and rounding, namely LPRR, to efficiently solve [P ′
1] for large networks. In the algorithm, a

sequence of relaxed LPs is solved until the decision on rejection or acceptance of the application

request is made. At each round of LPRR, the optimal fractional mapping solutions for x and y

are obtained by solving a reduced LP relaxation version of [P ′
1] which outputs a node mapping

decision for one of the application nodes. The algorithm terminates when all application nodes

are mapped or the request is rejected. We denote the reduced relaxed LP solved at each iteration

by CCO LP(X ), where X denote the set of pairs (i, u) for which xi
us are set to 1 at previous

iterations. Thus, X is an empty set at the beginning of the algorithm, unless there are components

in GA that are required to be deployed at a specific tier due to other constraints. The proposed

solution is shown in Algorithm 1.

Regarding the time-complexity of Algorithm 1, we note that in this algorithm, the LP

CCO LP(X ) is solved at most |VA| times, as at each iteration, one application component is

mapped to the infrastructure network. Fast algorithms such as primal-dual Simplex method [52]

and its variants have been proposed in the literature to solve LPs efficiently. Therefore, compared

to the MILP of Section 3.4 which is computationally expensive, Algorithm 1 achieves polynomial

time-complexity.
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Algorithm 1 LPRR Algorithm for Collaborative Cloud-Edge-Local Computation Offloading
Input: GS , GA

Output: x, y, z
1: Initialize X ← ∅, Terminate← False
2: repeat
3: {x, y} ←− Solve CCO LP(X ) ▷ xi

u = 1, ∀(i, u) ∈ X
4: if problem infeasible then
5: Terminate← True
6: end if
7: (i∗, u∗) = argmax{xi

u|i ∈ VA, u ∈ VM , (i, u) /∈ X , (3.14), (3.15) not violated if xi
u = 1}

8: if (i∗, u∗) exists then
9: X ← X ∪ {(i∗, u∗)}

10: else
11: Terminate← True
12: end if
13: until Terminate == True
14: if No solution exists then
15: Request rejected
16: else
17: Request accepted
18: return x, y, z
19: end if

3.6 Numerical Results

In this section, we first describe the simulation environment and then proceed with evaluation

results. We implemented our simulations in Java, using IBM ILOG CPLEX commercial solver

to solve the MILP model with the branch-and-bound method. Our tests are carried out on a

server with an Intel i5 CPU at 2.3 GHz and 8 GB of memory. We evaluate the performance of

our collaborative cloud-edge-local (CEL) deployment approach on the Digex network topology

available at the Topology Zoo [53]. A cloud data center is assumed to be located in San Francisco

and edge servers are connected to BSs in Philadelphia, Boston, Miami, and Charlotte. We adopt

the implementation of Yen’s algorithm presented [54] for K-shortest path generation. 100 MDs

are randomly distributed in a 1000m × 1000m region around each BS where the BS is located
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Table 3.2: Default Simulation Parameters

parameter value
MD uplink/downlink BW 10MHz

MD uplink/downlink power 50, 60dBm
N0, ν, κ, K −147dBm/Hz, 2, 10−11, 2

f0, edge server fu 1× 109, U(5, 10)× 109cycles/s
W STO

0 , W STO
u U(20, 40), U(1, 2)× 104

Rl 10Mbps for wired links

at the center of the square region. The application requests arrive according to a Poisson process

with an average rate of 3 requests per 100 time units. The lifetime of requests has an exponential

distribution with an average of 1000 time units. The remaining simulation parameters are given

in Table 3.2. We run the simulation for 200 applications requested by random MDs. The

number of application components is uniformly distributed in [4, 10]. The dependency type of

the application requested by each MD is randomly selected from (i) sequential, (ii) parallel, and

(iii) layer-by-layer structures given in [55]. DCPU
i and DSTO

i for the first and last components

have distributions U(0.01, 0.03) × 109 cycles/s and U(1, 10) respectively. For the rest of the

components, the values for CPU and storage are sampled according to U(0.1, 0.5) × 109 and

U(10, 30). Moreover, De ∼ U(50 − 100)Kb. The performance of the proposed optimal CEL

solution (CEL-CPLEX) and its approximation (CEL-LPRR) is compared with the following

schemes and their approximations:

• Edge-local execution (EL): only edge servers are considered for offloading.

• Cloud-local execution (CL): only the central cloud is considered for offloading.

Fig. 3.3 illustrates the acceptance ratio for CEL-CPLEX, CEL-LPRR, EL-LPRR, and CL-

LPRR. It is observed that the proposed CEL scheme outperforms the EL and CL strategies

significantly, as it admits up to 23% and 29% more requests than EL-LPRR and CL-LPRR
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Figure 3.3: Applications Acceptance Ratio

Figure 3.4: Objective Value of [P ′
1]
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Figure 3.5: Average Application Latency

Figure 3.6: Average Total Energy
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solutions respectively. Moreover, the maximum deviation of CEL-LPRR from CEL-CPLEX

is 1.3%. Fig. 3.4 depicts the box plots corresponding to the objective function values for CEL-

CPLEX, EL-CPLEX, CL-CPLEX, and their LPRR solutions for the set of accepted requests in

each case. It is observed that CEL results in lower objective values compared to EL and CL

approaches as expected. Moreover, CEL-LPRR is able to generate near-optimal solutions. It

is important to note that CL-LPRR and EL-LPRR schemes have lower average objective values

(denoted by green triangles) than CL-CPLEX and EL-CPLEX respectively since the optimal

solutions found by the CPLEX solver admit more requests than the LPRR algorithm resulting in

higher cost (energy and latency) per request. In Fig. 3.5 and 3.6, the average overall latency and

total energy consumption of CEL are benchmarked against EL and CL solutions. It is observed

that the proposed CEL scheme has lower average latency and energy consumption. The four

figures together prove the efficiency of the CEL-LPRR approach.

3.7 Conclusion

In this chapter, we investigated the optimal computation offloading for multi-component

applications in the collaborative cloud-edge-local systems. While the computation offloading

problem for single tasks is extensively studied in the literature, the resource allocation problem

of multi-component applications has remained largely uninvestigated. Moreover, we assume

a collaborative cloud-edge-local system for the deployment of multi-component applications,

which is not studied before. Our proposed scheme aims at minimizing the total consumed energy

and the application end-to-end latency and is applicable to multi-component applications with

arbitrary component dependencies. We formulated the problem as a MILP and applied the LP
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relaxation and rounding technique to generate near-optimal solutions. The simulation results

show the superior performance of our proposed solution in terms of acceptance ratio, consumed

energy and end-to-end latency compared to two edge-local and central-local offloading baselines.
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Chapter 4: Resource Orchestration of Multi-Component Applications: An Application-

Side Perspective

4.1 Overview

As discussed in the previous chapter, a multi-tiered computing and networking system

where critical services are offloaded to MEC and the delay-tolerant services are computed at the

remote cloud has the potential to improve the application’s performance and overall resource

utilization. Taking into account the perspective of the application, the main focus of this chapter

is to solve the resource orchestration problem of multi-component applications (realized through

microservices architecture) in a collaborative cloud-edge-local computing system. We assume

that there is a slice abstraction on top of the compute and network infrastructure and the application

uses this slice abstraction to request network as well as compute slices. Thus, the underlying

infrastructure components are untouched by the application. All requests for compute and network

slices always go through slice abstraction, which may grant or deny requested slices depending

on the resource conditions and demands at that time. Fig. 4.1 shows a multi-tiered compute

and network fabric, and the scope of this section lies in the application layer on top of slice

abstraction. In such a multi-tiered architecture, compute is available at various tiers like devices

i.e. where data is produced, edge, and in the cloud. Similarly, different kinds of networking
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Figure 4.1: Multi-tiered Compute and Network Fabric

capabilities are available at different tiers, e.g. 5G connectivity between devices and edge servers,

MAN between distributed edge resources, and WAN between edge and central cloud. In addition

to the complexity of the infrastructure, the real-time state of different resources (e.g. available

network and compute) is highly dynamic due to high variability in the compute (multi-tenancy,

heterogeneity, etc.), and changing network (5G NR interference, link congestion, packet loss,

etc.) conditions. Therefore, the problem of application deployment and optimization across

multi-tiered compute and network fabric is even more challenging considering the real-time state

of resources. To this end, we introduce the concept of resource coupling and show how an

application can benefit from utilizing such coupling functions during the runtime [56].

The main goal of this chapter is to automatically manage the execution of microservices-

based applications on a dynamic, heterogeneous, multi-tiered compute fabric in a 5G network
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taking into account the coupling relationships between resources, when only application-level

requirements are given, without knowing individual function-level requirements. The following

are the main steps of our proposed methodology:

• We first identify and model the coupling between network and compute resource usage,

and analyze the impact of the coupling on application performance by considering multiple

real-world use cases.

• We propose a novel optimization formulation that captures the compute and network coupling

relationship, and enables a principled consideration of resource allocation options to significantly

reduce network and compute resource usage. Our proposed runtime system uses the new

formulation, and utilizes the coupling to jointly optimize compute and network resources

across different edge compute and network slices while ensuring consistent, high quality

insights.

• We also propose an RL-based online method to dynamically adjust an application’s compute

and network resource reservations to minimize under-utilization of requested resources

while ensuring acceptable service quality metrics. The RL method automatically captures

the resource coupling relationships.

The rest of this chapter is organized as follows. We present the literature review in Section

4.2. In Section 4.3, we elaborate on resource coupling relationships through real-life application

examples. Section 4.4 describes the optimization-based method. The RL-based method is presented

in Section 4.5. Finally, in Section 4.6, we highlight the main conclusion and future directions.

62



4.2 Related Works

The work presented in [57], uses a distributed cross-domain resource orchestration (DIRECT)

for cellular edge computing considering the radio and computing resources of a radio access

network and multiple edge servers. The formulated resource orchestration problem takes the

perspective of the network operator with the objective of maximizing the sum utility of network

slices on all edge nodes. Assuming unknown utility functions, the authors propose a learning-

assisted resource orchestration based on a probabilistic model with a gradient-based optimization

solution. Authors in [58] show that DIRECT incurs overprovisioning due to ignoring the coupling

between different edge resources. This coupling is modeled as a linear function used in a MILP

to optimally instantiate joint network-MEC slices and prevent resource overprovisioning. In

order to deal with the MILP time complexity, distributed algorithms are proposed to leverage the

similarities among edge nodes and resource virtualization which can instantiate heterogeneous

slices within a short distance from the optimum.

In [59], a multi-tier vehicular edge computing (VEC) system is considered which consists

of three layers of data generation, vehicular edge computing, and remote cloud. The overall

system involves the cooperation of local edge servers with the global cloud servers distributed

over a geographical region. An ML-based prediction is utilized to perform a two-stage process

for the offloading decision, a classification for predicting the offloading success, and a regression

for the service time estimation. While the solution in [59] takes into account static datasets

and models, the authors [60] in propose online multi-armed bandit (MAB) based task offloading

schemes to avoid poor performance when the VEC environment conditions to which the static

models are exposed differ from those used for model training. It is shown that the proposed
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contextual bandit-based algorithm surpasses all other algorithms under the failure rate and QoE

metrics besides achieving adequately comparable service time values. Different from [59] and

[60], we consider an underlying realistic 5G system. Moreover, the workloads in the aforementioned

works are only single tasks, which makes the proposed frameworks not applicable to microservices-

based applications. Authors in [61] developed an emulation software named eXP-RAN, which

allows experimenting with network slicing in virtualized RAN nodes and EC scenarios, with the

key characteristics of slicing abstraction, service representation, and predictable performance.

Compared with existing relevant tools such as EdgeCloudSim [62], eXP-RAN has the ability

to monitor each network slice independently. However, the current version of eXP-RAN only

implements the RAN slicing and it lacks 5G core network implementation. Therefore, its applicability

for a case of a multi-tier computing framework is questionable. Regarding the microservices-

based application deployment in a dynamic environment, the authors in [38] design an RL-

based proactive scheme for the placement and migration of an already placed microservice in

the MEC setup. In contrast to a conservative policy leading to wasteful resource allocation and

a reactive on-demand policy causing high latency, the main contribution of this section is to

learn and synthesize the optimal proactive prefetch, deployment, and migration schedule, given

a microservice workflow by utilizing the user mobility. However, only sequential workflow

structure (linear sequence of microservices) is considered in this study, and no back-end central

cloud is assumed. Moreover, all the microservices invoked by a user can be co-located at one

edge server.
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Figure 4.2: Intelligent Transportation System: Object Detection Application

4.3 Resource Coupling

In this section, we discuss the resource coupling relationship which is exploited in the

resource allocation scheme. We consider two video analytics use cases in two different industry

verticals. The first one is in video surveillance and the second one in ITS. Fig. 3.1 shows the

structure of the video surveillance use case i.e. watchlist application, which uses face recognition

technology to identify individuals seen in front of a camera. Fig. 4.2 shows object detection

application, which is used in ITS to detect objects like cars and even people e.g. pedestrians, and

build higher-level applications like accident prevention, safety alerting, traffic control, etc.

We now illustrate the impact of the network and compute resources on the performance

of the above applications. In Fig. 4.3 and 4.4, the performance of the watchlist application in

terms of face detection accuracy is evaluated for two sample videos as the allocated CPU cores to

the face-detection function and the network bandwidth for the input streams of the video sensor

ingress function vary. Fig. 4.5 and 4.6 show the performance of the object (person) detection

application in terms of the detection score for two sample videos. In Fig. 4.7, the performance

of the object detection application for a car detection task is illustrated for different compute and
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network availabilities. It is important to note that in all cases, the performance of the application

is controlled by both network and compute resource usage. As a result, in order to avoid resource

overprovisioning and meet application requirements, this coupling effect should be considered

when deploying the application. Thus, it is observed that although the general pattern is similar

in different experiments (increasing compute and network improves the performance in most of

the cases), the coupling relationship is application-specific and even within an application, it is

non-linear and therefore not trivial.

In the following, we clarify the coupling relationships and how they can be utilized to

optimize the resource allocation decision or enhance the application performance through three

specific operation instances of experiment 1-1 (Fig. 4.3). Suppose that initially, the watchlist

application is operating at point P1 = (0.5 core, 10Mbps). If the network experiences congestion

(network is a bottleneck) and the bandwidth drops from 10Mbps to 4Mbps, the system is forced

to operate at point P2 = (0.5 core, 4 Mbps), and the performance of the application drops from

83% to 71%. In this scenario, if there exists idle compute, the performance can be improved

by increasing the allocated CPU cores to 1 core and moving to P3 = (1 core, 4 Mbps). In an

inverse order, if the system is initially deployed at P3 with the performance of 83% and suddenly

the available compute resource reduces (compute is a bottleneck), the performance degrades by

12% by moving from P3 to P2. In this case, allocating more network bandwidth to the incoming

video stream changes the operating point to P1, thus performance remains unchanged. In each

of the aforementioned cases, there is a tradeoff between network and compute usage which

can be exploited to avoid performance degradation by taking into account resource coupling

relationships in the application resource orchestration and devising a joint network and compute

resource allocation scheme.
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Now consider a third case in which the system is operating at point P4 = (1 core, 10Mbps)

initially. It is observed that the allocated compute resource can be reduced to 0.5 core by

moving to P1 = (0.5 core, 10 Mbps) without affecting the performance, thus avoiding resource

overprovisioning. The released CPU cores can be allocated to other services deployed on the

same node, which enhances the resource utilization and the performance of other deployed

applications. Another option is to reduce the network usage from 10 Mbps to 4 Mbps and

reduce even more to 2 Mbps by moving to point P5 = (1 core, 2 Mbps), without affecting the

application accuracy. Further reduction of network bandwidth will result in significant accuracy

degradation and thus should be avoided. Therefore, even though neither network nor compute

resources become scarce, there may exist multiple paths or options to save on different resources

and avoid overprovisioning while keeping the performance unchanged or within an acceptable

range. The decision on which path (operational point) to opt for depends on the objective of the

application manager and the state of the resources. In the following, we propose an optimization-

based decision making process for application deployment incorporating the resource coupling

relationships.

4.4 Optimization-based Resource Orchestration

4.4.1 System Model

In the sequel, we present the system model. The physical infrastructure consists of computing

nodes distributed across multiple layers, at the edge, and at a central cloud. At each compute tier,

compute slicing is possible for the allocation of the resources to different applications. LetM

represent the set of compute nodes. Each compute node m ∈ M is characterized by the tuple
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Figure 4.3: Exp 1-1 - Watchlist

Figure 4.4: Exp 1-2 - Watchlist
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Figure 4.5: Exp 2-1 - Object (person) detection

Figure 4.6: Exp 2-2 - Object (person) detection
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Figure 4.7: Exp 2-3 - Object (car) detection

(gm, tierm), where gm and tierm denote the vector of available resources and the associated tier

(e.g. IoT device, far edge, near edge, central cloud), respectively. Assuming that each node

m ∈ M provides T different resources represented by set T , the size of gm is T . For instance,

T = {net, com} specifies a scenario with the consideration of two resource types (network and

computation) for nodes. In that case, gm ∈ [0,∞)× [0,∞). While our proposed approach can be

easily extended to an arbitrary set of resources, in this section, we consider network and compute

resources, i.e. T = {com, net}.

We model an application as a set of microservices or functions and interconnections that

represent the data dependency between functions. An application is specified by a tuple R =

(τ, ω), where τ and ω stand for the required end-to-end delay and throughput of the application,

respectively. Let G = (V,E) be the graph representing the application, where V denotes the set

of application functions and E represents the interconnections between functions. Furthermore,
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Rv = (τv, ωv) denotes the portion of the delay and throughput corresponding to node (function)

v. Moreover, tierv denotes the tier on which function v should run, if such constraints exists for

function v. For instance, there might exist constraints on some functions of the mobile application

(such as in user-initiated applications) to run locally (on the user equipment). Given the function

level performance metrics {Rv, v ∈ V }, we assume that the rules defining the application level

performance metrics are known. One challenge in this regard is to determine the set of functions

contributing to each of the end-to-end application performance metrics (a.k.a the critical path

or pipeline of the application). For the sake of simplicity, we assume that the knowledge about

the contributing functions to each performance metric is available by the application developer

similar to [63]. For instance, given the functions of the critical path of G as Vcritical ∈ V , we can

calculate the end-to-end application delay as hdelay(τ1, ..., τ|V |) =
∑

v∈Vcritical
τv. Similarly, the

throughput rule is computed as hthroughput(ω1, ..., ω|V |) = minv∈Vcritical
ωv.

In order to successfully and optimally deploy an application given its end-to-end performance

requirements, it is important to understand the coupling between the usage of different resources.

Let p denote the desired application performance, e.g. p can be the detection accuracy in the

watchlist application. To address the impact of the network and compute resources on the

application performance, we define f t,t′

v,v′(x, p) : R −→ R, v, v′ ∈ V , t, t′ ∈ T as the minimum

resource unit of type t′ that should be allocated to function v′ in order to achieve the application

performance of p, given that x units of resource type t is allocated to function v. In fact,

f t,t′

v,v′(., .) reflects the coupling relationship between each pair of resources allocated to all pairs

of application functions. Even for the same function i.e. when v = v′, the coupling relationship

between different types of resources is reflected through the defined function as well. For instance,

given that the input streams of the function F2 of the watchlist application in Fig. 3.1 consume
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x Mbps network, the minimum number of CPU cores that should be allocated to F2 in order to

achieve an accuracy of p is equal to fnet,com
2,2 (x, p). As a numerical example, for the watchlist

application of Fig. 3.1, it can be observed from Fig. 4.3 that fnet,com
1,2 (10, 80) = 0.75, i.e. in order

to have the accuracy of 80% when the available network bandwidth for the video stream input of

F1 is 10Mbps, it suffices to allocate 0.75 CPU core to the face detection function F2.

We model the application deployment problem across a multi-tiered compute and network

fabric as an optimization problem. We then discuss the usage of different models for coupling

relationships.

4.4.2 Problem Formulation

The application resource allocation and performance optimization problem entails the assignment

of microservices to the compute nodes in M (a.k.a. placement problem) and the allocation of

different resources to each function, such that end-to-end application requirements (e.g. delay

and throughput) are satisfied. We model this problem as a multi-objective optimization problem,

with the objective of minimizing the total resource usage (equivalently, the deployment cost)

and maximizing the application performance, by incorporating the resource coupling functions

introduced in Section 4.3. By designing a joint optimization problem with two objective terms,

the tradeoff between performance and resource usage illustrated in the examples of Section 4.3

is also captured. The following decision variables are defined for the problem formulation:

• xv,m ∈ {0, 1}: a binary decision variable for function placement which is equal to 1 if

the function v of the application is assigned to the substrate node m for execution and 0

otherwise.
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• ytv,m ∈ [0, gtm]: a continuous decision variable denoting the amount of resource type t of

node m allocated to function v.

• p ∈ [0, pmax]: a continuous decision variable representing the application performance, e.g.

the face recognition accuracy or object detection score.

The resulting optimization problem is as follows:

[P2] minimize η
∑
t∈T

∑
v∈V

∑
m∈M

ytv,m − (1− η)p (4.1)

s.t.∑
m∈M

xv,mf
t,t′

v,v′(y
t
v,m, p) ≤

∑
m∈M

xv′,my
t′

v′,m, ∀v, v′ ∈ V, t, t′ ∈ T (4.2)

ytv,m ≤ gtmxv,m, ∀t ∈ T ,m ∈M, v ∈ V (4.3)∑
v∈V

ytv,m ≤ gtm,∀t ∈ T ,m ∈M (4.4)

∑
m∈M|tierv=tierm

xv,m = 1, ∀v ∈ V (4.5)

τ ≥ hdelay(τ1, ..., τ|V |) (4.6)

ω ≤ hthroughput(ω1, ..., ω|V |) (4.7)

xv,m ∈ {0, 1},∀v ∈ V,m ∈M

0 ≤ ytv,m ≤ gtm,∀v ∈ V,m ∈M, t ∈ T , 0 ≤ p ≤ pmax (4.8)

In the objective function (4.1), η is a parameter between 0 and 1 used to control the balance

between the two objective terms. In our experiments, we tested different values for η and selected

a small value to promote a solution that primarily enhances the performance and minimizes the
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total consumed resources. Constraints (4.2) ensure that the resources allocated to each application

microservice is greater than or equal to the required minimum amount (given by the defined

coupling functions) to potentially achieve the performance of p. For instance, the resource type

t′ allocated to function v′ which is equal to
∑

m∈M xv′,my
t′

v′,m should be greater than or equal to∑
mM xv,mf

t,t′

v,v′(y
t
v,m, p) for all t, v. This constraint together with the objective of minimizing

total used resources results in a solution that avoids resource overprovisioning. The set of

inequalities in (4.3) and (4.4) enforce the infrastructure capacity constraints. Constraints (4.5)

ensure that each function of an application is deployed at one infrastructure node. The application

end-to-end performance requirements are guaranteed by constraints (4.6) and (4.7). Finally, the

domain constraints are expressed in (4.8), where pmax is the maximum observed performance for

a specific application in all resource allocation vectors. The optimization problem [P2] is a mixed

integer nonlinear program (MINLP) owning to the constraints (4.2) and the integer variables, thus

an NP-hard problem. In the next section, we discuss the models for the coupling functions and

solve a special case of [P2].

4.4.3 Modeling the Resource Coupling Relationships

In this section, we discuss different models that we can use for the coupling functions. The

first one is a linear regression modeled as f t,t′

v,v′(y, p) = αt,t′

v,v′y + βt,t′

v,v′p + γt,t′

v,v′ . The parameters

αt,t′ , βt,t′ , γt,t′ are obtained using the historical data collected in an offline manner. It is important

to note that while we employ linear regression in this section for modeling resource couplings,

it is possible to use other models such as a support vector regressor (SVR) or a multilayer

perceptron (MLP) resulting in better prediction performance. However, the benefit of linear

74



Table 4.1: Performance Comparison of Linear Regression, SVR, and MLP Models for Resource
Coupling Functions

Instance
MAE

Lin SVR MLP
MSE

Lin SVR MLP
RMSE

Lin SVR MLP
Exp 1-1, f com,net

2,1 1.1 0.7 0.09 2.6 3.2 0.01 1.6 1.7 0.1
Exp 1-1, fnet,com

1,2 0.36 0.4 0.17 0.17 0.37 0.04 0.47 0.65 0.21
Exp 2-2, f com,net

2,1 2.2 1.2 0.4 10.4 3.2 0.4 3.2 1.8 0.61
Exp 2-2, fnet,com

1,2 1.7 1.17 0.09 6.4 5.6 3.7 2.5 2.8 1.9

Exp 2-3, f com,net
2,1 1.35 0.79 0.03 4.16 5.43 0.002 2.04 2.33 0.053

Exp 2-3, fnet,com
1,2 2.05 2.58 0.57 7.94 15.71 0.64 2.81 3.96 0.80

regression models is that if the placement variables xv,m are assumed to be known, the resource

allocation problem [P2] becomes a linear program (LP) for which efficient algorithms exist to

generate the optimal solution in polynomial time. Table 4.1 presents the performance of different

regression models, for six coupling function examples of the watchlist and object detection

applications, with coupling data shown in Fig. 4.3, 4.6 and 4.7. We use the polynomial kernel

for the SVR model with γ parameter of 10 and the MLP has a hidden layer of size 100 and uses

relu as an activation function. It can be observed that the MLP regression model outperforms the

SVR and linear regression models. However, the linear model is simple and useful for a special

case of [P2] to become a LP as discussed earlier. In Section 4.4.4, we illustrate that the usage of

the linear model for the coupling functions results in significant resource saving although it has

limited prediction capability compared to SVR and MLP models.

4.4.4 Numerical Results

Our experimental setup is shown in Fig. 4.8, where we have wireless gateways from

Multitech [64] and Access Point (AP) from Celona [65]. User Equipment (UE) connects over

private 5G to AP. 5G core and MEC servers are in our internal LAN and the core is remotely
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Figure 4.8: Experimental Setup

configured using Celona’s Service Orchestrator. Control and Data plane traffic from AP is

terminated at the core. In our MEC setup, we have one master and three worker node servers. The

master node is equipped with a 10-core Intel core i9 CPU and the three worker nodes are equipped

with 24-core Intel CPU and with NVIDIA RTX 2080 Ti GPUs. Kubernetes [66] cluster is set

up on our MEC servers and both our use cases i.e. video surveillance (watchlist application) and

intelligent transportation systems (object detection application) run within pods in Kubernetes.

Each function runs as a separate pod and multiple replicas of these pods are created, as necessary.

We stream videos from a video server using ffmpeg [67] and they are processed in MEC servers

on a Kubernetes cluster, within pods. We use GNU Linear Programming Kit (GLPK) [68] solver

for the optimization problem.

We present our experimental results for the two use cases i.e. video surveillance and

intelligent transportation system. The baseline of the proposed resource orchestration framework

for microservices-based applications (referred to as ROMA) against a static solution that ignores

the introduced coupling relationships in the resource orchestration phase.
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Figure 4.9: Performance of Watchlist Application: Detection Accuracy

Figure 4.10: Performance of Watchlist Application: Resource Usage
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Figure 4.11: Performance of Watchlist Application: Detection Accuracy

Figure 4.12: Performance of Watchlist Application: Resource Usage
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4.4.4.1 Video Surveillance

For the video surveillance use case, we deploy the watchlist application depicted in Fig.

3.1. We consider a sample video including different people and compare the performance of two

resource allocation strategies, ROMA and a static allocation in which the amount of computing

allocated to the face detection function is fixed to 2 cores. The results are averaged over 3 runs.

Fig. 4.9 shows the average application accuracy as the network experiences congestion and the

bandwidth drops from 10 Mbps to 0.05 Mbps. In Fig. 4.10, the compute resource usage is

compared for the two schemes as the network bandwidth changes. It is observed that compared

to the static resource allocation scheme, ROMA is able to reduce the compute resource usage

up to 90%, hence preventing overprovisioning while maintaining the application accuracy, by

exploiting the network-compute coupling relationship. It is important to note that the slight

variation in the application accuracies in Fig. 4.9 is mainly due to the fact that different sets of

frames may be processed in each case because some frames are dropped by the video ingress

function until the CPU is released to process the next frame, and that is why we need to average

the results over multiple runs. Similar results are shown in Fig. 4.11 and 4.12 when the compute

resource changes, and the application accuracy and network resource usage are compared for

ROMA and the static scheme. In particular, according to Fig 4.12, ROMA reduces the bandwidth

up to 80% while the application accuracy remains acceptable.

4.4.4.2 ITS

In this experiment, we implement the object detection application shown in Fig. 4.2. We

consider the used videos in Exp 2-2 and Exp 2-3 in Fig 4.6 and 4.7. The goal is to detect the
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person or car objects in the videos. Fig. 4.13 demonstrates the application performance in terms

of the object detection score, which we define next. The amount of used compute resource, as the

network condition changes is also shown in Fig 4.14. Since not all the video frames are processed

at each experiment instance, and because the number of objects differs in various video frames,

we define the following weighted score (which is different from confidence score) for the object

detection application:

score =
∑

f∈FRAME

wf
TPf

GTf

(4.9)

where f, TPf and GTf denote the frame index, the number of true positives in frame f and the

number of ground truth objects in frame f . Moreover, FRAME denotes the set of processed

frames. We use the intersection over union (IoU) metric to measure the overlap between the

detected and ground truth bounding boxes. The IoU threshold is predefined as 0.5 and the

predictions with an IoU of 0.5 and above are classified as TP. Fig. 4.13 and 4.14 illustrate

that ROMA trades off a small degree of performance for significant compute resource saving by

leveraging the network-compute coupling relationship in the resource allocation. The amount

of compute resource usage is reduced up to 50% in this case. In Fig. 4.15 and 4.16, the

object detection score and the network resource usage are shown respectively as the available

compute resource varies. It is observed that ROMA outperforms the static scheme in terms

of compute resource usage by saving up to 95% of the network bandwidth (in the case that the

available number of CPU cores is 1), while the object detection score is comparable with the over-

provisioned static solution. We now discuss the same results for the car detection application.

According to Fig. 4.17 and 4.18, as the network bandwidth varies, ROMA is able to save on
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Figure 4.13: Performance of Object (person) Detection Application: Detection Score

Figure 4.14: Performance of Object (person) Detection Application: Resource Usage
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Figure 4.15: Performance of Object (person) Detection Application: Detection Score

Figure 4.16: Performance of Object (person) Detection Application: Resource Usage
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Figure 4.17: Performance of Object (car) Detection Application: Detection Score

the compute resource usage up to 44% compared to the static approach. The detection score

remains within an acceptable range of the static solution except for the single case of 0.25 cores.

From Fig. 4.19 and 4.20, as the compute resource changes from 16 cores to 2 cores for the car

detection experiment, the network bandwidth is remarkably saved up to 75% in the case with

2 cores.

4.5 Dynamic Reservation of Resources by using Reinforcement Learning

In this section, we propose a Reinforcement Learning-based online method to dynamically

adjust an application’s compute and network resource reservations to minimize under-utilization

of requested resources while ensuring acceptable service quality metrics. We observe that a

complex application-specific coupling exists between the compute and network usage of an

application. In the method presented in Section 4.4, an offline pre-processing is required to
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Figure 4.18: Performance of Object (car) Detection Application: Resource Usage

Figure 4.19: Performance of Object (car) Detection Application: Detection Score
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Figure 4.20: Performance of Object (car) Detection Application: Resource Usage

learn the application-specific coupling functions and then use them in the resource allocation

phase. The coupling relationship derivation problem becomes even more severe at a large-scale

deployment e.g. city-scale as shown in Fig. 4.21, when there are hundreds to thousands of IoT

sensors, each continuously producing data stream, which needs to be transmitted over 5G for

local/remote processing. In such scenarios, managing function-level resources for processing all

these data streams in a dynamic environment is a very challenging task. Our proposed method in

this section learns these coupling functions during the operation of the service, and dynamically

modulates the compute and network resource requests to minimize under-utilization of reserved

resources.

We now discuss the motivation behind dynamic resource reservation for microservices-

based video analytics applications. Fig. 4.22a and Fig. 4.22b show the required compute and

network resources for the object detection pipeline of Fig. 3.4 and for a real-world video that has

a varying number of objects (traffic participants like vehicles, pedestrians, etc.) in different video
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Figure 4.21: City-scale IoT Sensors Deployment

frames. We also show the number of cores allocated to the object detection microservice, and

the network bandwidth required to stream the video. We denote the strategy of one-time fixed

resource reservation (assuming infrastructure is able to support this) as ”static” in the rest of this

section.

4.5.1 Impact of Environment and Stream Content on Resources Required

Fig. 4.22a shows that the required network bandwidth (in Mbps) for the transportation

video stream varies over time. Typically, when the video stream does not have much variation

across frames, the network bitrate drops, while if there is significant variation in the video stream

from one frame to another, then the bitrate is high. For example, in nighttime conditions, when

there is not much activity going on, the bitrate drops, while for the same camera, during the

daytime when lots of people are walking around, the network bitrate goes high. This is an artifact

of the way network cameras encode, compress, and stream videos. Such variation in the network
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(a) Network Resource Requirement

(b) Compute Resource Requirement

Figure 4.22: Impact of Environment and Video Stream Content on Resources Required
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bitrate can be leveraged in appropriately reserving network resources. Instead of one-time, fixed

network reservation, we can adjust the network resources dynamically as the environment and

stream content i.e. scene in front of the camera changes.

As the network bandwidth usage varies, we also observe a variation in the compute resources

required to process the video stream. Fig. 4.22b shows the minimum amount of compute

resources required to achieve similar accuracy as over-provisioned, a fixed amount of compute

resources. We observe that there is an opportunity to save on compute, without impacting

application accuracy. For example, at about 150 seconds into the video stream, the network

bitrate drops, and at that time, the amount of required compute also goes down. It does not

benefit the application to reserve more compute resources because there is not much content to

process. Thus, we can save on compute resources in reaction to changes in the environment and

stream content, without impacting application accuracy.

4.5.2 Impact of Dynamic Infrastructure on Resources Required

In Section 4.5.1, we studied the impact of environment and stream content on the resources

required by an application by assuming that the infrastructure can adequately satisfy the resource

requests at all times. However, in practice, this may not be the case always. Since the infrastructure

is common and is shared across multiple applications, it is not always possible for the infrastructure

to satisfy all resource requests. In this section, we study the impact of changes in infrastructure

conditions on resource requests by an application.

In Fig. 4.23a and 4.23b, we show the case when infrastructure is not abundant for the

network as well as compute resources. This infrastructure condition is depicted as “Available”,
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(a) Network Resources Required vs. Resources Made available by Infrastructure

(b) Compute Resources Required

Figure 4.23: Impact of Dynamic Infrastructure on Resources Required
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which is the maximum network or compute infrastructure available (shown in light green color

in Fig. 4.23a and 4.23b). Now, the application can only reserve within these infrastructure

limits. The number of resources required by the application (within the “Available” resources)

is denoted as “Proposed”. We observe that changes in infrastructure conditions directly impact

the reservations that an application can make. For example, at around 120 seconds, when the

available network from the infrastructure drops and even though the application would have

desired to have a higher network reservation, the infrastructure is not able to provide it, then

there is no point in reserving high compute, even though the infrastructure can provide it. Here

we see that the “Proposed” compute resource goes down. Thus in these scenarios, reserving lower

compute than what the infrastructure can provide, will save on the compute resource reservation.

This is true vice versa as well i.e. if the compute that the infrastructure can provide drops, even

though the application would have desired to be higher, then there is no point in reserving a high

network because there isn’t enough compute available to process the additional content. Thus,

we see that infrastructure conditions do impact required resources and we can save on compute

and/or network in reaction to changes in infrastructure conditions.

4.5.3 System Model

In this section, we present our system model. Given a multi-tiered infrastructure consisting

of computing nodes at different tiers (edge, and central cloud), the reservation of the resources to

different applications is realized through slicing. LetM and T denote the set of compute nodes

and the set of different resource types on each node respectively. Each node m ∈M is specified

by (gm, tierm), where gm = [gtm, t ∈ T ] is the vector of available resources, and tierm denotes
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the associated tier.

We model an application as a set of functions or microservices and interconnections that

represent the data dependency between functions. Let G = (V,E) be the graph representing

the application, where V denotes the set of functions in the application and E represents the

interconnections (data dependency) between functions. Furthermore, Rv = (ωv, Cv) denotes

function v’s requirements, where ωv and Cv = (coremin,v, tierv) are the networking and computing

requirements. Our goal is to optimize the resource reservation for different functions and interconnections

between them such that the overall application performance is maximized with a minimum

amount of total resources.

4.5.4 Problem Formulation

Since the demands for different resources fluctuate over time as discussed in the previous

section, a dynamic resource allocation approach is necessary to address the adjustments in the

resource usage or placement decisions, taking into account the resource coupling relationships.

We propose an RL-based orchestration system that automatically derives the resource coupling

relationship and selects the best action periodically. We compared Q-learning and SARSA [69]

algorithms and found that the learned model by SARSA has better performance. We assume

that the available amount of resource t on node m is quantized into L levels, denoted by the set

Gtm = {gtm,1, ..., g
t
m,L}. Let ytv,m denote the amount of resource t ∈ T of node m ∈ M allocated

to function v ∈ V . A valid resource allocation solution must satisfy node capacity constraints
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Figure 4.24: System Design for RL-based Resource Reservation

given by:

ytv,m ≤ gtm, ∀t ∈ T , v ∈ V,m ∈M (4.10)

We formulate the resource allocation problem as an episodic RL algorithm so that the infrastructure

nodes’ capacities are not violated. Our system design is shown in Fig. 4.24. We formulate the

decision making process as an MDP, denoted by the tuple < o, a, r >, which is detailed as

follows:

• State representation The state of the system at time step i is represented by the tuple
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oi = ({gt,im ∈ Gtm,m ∈ M, t ∈ T }, {yt,iv,m, v ∈ V,m ∈ M, t ∈ T }). In this section,

we assume that the function placement decisions are given according to heuristic solutions

such as [63], and focus on the resource allocation problem. As a result, the size of state

space is also reduced.

• Action representation An action is a valid resource reservation that determines the number

of resources that an infrastructure node hosting an application microservice consumes. We

define the action set to include A = 5|V | actions capturing the five possible actions for

each function: (a) increase/decrease the allocated network/compute resources, or (b) not

change compute and network reservations.

• Reward function In RL, the learning agent improves its performance by constantly receiving

rewards from the environment. To increase the probability of good actions, a positive

reward is returned for valid actions. To this end, we define di =
αpi+1∑

t,v,m βty
t,i+1
v,m
− αpi∑

t,v,m βty
t,i
v,m

where pi is the performance metric of the target application (object detection score defined

in Section 3.6 for an object detection application). The parameters α and βt’s are used for

the tradeoff between compute, network, and performance metric. di has a positive value

only if the difference between the fraction of performance over total used resources from

step i to i+ 1 is positive. The RL reward function is defined as follows:

ri = r(oi, ai, ai+1) =


di if (4.10)

-H ow

where H is a large positive number. In other words, the agent receives a penalty if it
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reserves resources such that the capacity constraint for infrastructure nodes is violated.

We use SARSA algorithm which is an on-policy technique in which the Q-values are updated as

follows:

Q(oi, ai)←− Q(oi, ai) + α[ri + γQ(oi+1, ai+1)−Q(oi, ai)] (4.11)

At each time step, the agent computes and stores the Q values in a Q-table which can be regarded

as a long-term reward.

Algorithm 2 SARSA method for Dynamic Resource Reservation of Multi-Component
Applications

1: Initialize Q(o, a)
2: for each episode do
3: Choose a random state oi
4: Choose ai from oi derived from Q(o, a)
5: for each step do
6: Execute ai, observe reward ri and next state oi+1

7: Choose ai+1 from oi+1 derived from Q(o, a)
8: Update Q(oi, ai) from (4.11)
9: end for

10: end for

4.5.5 Numerical Results

We benchmark the RL resource orchestration solution, against a static resource reservation

scheme, which ignores the coupling between resources and environmental changes. We also

compare the performance of the RL solution with the ROMA solution presented in Section 4.4 in

an offline setting. Furthermore, we show the effectiveness of our technique in an online setting

on a real-world video analytics application. The experimental setup is the same as Section 4.4.

We present our results for the ITS use case. The goal is to detect vehicles or pedestrians in
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(a) Exp 1: Compute Resource Reservation

(b) Exp 1: Network Resource Reservation

(c) Exp 1: Object Detection Score

Figure 4.25: Performance of Object (car) Detection Application under Network Variation:
SARSA vs. ROMA
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(a) Exp 2: Compute Resource Reservation

(b) Exp 2: Network Resource Reservation

(c) Exp2: Object Detection Score

Figure 4.26: Performance of Object (car) Detection Application under Compute Variation:
SARSA vs. ROMA
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the video streams.

4.5.5.1 Performance Comparison: Available, ROMA and SARSA

We implement the proposed RL-based resource reservation approach (denoted as SARSA)

for a car detection application and evaluate its capability to capture the non-linear resource

coupling relationships and save on resource reservation. For application accuracy metric, we

define a weighted object detection score (different from confidence score) as object detection score =∑
f∈FRAME wf

TPf

GTf
, where f is the frame index, FRAME is the set of processed frames, TPf

is the number of true positive objects and GTf is the number of objects in ground truth in frame

f . For TP classification, we use intersection over union (IoU) metric to measure the overlap

between detected and ground truth objects and detections with IoU over 0.5 are considered as

TP. We consider two different experiments and in each experiment, we consider several scenarios

with given available compute and network resources.

Experiment 1: In this experiment, we consider 8 scenarios in which the available compute is

fixed and the available network is reduced gradually (network becomes bottleneck). Fig. 4.25a,

4.25b and 4.25c illustrate the compute and network reservation and the object detection score

respectively. We see that across all scenarios, the object detection score (shown in Fig. 4.25c)

for SARSA is comparable or slightly lower than “Available”, which is when available compute

and network is used. Now, for such good application accuracy, we see that SARSA reserves

significantly less network resource (shown in Fig. 4.25b) than maximum available and when

the available network is really low, SARSA also brings down the compute (scenario 7 in Fig.

4.25a) reservation. Compared to ROMA, SARSA has better accuracy, saves a lot on network
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but looses slightly on compute. Thus, we see that for similar or slightly lower application

accuracy compared to “Available”, SARSA is able to save a lot on compute and network resource

reservation.

Experiment 2: In this experiment, we consider 4 scenarios in which we fix the available network

resources and gradually reduce the available compute resources (compute becomes bottleneck).

Fig. 4.26a, 4.26b and 4.26c illustrate the compute and network reservation and the object detection

score respectively. Again, we see that SARSA has comparable or slightly lower object detection

score (shown in Fig. 4.26c) than “Available”. SARSA achieves this similar application accuracy

at significantly lower network reservation (shown in Fig. 4.26b). The compute reservation by

SARSA (and ROMA) is same as the “Available”. Compared to ROMA, SARSA saves a lot

on network resource reservation and most of the time gives better application accuracy, while

compute reservation is the same. Thus, we see that for similar or slightly lower application

accuracy compared to “Available”, SARSA is able to save significant network reservation.

4.5.5.2 Performance of SARSA in an Online Setup

In this section, we evaluate performance of SARSA in an online setup where available

compute and network varies over time based on a discrete uniform distribution on compute

and network space. We run 15 experiments and observed that on average, SARSA reserves

upto 93% less network and 65% less compute resources than “Available” compute and network

resources. Fig. 4.27a, 4.27b, and 4.27c illustrate the compute and network reservation and the

object detection score respectively for a single run. We see that for almost same object detection

score (shown in Fig. 4.27c), SARSA saves on network and compute resource upto 50% and 95%,

98



(a) Compute Resource Reservation

(b) Network Resource Reservation

(c) Object Detection Score

Figure 4.27: Performance of SARSA for Object (person) Detection Application
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respectively. Thus, in real-world deployment, we show that our Reinforcement Learning-based

online technique is quite effective in capturing the compute and network coupling relationship

and is able to significantly reduce network and compute resource reservation.

4.6 Conclusion

In this chapter, we introduce a novel method to solve the resource orchestration problem of

multi-component applications from the perspective of application developers, based on resource

coupling relationships. The introduced resource coupling modeling captures the inter-relation

between the usage of different resources and its impact on an application performance. By

exploiting resource coupling relationships, we propose a framework for the deployment of microservices-

based 5G applications in a dynamic, heterogeneous, multi-tiered compute and network infrastructure.

Our proposed solution ensure optimal deployment, such that end-to-end application requirements

are met. By implementing two real-world IoT applications, one in video surveillance domain

and another one in intelligent transportation systems domain, we show that our solution is able

to reduce compute and network resource usage remarkably while maintaining the application

performance.
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Chapter 5: Mobile Network Performance Enhancement using Aerial Relaying

Systems

5.1 Overview

Over the past decade, UAVs have been adopted in a broad range of application domains,

due to their autonomy, high mobility, and low cost. Historically, UAVs have been primarily used

in the military, usually deployed in hostile territory to reduce the risk for aircrew. Recent advances

in UAV technologies have made them more affordable and accessible to civilian and commercial

applications such as cargo transport, emergency search and rescue, precision agriculture, commercial

package deliveries, etc. Moreover, UAVs are seen as a promising solution for next-generation

wireless networks because of their inherent advantages, including flexible and fast deployment

and reconfiguration, as well as a higher chance of having line-of-sight (LoS) links leading to

less impaired communication channels compared to terrestrial wireless communication systems.

According to a report from Federal Aviation Administration (FAA), the fleet of drones will

be more than doubled from an estimated 1.1 million vehicles in 2017 to 2.4 million units by

2022 [70].
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Figure 5.1: Application Scenarios of UAV-aided Networks

According to [70], UAV-aided wireless communications can fall into three representative

categories of use cases; (i) UAV-aided ubiquitous coverage, (ii) UAV-aided information dissemination

and data collection, and (iii) UAV-aided relaying. Focusing on the latter, communication relaying

is an effective technique for network coverage extension and throughput maximization. However,

a number of key challenges should be addressed in order to use UAVs as mobile relaying nodes,

providing broadband communication to users (or user groups) without direct and/or reliable

communication links (e.g., in disaster-hit or rural areas [71]). First, efficient algorithms should

be devised to place UAVs in a 3D space. The mobility of the UAVs introduces new challenges

to the network design problem compared to the traditional static relaying and fixed infrastructure

schemes (e.g. WiFi access points). Moreover, in order to cover large geographical areas and

because of the limited transmission range of UAVs, a swarm of UAVs is needed to route users’

traffic demands through wireless multi-hop path(s). Due to the intermittent wireless links and

frequent topology changes in such mobile ad hoc networks (MANETs), the traffic routing decision
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should be considered together with the UAVs placement and relocation. More importantly, such

decisions should be adaptive to the topology and traffic pattern changes in a timely manner.

In this chapter, we consider an aerial platform consisting of multiple UAVs that supports

the traffic demand of a ground network [72], [71]. Multi-hop relaying in the next generation

of wireless networks will not only facilitate the coverage of more UEs and the support of long-

distance communications but also will be able to handle overloaded networks. Fig. 5.1 illustrates

the architecture and application scenarios of such systems. In contrast to the majority of existing

studies such as [73] and [74] that solely focus on a single UAV relay and the air-to-ground (A2G)

access links with one-hop communication or at most two-hop communications considering also

the UAV-to-BS links in UAV-aided cellular networks (e.g. [75]), we exploit a multi-hop aerial

relaying platform. Moreover, the rate-constrained UAV-to-UAV (or Air-to-Air, A2A) communications

and the connectivity between UAVs are considered in the proposed framework. Although facility

placement and traffic routing are usually addressed sequentially as two separate problems, the

meaningful interrelation between the two makes it more reasonable to approach them in a single

model as shown in other problems such as [76]. Thus, another contribution of this section is

jointly optimizing theUAV placement and the routing decisions, when the ground network is

quasi-static. We also extend our approach to the case of a mobile ground network and consider

the impact of the UAVs’ speed, while most of the existing relaying schemes utilize static relay

nodes due to the practical constraints on relay mobility and the need for high-throughput links.

In order to reduce the system energy consumption and since the propulsion energy consumption

of UAVs is typically significantly greater than the energy consumption for communications [77],

we avoid unnecessary UAVs’ relocation in subsequent snapshots in our solution. The problem

is formulated as MILP. To reduce the time-complexity and enable real time re-positioning of the
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mobile relays and routing decision, we propose an approximation algorithm using LP relaxation

and a rounding procedure. The proposed approach assumes logically centralized network control

i.e., SDN. The controller’s global network view in an SDN architecture, renders centralized UAVs

placement and adaptive routing strategies feasible [78]. The controller may be placed at a remote

ground center, inside the ad hoc network devices as in [79] or at UAVs as shown in Fig 5.1.

The rest of this chapter is organized as follows. Section 5.2 presents the literature review.

We explain system model and problem formulation in Section5.3 and Section 5.4. The numerical

results are given in Section 5.5. Section 5.6 provides the chapter conclusion and future directions.

5.2 Related Work

Deployment of UAVs has extensively been a topic of research with different objectives,

such as the maximization of the downlink (DL) throughput [80], [81] and DL received signal

strength (RSS) [82]. In contrast, we explore a UAV-assisted communication system considering

both uplink (UL) and DL traffic streams. Authors in [83], [84] investigate the usage of UAVs to

maximize the covered area with respect to the UAV altitude, antenna gain and minimum received

power of users. In [85], the coverage probability of a reference ground user is evaluated for a

3D UAV movement process characterized by the RWPM and uniform mobility models. In [86],

authors propose a UAV-assisted cellular network and maximize the revenue, that is proportional to

the number of covered users. However, in order to fully satisfy the QoS requirement of the users

in a multi-hop wireless network, the end-to-end traffic delivery should be considered which is

more challenging than a coverage problem. The required number of aerial UAVs is minimized in

[1], [87]. Authors in [1] propose a UAV placement algorithm taking into account the connectivity
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between UAVs and the clusters demands; however, the constraints on the UAVs mobility and

the A2A links capacity are ignored. Authors in [88] and [78] considered multi-hop wireless

backhauling in UAV-aided networks. In [88], the authors seek to form a multi-hop backhaul

network in the sky connecting small ground base stations through the formation of a bidirectional

tree structure. Different from [88], we consider both A2A and A2G links and jointly optimize

the UAV placement and routing. In [78], the authors optimized the UAV placement, power and

bandwidth allocation in an UAV-enabled multihop backhaul with fixed number of UAVs. In

our case, we minimize the number of deployed UAVs in addition to imposing a constraint on the

maximum number of UAVs. In contrast to [89] which investigates the trajectory design and power

allocation strategies for a single fixed ground source-destination, we consider a general mobile

ground network consisting of multiple traffic flows which make the UAV relays trajectory design

and traffic routing more challenging and out of the scope of the set-up in [89]. Authors in [90]

considering the placement and resource allocation problem of multi UAV relays for a ground

network with multiple traffic flows; however they ignore the mobility of the ground nodes and

how it affects the UAV locations and other decision variables.

5.3 System Model

In this section, the system model is presented followed by problem formulation. We

discretize time and consider a directed graph Gt = (V t, E t) representing the topology of the

ground network at snapshot t. The vertex set V t represents the wireless network nodes and the

edge set E t represents the wireless links. An ordered pair of nodes (u, v) belongs to the edge set

E t if and only if node v can receive data packets directly from node u. We assume that all node-
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to-node communication is unicast, i.e. each packet transmitted by a node u ∈ V t is intended for

a unique v ∈ V t where (u, v) ∈ E t. Each of the wireless links has a maximum capacity cuv. For

the sake of simplicity, the superscript t is dropped in the following.

5.3.1 Radio Propagation Model

We adopt the model proposed in [91] for the A2G propagation model, where two signal

propagation groups are considered; Line-of-Sight(LoS) and Non-Line-of-Sight (NLoS). The latter

corresponds to receivers with no Line-of-Sight but still having coverage via strong reflections and

diffraction. Additional impairments to the radio channel are caused by scattering and shadowing

from the man-made structures in the environment. The occurrence probability of LoS is given

by:

pLoS =
1

1 + aexp(−b(180
π
tan−1( h

rn,l
)− a))

(5.1)

where a and b are constants depending on the environment, h is the UAV altitude and rn,l is the

horizontal euclidean distance between the UAV l and the user equipment (UE) n. The probability

of NLoS is pNLoS = 1− pLoS and the total A2G path loss (in dB) as a function of rn,l and h is:

L(h, rn,l) = pLoSLLoS + pNLoSLNLoS, (5.2)

LLoS = 20log(
4πfcdn,l

c
) + ηLoS,

LNLoS = 20log(
4πfcdn,l

c
) + ηNLoS
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Where fc is the carrier frequency, dn,l =
√

h2 + r2n,l is the distance between UAV l and UE n,

ηLoS and ηNLoS are respectively the average additional losses due to the environment.

We also assume that the A2A links are dominated by LoS components resulting in the

following path loss model:

L(ru,v) = 20log(
4πfcru,v

c
) (5.3)

Assuming that an interference-coordination mechanism among adjacent UAVs and users is

available, the interference is negligible. Consequently, the coverage radii for the A2G and A2A

channels, denoted by R1 and R2, are:

PUE = L(h,R1) + γmin + σ2
n (5.4)

PUAV = 20log(
4πfcR2

c
) + γmin + σ2

n (5.5)

where h denotes the UAVs altitude. The QoS requirement is expressed in terms of the minimum

received SNR at the receiver (γmin), noise power (σn) and maximum transmission power of UAVs

(PUAV ) and users (PUE), where PUE ≤ PUAV .

5.4 Joint UAV Placement and Traffic Routing

There are traffic demands between UEs given by a traffic demand matrix D, where the

element duv denotes the amount of demand from the source UE u to the destination UE v. Due to
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the limited transmission power of the UEs and in order to reduce the control traffic overhead

required for traffic routing in MANETs, the ground network is partitioned into M clusters,

denoted by Ci, i = 1, ...,M . Each cluster has a clusterhead (CH) which functions as a gateway,

relaying the cluster’s total traffic to the aerial platform. Let CHi, i = 1, ...,M denote the ith

clusterhead. Given D, the inter-cluster traffic demand for a pair of clusters and from CHi to CHj

is calculated by:

TDij =
∑

u∈Ci,v∈Cj

duv, ∀i, j ∈ {CH1, ..., CHM}

We denote by i → j, a traffic flow originated from CHi and destined to CHj . The problem

considered in this section entails the optimal placement of at most Nmax available UAVs as relay

nodes to support the traffic demand of the ground clusters. For each flow, i → j, a collection of

aerial multi-hop paths can be used to route the traffic demand of the flow. Multi-hop relaying in

the next generation of wireless networks will not only facilitate the coverage of more UEs, but

also will be able to handle overloaded networks.

Let U = {ui, i = 1, ..., |U|} denote the set of potential locations for UAV placement, where

vi stands for the ith location. Here, we assume that all UAVs are placed at the same altitude h;

however, it is easy to extend the formulation to a 3D UAV placement. The following graphs are

defined for the problem formulation:

Demand Graph We model the connectivity and traffic requirements of the ground clusters by

a directed graph GD = (VD, ED) where, VD = {CH1, ..., CHM} is the set of all CHs, and

(i, j) ∈ ED if and only if the flow i→ j exists for i, j ∈ VD.

Network Graph We introduce a directed graph GP = (VP , EP ) where VP = VD∪U and (u, v) ∈

EP if and only if du,v ≤ R2 for A2A links, and du,v ≤ R1 for A2G links. Given the network and
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Table 5.1: System Model Parameters and Variables

Variables Description
xu Binary decision variable of UAV placement at position u
fuv
ij The amount of (i, j) traffic d assigned to (u, v)
yij Total unsupported traffic of the OD pair (i, j)

Parameters Description
GP = (VP , EP ) The network graph of UAVs and ground cluster heads
GD = (VD, ED) The demand graph

M Number of ground cluster heads
U The set of UAV potential locations

Nmax Available number of UAVs
h UAVs height
D Traffic demand matrix of the ground network

TDij Traffic demand between the CHs i and j
cuv Capacity of the link (u, v)

demand graphs GP ,GD, we formulate the problem at hand considering the following decision

variables:

• A set of binary variables x, where xu is set to 1 if a UAV is deployed at position u ∈ U and

0 otherwise.

• A set of continuous variables f , where f ij
uv is the amount of traffic from OD flow i −→ j

assigned to the link (u, v) ∈ EP .

• A set of continuous variables y, where yij denotes the traffic amount of the OD flow i −→ j

that is not supported (not delivered).

A summary of the system model parameters and variables is given in Table 5.1. The proposed

MILP formulation for the joint UAV placement and traffic routing (UPR MILP) is as follows:
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minimize ϕ

∑
u∈U xu

Nmax

+ (1− ϕ)

∑
(i,j)∈ED yij∑

(i,j)∈ED TDij

(5.6)

Feasibility Constraints:

f ij
uv ≤ xucuv ∀(i, j) ∈ ED, u ∈ U , v ∈ Vp (5.7)

f ij
uv ≤ xvcuv ∀(i, j) ∈ ED, v ∈ U , u ∈ Vp (5.8)∑
u∈U

xu ≤ Nmax (5.9)

Flow Constraints:

∑
v∈VP

(f ij
uv − f ij

vu) =


0 ∀u ∈ VP\{i, j}, (i, j) ∈ VD

TDij − yij u = i, ∀(i, j) ∈ ED

−(TDij − yij) u = j,∀(i, j) ∈ ED

(5.10)

Capacity Constraints:∑
(i,j)∈ED

f ij
uv ≤ cuv ∀(u, v) ∈ EP (5.11)

Domain Constrains:

0 ≤ f ij
uv ∀i, j ∈ VD, u, v ∈ Vp (5.12)

0 ≤ yij ∀(i, j) ∈ ED (5.13)

xu ∈ {0, 1} ∀u ∈ U (5.14)

The objective function (5.6) aims at jointly minimizing the cost of UAV deployment (reflected
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as the number of deployed UAVs) and the total amount of requested traffic that can not be

supported by the network (the total unsupported traffic). We normalize both metrics to be

between 0 and 1 in order to avoid the known problem of different range values in Pareto Analysis

(i.e. one metric has a large value and the other one has a small value). Since we have in

our formulation two performance objectives (minimizing the number of deployed UAVs and

minimizing the unsupported traffic), a full solution of the problem requires the complete tradeoff

analysis between these two metrics and finding the Pareto Points or Pareto Frontier of this tradeoff

problem. To arrive at equation (5.6), we employed what is known as the “scalarization method”

for tradeoff analysis. This method is less computationally intensive. To fully understand the

tradeoff between these two metrics using the scalarization method, we need to vary ϕ between 0

and 1. In this way, we can compute the convexified Pareto Frontier. Indeed in our experiments,

we tested different values for ϕ and selected a relatively small value to promote a solution that

primarily enhances the performance of the network by minimizing the unsupported traffic.

Constraints (5.7) and (5.8) guarantee that the amount of traffic assigned to an A2G link is

nonzero only if a UAV is placed at the aerial end of the link. Constraint (5.9) limits the maximum

number of deployed UAVs, while constraints (5.10) enforce flow conservation, i.e. the sum of

all inbound and outbound traffic for the UAV relays should be zero. Moreover this constraint

ensures that for each OD flow i → j, the inbound (outbound) traffic to j (from i) is TDij − yij

(the amount of supported traffic). Constraints (5.11) ensure that the total traffic assigned to a link

does not exceed its capacity. Finally, (5.12), (5.13) and (5.14) express the domain constraints.
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5.4.1 Problem Formulation with UAV Mobility Constraints

In the case of mobile UEs or dynamic traffic patterns, UPR MILP can be reapplied periodically

in order to update the UAV positions. To consider the effect of UAV’s maximum speed in a

dynamic environment, we add mobility constraints to the optimization problem discussed in the

previous section. The maximum speed of UAVs is represented by vmax and the time duration of

a snapshot is denoted by ∆T . For each ui ∈ U , let Bi ⊂ U denote the set of potential locations

that the UAV deployed in ui can reach in one snapshot, i.e. uj ∈ Bi if di,j ≤ vmax∆T .

Given Bi and the UAV placement decision variables at snapshot t − 1 (xt−1), the UAV

mobility constraints at snapshot t can be expressed as:

∑
uj∈Bi

xt
j ≥ I{xt−1

i =1} (5.15)

Moreover, in order to reduce the propulsion energy consumption of UAVs by avoiding unnecessary

and less-effective UAV relocations in consecutive snapshots, we add another term to the objective

function (5.6). The new objective function is:

(ϕ

∑
u∈U xu

Nmax

+ (1− ϕ)

∑
(i,j)∈ED yij∑

(i,j)∈ED TDij

) + α(maxu|xt
u − xt−1

u |) (5.16)

where α is a constant factor determining the balance between the two terms of the objective

function. Instead of the maximum function in the new objective and in order to get rid of the
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absolute value, we define a scalar variable z and add it to the objective function as follows:

(ϕ

∑
u∈U xu

Nmax

+ (1− ϕ)

∑
(i,j)∈ED yij∑

(i,j)∈ED TDij

) + αz (5.17)

and we add the following set of constraints to the optimization problem:

xt
u − xt−1

u ≤ z ∀u ∈ U (5.18)

xt−1
u − xt

u ≤ z ∀u ∈ U (5.19)

The resulting MILP is referred to as MUPR MILP and is an NP-hard problem. However, the

decision variables have to be determined in real-time, in response to the network changes. In

the subsequent section, we employ an LP-relaxation to deal with the time-complexity of the

MUPR MILP. A greedy rounding approach is used to obtain the binary solution of the original

problem.

5.4.2 Heuristic Algorithm

In this section, we propose a heuristic algorithm in order to handle the time complexity of

MUPR MILP. We derive the LP model of MUPR MILP by relaxing the binary variables xt
u or

replacing the constraint sets (5.14) by:

xt
u ∈ [0, 1],∀u ∈ U (5.20)
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The resulting LP is represented by UPR LP. We also define the set X ⊆ U based on which the

following LP denoted by UPR LP reduced(X ) is defined:

minimize (ϕ

∑
u∈U xt

u

Nmax

+ (1− ϕ)

∑
(i,j)∈ED yij∑

(i,j)∈ED TDij

) + αz (5.21)

s.t (5.7)− (5.12), (5.18), (5.19) (5.22)

xt
u = 1, ∀u ∈ X (5.23)

xt
u ∈ [0, 1] ∀u /∈ X (5.24)

We introduce a rounding-based decision-making process (DM-LP) to retrieve the binary decision

variables of MUPR MILP at each snapshot by solving a sequence of UPR LP reduced(X )

problems iteratively. The proposed solution is shown in Algorithm3. The set X represents

the locations chosen for UAV placement and is updated within each iteration (line (4)). The

final X reflects the UAV placement decision. As explained in lines (7)-(9), UAVs are placed

deterministically with the priority given to the neighboring locations of the deployed UAVs at the

previous snapshot (reflected in the definition of the set S which is constructed by the union of the

sets Bv for v ∈ U : xt−1
v = 1) in order to not violate the mobility constraints. For example, if two

UAVs are placed at locations u1, u2 at snapshot t− 1, the set B1 ∪ B2 is first considered for UAV

placement at snapshot t so that at least one UAV is placed at one of the locations of B1 (similarly

for B2). Once all mobility constraints are satisfied, all the remaining potential UAV locations are

considered for the placement of new UAVs. In both cases, a UAV is deployed at the position with

maximum x value within each iteration (line (9) and (11)). The algorithm terminates when the

addition of a new UAV does not reduce the objective function or makes the problem infeasible,
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i.e. xt
u = 0,∀u ∈ X or equivalently, xt

u∗ = 0. Finally, the routing decisions are automatically

obtained from the f solution of the last iteration. Moreover, the input x is 0 in the first snapshot

meaning that any location in U can initially be considered for UAV placement. It is important

Algorithm 3 DM-LP for Joint UAV Placement and Routing

Input: Gtp, GtD, TDt, xt−1

Output: xt, f , y
1: Initialize X ← ∅, Terminate← False
2: repeat
3: if not first iteration then
4: X ← X ∪ {u∗}
5: end if
6: {xt

u, f
ij
uv} ←−Solve UPR LP reduced(X )

7: S ← ∪{v:xt−1
v =1,v /∈X}{argmaxk∈Bv x

t
k}

8: if S ̸= ∅ then ▷ Mobility constraints are not satisfied
9: u∗ = argmaxu∈S xt

u

10: else ▷ Mobility constraints are satisfied
11: u∗ = argmaxu/∈X xt

u

12: end if
13: if xt

u∗ > 0 then
14: xt

u∗ = 1
15: else
16: Terminate← True
17: end if
18: until Terminate == False
19: return xt, f , y

to note that compared to MUPR MILP which is intractable for large networks, the proposed

approximation algorithm calls the LP solver at most |Nmax| + 1 times. In the next section, we

provide numerical results to evaluate the performance of the proposed approach.

5.5 Numerical Results

In this section, we benchmark out proposed decision-making process, DM-LP, against

the exact solution, denoted as DM-MILP, and the connectivity-based approach proposed in [1],
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namely DM-Conn. We also compare the performance of the mobile and static UAV deployment

approaches. We use the CPLEX commercial solver for solving our MILP model using the

branch-and-bound method, while the method used to solve the LP is primal-dual SIMPLEX.

All experiments are carried out on an Intel Xeon processor at 2.3 GHz with 8GB memory. We

consider a 10km x 10km square region and CHs are distributed according to a Matern cluster

process [34] with the number of clusters changing between 2− 11. The cluster density mean and

cluster radius are 10 and 1000m. We use the Reference Point Group Mobility (RPGM) model

introduced in [92]. In this model, GUs in a cluster tend to coordinate their movement and the

movement of each CH determines the behavior of the entire group. One example of such mobility

is the movement of rescue teams during disaster relief. In our experiments, CHs move according

to RWPM, and their speed is distributed uniformly according to U(5, 40)m/s. We consider a

grid with a total number of 100 points at height h as the potential UAV positions. The ground

network flows are generated according to a Bernoulli distribution with the parameter 0.04 while

the traffic demand for each pair is chosen with equal probability among the values 200, 400, and

600Kbps. Moreover, cuv is set to 5 and 10 Mbps, for A2G and A2A links respectively. Unless

stated otherwise, simulation parameters are provided in Table 5.2.

Table 5.2: Simulation Parameters

Parameters Description
(a, b, ηLoS, ηNLoS) (9.61, 0.16, 1.0, 20.0) for urban environment
UAVs altitude h 2000m

Carrier frequency fc 2GHz
Thermal noise power σ2 -90dBm

SNR threshold γmin -4 dBm
EGU , EUAV 20dBm, 110dBm

vmax 55m/s
Snapshot Duration ∆T 25s

116



Figure 5.2: DM-MILP UAV Placement

5.5.1 Static Ground Network

In this experiment, we consider a fixed network with 9 clusters and a 10×10 UAV location

grid.

Fig. 5.2-5.4 illustrates the UAV placement solution of DM-MILP, DM-LP, and DM-Conn

strategies. It can be observed that all the clusters are covered by UAVs in all three cases. The

number of deployed UAVs in DM-Conn is less than the other two approaches, since D-Conn

only ensures the A2G, A2A connectivity, and A2G link capacity constraints, not the end-to-end

traffic delivery. As a result, the supported traffic of DM-Conn is 67%, while both DM-MILP and

DM-LP fully support the traffic demands in this example. This experiment highlights the need

for joint UAV placement and traffic routing in multi-hop wireless networks.
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Figure 5.3: DM-LP UAV Placement

5.5.2 Mobile Ground Network

In this experiment, the proposed DM-LP is benchmarked against DM-MILP and a static

UAV deployment in a dynamic ground netowrk. Fig. 5.5 depicts the number of relays deployed

based on DM-MILP and DM-LP, as an indicator of the deployment cost. The results are averaged

over 20 snapshots. There are no hard limits imposed on the maximum number of UAVs, i.e. their

number is only constrained by the number of possible UAV positions on the grid. As a result,

traffic demands are fully supported, while the difference in the average number of deployed

UAVs is at most 2 more for the approximation algorithm. With regards to time complexity, as

depicted in Fig. 5.6, DM-MILP follows an exponential growth, whereas the DM-LP method has

an approximately linear time growth with respect to the number of clusters. Under the current

evaluation environment, the real time operation of a network comprised of up to 6 clusters can

be supported. However, DM-LP’s linear time-complexity would guarantee real time support for
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Figure 5.4: DM-Conn UAV Placement [1]

larger network instances with a more powerful system.

Fig. 5.7 shows the average total supported traffic per snapshot for a ground network of 10

clusters, following DM-LP, DM-MILP and a static UAV deployment where the UAVs locations

are obtained from the solution of DM-MILP for the first snapshot. Fig. 5.8 depicts the profile

of the average supported traffic for the same scenarios over snapshots. The results are averaged

over 5 random networks. Overall, the deviation of the DM-LP from the optimal solution is on

average 7% and 5% when Nmax = 5 and Nmax = 6 respectively. Note that 6 UAVs are enough to

fully support the traffic demand of the generated network instances as DM-MILP achieves 100%

traffic support in this experiment. This demonstrates the ability of the proposed LP-based scheme

to generate good solutions, for a limited number of available UAVs. Moreover, a static UAV

deployment with even an optimal initial deployment resulted in a maximum of 40% unsupported

traffic, highlighting the need for a dynamic UAV deployment solution. The four figures together

demonstrate that the DM-LP approach trades only a small degree of optimality for fast retrievable
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Figure 5.5: Number of UAVs: DM-LP vs. DM-MILP

Figure 5.6: Solver Runtime: DM-LP vs DM- MILP
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Figure 5.7: Average Percentage of Supported Traffic

Figure 5.8: Average Percentage of Supported Traffic Profile
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solutions.

5.6 Conclusion

In this chapter, we propose a framework for joint UAV placement and route optimization in

a multi-hop UAV relaying communications system, taking into account the mobility of the ground

nodes, the capacity of A2A and A2G links, UAVs mobility constraints and UAVs propulsion

energy consumption. The proposed method is in contrast to many existing frameworks for

aerial platforms which consider only a single-hop or a two-hop aerial communication, we allow

multi-hop aerial paths to carry the ground traffic. Moreover, we consider the end-to-end traffic

guarantee by imposing capacity and routing constraints in our formulation while most of the

existing solutions study the UAV placement problem with connectivity constraints/objective and

ignore the end-to-end traffic delivery. We model the problem as a MILP, and then propose an

efficient LP-based approximation algorithm to effectively reduce the time complexity of our

model, achieving a near-optimal solution. The numerical simulations provide insights on the

effect the users’ mobility and the dynamic relocation of UAVs on the decision making process

and the service degradation. Among our future directions are to consider the control/management

layer resource allocation problem and investigate the computation offloading and service placement

problem together with the resource allocation in a mobile edge computing setup.
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Chapter 6: Reliable Edge Learning

6.1 Overview

Traditional cloud-based machine learning wherein a remote data center performs training

on a centralized dataset leads to insufficient performance quality for many emerging intelligent

devices and applications. For instance, a controlled UAV in a smart factory or an autonomous

vehicle should always be operational by sensing and reacting rapidly to hazardous situations

in the environment. Moreover, it is very impractical for devices in NGMN to transmit huge

volume of raw data to a remote cloud for central ML, due to communication inefficiency and

privacy concerns. As a result, a novel paradigm change from centralized and cloud-based ML to a

distributed, low-latency, and reliable ML at the network edge has been developed in recent years.

Federated learning (FL) [93] is a new learning framework that enables multiple agents such as

smartphones, sensors, robots, or drones to learn a model (e.g. a neural network) collaboratively,

without exchanging their local data, thereby preserving data privacy to a great extent. To this end,

two FL setups have been proposed in the literature, namely centralized FL and decentralized F.

In the centralized FL, a central server (e.g. a server located at the network edge) collects the

local model updates from all or a subset of agents, aggregates them and generates a global model

which is then fed back to the agents. The process is repeated until a desired accuracy level or an

upper bound on the number of iteration (training time) is achieved. As a leading algorithm in this
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Figure 6.1: Decentralized vs. Centralized FL Model

setting, Federated Averaging (FedAvg) [94] runs stochastic gradient descent (SGD) in parallel

on a small subset of the total agents and averages the local updates only once in a while. In

particular, at each iteration of the algorithm, FedAvg locally performs E epochs of SGD on M

devices, where E is a small constant and M is a small fraction of the total devices in the network.

The devices then communicate their updated model to a central edge-cloud usually co-located

with the BS or wireless access point. The edge-cloud aggregates the received model updates

using a weighted average. The resulting model, namely global model is then shared with the

participating devices.

Despite enhancing the agent’s privacy and network communications efficiency through

exchanging the model updates only instead of the agents’ local data, the main drawbacks of

centralized FL are the lack of scalability, connectivity, and the existence of single-point-of-

failure. Moreover, next-generation networks are expected to be enhanced by new forms of

decentralized and infrastructure-less communication schemes and device-to-device (D2D) multi-
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hop connections such as in UAV-aided networks [72]. Within this scope, novel approaches are

required to address decentralized (server-less) FL. While a number of research activities have

focused on distributed learning algorithms [95], due to the special features of an FL setup in

which the data is generated locally and remains decentralized and because of the communication

efficiency considerations, many existing approaches developed for distributed learning are not

applicable to decentralized FL. Authors in [96] extend the centralized FL approach for massively

dense IoT networks that do not rely on a central server, where the agents perform training steps on

their local data using SGD and consensus-based methods. At each consensus step, agents transmit

their local model update to their one-hop neighbors. Each agent fuses the received messages from

its neighbors and then feeds the result to SGD. Fig. 6.1 shows the architecture of a decentralized

FL setting in contrast to a centralized FL setting. The fact that the information is crowd-sourced

by the FL agents in decentralized FL, highlights the need to establish trust relationships between

the FL agents. More specifically, apart from ensuring the security of communications between

the FL agents, answering the following questions is of paramount importance: (i) whether an

agent refuses to share its information with the FL process due to privacy concerns or conflict of

interest? (ii) whether an agent manipulates the received data before processing? (iii) whether an

agent intentionally or unintentionally, shares incorrect information with the rest of the network?

etc. [97] [98]. In other words, it is essential to establish to what extent each agent of the network

and its model updates can be trusted.

This chapter addresses the problem of securing the decentralized FL mechanism for the

first time. In this context, we propose a trusted decentralized FL algorithm in which trust is

interpreted as a relation between different network entities that may interact or collaborate in

groups towards achieving various specific goals [99]. These relations are set up and updated
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based on the evidence generated when the agents collaborate within a previous protocol. If the

collaboration has been contributive towards achievement of the specific goal (positive evidence),

the parties accumulate their trust perspective towards one another, otherwise (negative evidence),

trust will decrease between them. Trust estimates have input to decisions such as access control,

resource allocation, agent participation, and so on. The method by which trust is computed

and aggregated within the network may depend on the specific application. In [98], the authors

enumerate the central differences in the terminology of trust computation and aggregation. In this

section, we propose an attack-tolerant consensus-based FL algorithm by incorporating the trust

concept into the consensus step.

The rest of this chapter is organized as follows. We provide an overview of the related

works in section 6.2. The system model is discussed in section 6.3, including the trust aggregation

framework and the trust evaluation method. Section 6.4 describes the proposed trusted decentralized

FL. Performance evaluation is presented in section 6.5 and we highlight our conclusions in

section 6.6.

6.2 Related Work

In the context of centralized FL, several attempts have been made in the literature to address

the security issues. The vulnerability of FL framework to data poisoning and model poisoning

attacks has been recently studied in the literature. Sun et al. [100] study data poisoning attack

strategies on federated multi-task learning framework and propose an optimal attack strategy

based on the communication protocol and bi-level optimization which is shown to effectively

damage the performances of real-world applications. Compared to data poisoning attacks, model
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poisoning attacks have been shown to be more effective especially in large scale scenarios [101].

Authors in [102] demonstrated that FL is vulnerable to backdoor attack through model replacement

by a malicious participant. In [103], a protocol is proposed to guarantee the confidentiality

of users’ local gradients and to verify the integrity of the aggregated results generated by the

server. Authors in [104] proposed a reliable user selection scheme for centralized federated

learning tasks based on the concept of reputation and consortium blockchain in order to defend

against unreliable model updates. In [105], a Byzantine-resilient secure aggregation framework is

proposed for secure federated learning in a centralized FL scenario. Fang et al. [106] showed that

the existing aggregation rules which are claimed to be robust against Byzantine failures of some

FL agents are vulnerable to local model poisoning attacks and proposed two defense mechanisms

for data poisoning attacks. However, their proposed solutions are not effective enough in all

tested cases. As far as our knowledge goes, no efforts have been made towards studying effective

defense mechanisms against model poisoning attacks in decentralized FL framework.

6.3 System Model

We consider a network consisting of a set of N agents (benign and malicious) denoted by

N = {1, ..., N}. Each agent i ∈ N has Di data samples and the total number of samples is

D. The dth sample is represented by (xd,yd) where xd ∈ RDin×1,yd ∈ RDout×1, d = 1, ..., D.

We also assume that Pi denotes the set of indices of data points collected by agent i. Moreover,

the datasets collected by different agents have the same distribution (i.i.d assumption). The local

dataset Di = {(xd,yd), d ∈ Pi} is used to train a local modelMi parameterized by wi.

Following the decentralized FL model proposed in [96], we consider agents performing
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Figure 6.2: Decentralized Trust Aggregation Framework

training steps on their local dataset using SGD and consensus-based methods. At each consensus

step (time instance) k, agents transmit their local model update to their one-hop neighbors. Let

m
(k)
i denote the message that agent i sends to its neighbors at step k. For a benign agent, m(k)

i =

w
(k)
i , while an adversary sends a message different from the update computed by running SGD

on its local data in order to poison the global model. Each agent fuses the received messages

from its neighbors and then feeds the result to SGD. In the next subsections, we first elaborate on

the trust evaluation and aggregation methods based on which the proposed trusted decentralized

FL algorithm is presented.

6.3.1 Trust Aggregation Framework

We model the network of agents at time instance k, as an undirected graph G(k) = (N (k),L(k))

whereN (k) is the set of agents and for n,m ∈ N (k), L(k) contains all links (m,n)(k) where agents

m, and n can communicate with one another at time instance k. We denote this graph as the

communication graph at time instance k. Let N (k)
i be the set of neighbors of node i at time step
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k. Apart from the communication relationship, we also define local trust relationships between

nodes i, j ∈ N (k) that is obtained at each node by processing the first-hand evidence extracted

from previous interactions between its immediate neighbors. The agents also hold global trust

estimates of one another that is formed by the local exchange of the local observations (local trust

estimates) and is usually more accurate. Let τ (k)ij , and t
(k)
ij be the local and global view of node i

on trustworthiness of the node j at time instance k in respective order. We may ignore the index k

whenever doing so does not lead to confusion. In the next two subsections, we will formally state

the definition and the mathematical models capturing local and global trusts. Fig. 6.2 depicts the

schematic of the trust aggregation framework.

6.3.2 Local Trust Model

To formalize the definition of local trust, let us define X(k)
ij to be a random variable denoting

the reputation that node j has in the perspective of node i in time instance k. X
(k)
ij follows a

Beta distribution [107] with parameters α
(k)
ij , and β

(k)
ij . Moreover, define r

(k)
ij = α

(k)
ij − 1, and

s
(k)
ij = β

(k)
ij −1 that determine the number of times up to round k, that node j’s behavior is benign

and malicious in perspective of node i, in respective order. The details of how r
(k)
ij , and s

(k)
ij are

obtained depends on the specific scenario and is to be explicitly mentioned in the next sections.

We let τ (k)ij to be the expected value of the reputation random variable in the Beta system X
(k)
ij .

Formally, we have:
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X

(k)
ij
(x;α

(k)
ij , β

(k)
ij ) = Γ

(
α
(k)
ij + β

(k)
ij

)
Γ
(
α
(k)
ij

)
Γ
(
β
(k)
ij

)
 · (xα

(k)
ij −1 (1− x)β

(k)
ij −1

)
(6.1)

τ
(k)
ij = E

[
X

(k)
ij

]
=

r
(k)
ij + 1

r
(k)
ij + s

(k)
ij + 2

(6.2)

Considering the time-varying behavior of the agents, the evolution of r and s parameters needs

to be in a way that the more recent information receive more relative importance comparing to

the older ones. Therefore, we have:

r
(k+1)
ij = ρ1r

(k)
ij + I

(k+1)
ij (6.3)

s
(k+1)
ij = ρ2s

(k)
ij + 1− I

(k+1)
ij , (6.4)

where ρ1 and ρ2 are positive forgetting factors. In order to remember malicious behaviors longer

than benign behaviors, we may choose 0 < ρ1 < ρ2. The binary function I
(k+1)
ij ∈ {0, 1} models

the instantaneous perspective of node i on the behavior of node j in (k + 1)th round. In the next

section, we define this function based on the messages communicated between FL agents.
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6.3.3 Global Trust Model

At each instance k, within the local trust model, each node i computes its local trust for all

nodes j ∈ Ni in the communication graph. In order to make more accurate estimates, node i will

need to take into account the opinions of other network nodes who have first-hand evidence on

node j’s behavior. Following the approach in [108], node i computes in an iterative fashion its

global trust estimate for node j, i.e. t(k)ij using the opinions of its neighbors as:

tmij =


1 if i = j∑

l∈Ni,l ̸=j wilt
m−1
lj if i ̸= j

(6.5)

where wil =
τil∑

l∈Ni,l ̸=j τil
. In other words, node i pays more attention to the opinions of those of

its neighbors who it trusts more. We note again that the global trust computation is an iterative

process that is going to be embedded in each iteration of the trust-aware protocol. Therefore,

to avoid any confusion we have used the iteration counter m for this process. Here, we have

dropped the superscript k as we assume the value of local trust remains constant within the loop

of computing the global trust. In the next section, we will show how trust can be used to improve

the performance of decentralized FL.

6.3.4 Trust Evaluation Method

In this section we elaborate on the methods that are used in evaluating the trustworthiness

of the network agents. These methods are embedded into the trust evaluation scheme used in the

trust model in section 6.3.1. Throughout the FL protocols, the updates corresponding to the local

models of the agents are communicated within the network as messages play an important role
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in determining the trust level of the agents. We enumerate two methods that assign trust values

to the agents based on the communicated updates:

• Clustering-based Method: In this method, the trustor entity i compares the messages it

has received from trustee j, to all the other messages it has received from other parties.

Formally, for each neighbor j, party i computes:

dev
(k)
ij =

∑
l∈N+

i

∣∣∣∣∣∣w(k)
l − w

(k)
j

∣∣∣∣∣∣2
2∣∣N+

i

∣∣ (6.6)

where N+
i is the set of the neighbors of agent i including agent i itself. Then, for each

trustee j, it will benchmark the value of dev(k)ij against a multiple of the median of all the

deviations:

I
C(k)
ij =


1 dev

(k)
ij ≤ thi × median

({
dev

(k)
ij

})
0 o.w.

(6.7)

This way, by adjusting the value of thi at iteration k, the trustor party can decide not to

trust those parties from which it has received too-far-away messages.

• Distance-based Method: In this method, the trustor party i computes the distance between

its local model and the model at trustee j, and uses this distance as a measure to assign

trust values to its neighbors. Formally, party i computes the distance between the message

it has received from party j in the previous and the current iterations; i.e.

dij

(
w

(k−1)
i ,m

(k−1)
j

)
=

∥∥∥w(k−1)
i −m

(k−1)
j

∥∥∥
2

(6.8)
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and,

dij

(
w

(k−1)
i ,m

(k)
j

)
=

∥∥∥w(k−1)
i −m

(k)
j

∥∥∥
2

(6.9)

Then, party i computes the difference between the two computed distances and decides on

the value of ID(k)
ij as follows:

I
D(k)
ij = I{

dij

(
w

(k−1)
i ,m

(k−1)
j

)
−dij

(
w

(k−1)
i ,m

(k)
j

)
≥0

} (6.10)

In other words, if node j has a benign behavior, then after one iteration of the protocol, its

local model must have shifted towards the local model of party i. If this is not the case,

then party j has to be malicious or must be communicating incorrect message to i. We

have illustrated further on our trust aggregation framework together with the trust inference

terminology in [109] in great details. Such trust evaluation and aggregation method is

already used successfully in [110] and [111] for trustworthy network service embedding

on trusted infrastructure where trustworthiness of each network component for hosting a

specific network function is computed and and taken into account at the trusted decision

making process. In the next section, we investigate the trusted decentralized federated

learning problem using the methods mentioned earlier.

6.4 Trusted Decentralized FL

In order to address the security issues of the FL training, we propose an attack-tolerant

consensus-based FL algorithm by incorporating the trust concept into the consensus step. The

133



proposed approach is given in Algorithm 4. In particular, let t(k)ij denote the trustworthiness of

agent j ∈ Ni evaluated at agent i, that is obtained in step 4 based on the model described in

section 6.3. It is important to note that we combine the cluster-based and distance-based trust

values and build the corresponding trust evaluation model in step 12. In step 7, agent i aggregates

the received model updates from its neighbors with the weights of
Djt

(k)
ij∑

j∈Ni
Djt

(k)
ij

, i.e. the neighbors

of i that have higher trust values contribute more to the aggregated model at i. Then, each agent

updates its model parameter vector independently using SGD on its local data and transmits the

updated model to its neighbors.

6.5 Numerical Results

In this section we evaluate the performance of our trusted decentralized FL algorithm

by means of simulation. For the simulation setup, we adopt the settings of [96]. Similar to

[96], in this section we assume that the packet loss is negligible (a realistic assumption for

a short-range communication scheme) and leave the study of the problem in the presence of

the communication loss to future. Our implementation of the FL process and the validation

dataset are both based on [112]. In this experiment, a real-world industrial IoT (IIoT) use case is

considered in which a network of N = 80 IIoT devices sense their surroundings using frequency-

modulated continuous-wave (FMCW) radars. The goal of the IIoT devices is to detect and track

the position of human operators sharing a workspace with a robotic manipulator for safety policy

purposes. To address the latency constraints of safety policies as well as scalability, bandwidth-

efficiency and reliability challenges, a decentralized FL algorithm is deployed. The connectivity

topology of the IIoT devices is assumed to be κ-regular (all agents have the same number of
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Algorithm 4 Trusted Decentralized FL

1: Initialize w
(0)
i

2: for each round k = 1, 2, ... do
3: Agent i receives the messages {m(k)

j }j∈Ni

4: Agent i updates the trust values for all its neighbors:
5: t

(k)
ij ← ComputeTrust(i, j, {m(k)

j , j ∈ Ni})
6: Ψi,k ←m

(k)
i

7: for each agents j ∈ Ni do

8: Ψi,k ← Ψi,k + ϵk
Djt

(k)
ij∑

j∈Ni
Djt

(k)
ij

(m
(k)
j −w

(k)
i )

9: end for
10: Each agent i computes:
11: w

(k+1)
i ←ModelUpdate(Ψi,k, µk) and sends m(k+1)

i to all its neighbors
12: end for
13: ComputeTrust(i, j, {m(k)

i , i ∈ N}):
14:
15: Agent i computes IC(k)

ij and I
D(k)
ij from (6.7) and (6.10)

16:
17: Agent i computes I(k)ij = I

C(k)
ij ∨ I

D(k)
ij

18:
19: Agent i computes its local trust for j (τ (k)ij ) from (6.2)
20:
21: Agent i computes its global trust for j (t(k)ij ) from (6.5)
22:
23: Return t

(k)
ij

24: ModelUpdate(wk, µk):
25: Initialize Ψi,k ← w(k)

26: B = mini-batch of size B
27: for b ∈ B do
28: Ψi,k ← Ψi,k − µk∇f(Ψi,k)
29: end for
30: Return w

(k)
i ← Ψi,k

31:
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neighbors), with the number of neighbors |Ni| = 2.

6.5.1 Experimental Setup

Dataset: The data sample d characterized by (xd,yd) has the input of xd, a 512-point fast

Fourier transform (FFT) of the beat signals obtained from the radar echoes and averaged over

ten consecutive frames. Each input FFT measurement is labeled by one of the C = 8 classes

representing the distance between the cooperating robot and human worker. Data distribution

is non-IID as the local data samples collected independently by each device may contain only

a subset of labels. Each device obtains Di = 25 samples. The size of the validation dataset is

D = 16000.

ML model: The considered learning model is a 2NN with a first fully connected (FC) layer of

32 hidden nodes of dimension 512 × 32 followed by a ReLu layer and a second FC layer of

dimension 32 × C followed by a softmax layer. We note that although the considered model is

simple, it is a realistic use case for IoT devices with limited computation and power capabilities.

Attack model: We implement a model poisoning attack at the presence of 80 devices participating

in the FL task where p = 5%, 10% and 20% of the nodes are corrupt. The attacker parties will

generate the poisoned model by choosing and transmitting the weights randomly in the range

(q ∗ wmin, q ∗ wmax), where wmin and wmax are the minimum and maximum of the weights they

receive from their neighbors. We assume that q = 2.

In the following, we present the numerical results validating the effectiveness of our proposed

solution.
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Figure 6.3: Effect of Trust on Resilience Against Attacks

6.5.2 Resilience Against Attacks

In Fig. 6.3, we compare the performance of the proposed trusted FL algorithm in the

presence of the attacked agents, with both the normal (no attack) system and under attack system

without trust incorporation. The validation loss is shown for 120 communication rounds and

we assume that 10% of the agents are under attack. Fig. 6.3 illustrates how incorporating trust

into the decentralized federated learning framework can protect the protocol from being invaded

by malicious parties. In the absence of the trust mechanism and under corrupt network agents,

the validation loss will not converge to the correct value corresponding to when all the agents

are operating normally. Therefore, the performance of the trained model on test data degrades

significantly, even with a moderate model poisoning attack. However, when the trust mechanism

is in place, the trained model will converge to that of the normal implementation. We note that the
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Figure 6.4: Impact of the Percentage of Compromised Agents

validation loss after 120 epoch converges to 0.14, and 0.18 for the normal (without any attacks)

and the attacked trust-aware processes, and diverges from 1.89 for the attacked unprotected

process. We note that the value of 0.14 validation loss corresponds to a 90% of accuracy on

the test data.

6.5.3 Impact of the Percentage of the Compromised Agents

In Fig. 6.4, the validation loss of the normal system, the system under attack with trust,

and the system under attack without trust consideration is depicted for three different values of

p, corresponding to mild (p = 5%), moderate (p = 10%) and severe (p = 20%) model poisoning

attacks. It is observed that while the validation loss of the attacked system is significantly higher

than the normal scenario, the proposed trusted decentralized FL algorithm is able to improve

the performance of the trained model noticeably for all three values of p. In particular, we note
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that while the validation loss increases from 0.56 for a mild attack scenario to 1.89 and 1.85

for the moderate and severe attack cases respectively, incorporating trust in the decentralized FL

algorithm results in a maximum loss value of 0.21 for the severe attack scenario.

6.6 Conclusion

Motivated by MEC and the large-scale deployment of edge devices generating unprecedented

huge data, it is expected that a large number of intelligent applications will be deployed at

the edge of the network in NGMN. While traditional cloud-based learning can support only a

limited number of such applications due to its cost, reliability, latency, and privacy issues, FL

has been proposed as an effective learning paradigm to realize wide edge learning in NGMN. In

this chapter, we proposed trust as a metric to enable reliable FL. We presented a mathematical

framework for trust evaluation and propagation within a networked system. We argued that trust

inference can be modeled as a consensus problem, while emphasising on the concepts of local

and global trust estimates, and argued that trust evaluation can be embedded as a block into the

framework of decentralized FL. We showed by means of simulation that our trusted decentralized

FL algorithm can tolerate model poisoning attacks in the training of a neural network. Among

our future directions is to account for the communications packet losses and also study the

communication overhead of the proposed scheme.
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Chapter 7: Conclusion and Future Works

In this dissertation, we proposed novel approaches to address four interrelated and challenging

resource allocation problems in NGMN. In the first problem, we solved the resource provisioning

of mobile network slicing under demand uncertainties. We used stochastic programming to model

the E2E resource provisioning problem and proposed a two-timescale approach that solves the

resource allocation problem in two stages. In the first one, the proposed stochastic programming

model is solved to provision resources for different requested slices across the core network and

RAN. In the second stage, the RAN slice provisioning is adjusted as the observed spatial demand

varies. Through extensive simulations, we showed that the proposed methodology is able to

address the demand uncertainties in a robust manner. In the second part of this dissertation,

we studied the problem of application deployment in NGMN. Taking into account the MEC

and MCC paradigms, we proposed novel resource allocation frameworks for the deployment of

multi-component applications in multi-tiered compute and networking systems. We studied this

problem from the two perspectives of (i) InP, (ii) application. From the perspective of the InP,

we proposed a collaborative cloud-edge-local computation offloading scheme that is shown to

outperform the conventional edge-only and cloud-only computation offloading schemes. From

the higher level of application viewpoint, we proposed a joint network and compute reservation

solution for microservices-based applications that results in significant resource savings while
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maintaining application performance. In a further step, we developed an RL-based resource

orchestration solution for dynamic environments. Next, we addressed the resource allocation

problem of aerial platforms in NGMN. We proposed a framework for joint UAV placement and

route optimization in a multi-hop UAV relaying communications system, taking into account the

mobility of the ground nodes, the capacity of A2A and A2G links, UAVs mobility constraints, and

UAVs propulsion energy consumption. The numerical simulations provide insights into the effect

of the users’ mobility and the dynamic relocation of UAVs on the decision-making process and

service degradation. Among our future directions are to investigate the computation offloading

and service delivery problem together with the resource allocation in UAV-aided systems towards

an extension of network slicing to aerial networks. Motivated by MEC and the large-scale

deployment of edge devices generating unprecedented huge data, it is expected that a large

number of intelligent applications will be deployed at the edge of the network in NGMN. While

traditional cloud-based learning can support only a limited number of such applications due to

its cost, reliability, and issues, FL has been proposed as an effective learning paradigm to realize

wide edge learning in NGMN. In the final chapter of this dissertation, we addressed the problem

of reliable edge learning. We proposed a trust-aware FL framework that utilizes trust as a metric

to find out reliable agents followed by a revised aggregation model. In the future, we aim to

extend the trust-aware method to address the low-quality updates caused by high-speed mobility,

low-computation or low-energy power, and communication bottleneck issues.
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Cérin, and Jian Wan. Energy aware edge computing: A survey. Computer
Communications, 151:556–580, 2020.

[43] Yanting Wang, Min Sheng, Xijun Wang, Liang Wang, and Jiandong Li. Mobile-
edge computing: Partial computation offloading using dynamic voltage scaling. IEEE
Transactions on Communications, 64(10):4268–4282, 2016.

[44] Feng Wang, Jie Xu, Xin Wang, and Shuguang Cui. Joint offloading and computing
optimization in wireless powered mobile-edge computing systems. IEEE Transactions
on Wireless Communications, 17(3):1784–1797, 2017.

[45] Xinchen Lyu, Hui Tian, Wei Ni, Yan Zhang, Ping Zhang, and Ren Ping Liu. Energy-
efficient admission of delay-sensitive tasks for mobile edge computing. IEEE Transactions
on Communications, 66:2603–2616, 2018.

145



[46] Min Sheng, Yanting Wang, Xijun Wang, and Jiandong Li. Energy-efficient multiuser
partial computation offloading with collaboration of terminals, radio access network, and
edge server. IEEE Transactions on Communications, 68(3):1524–1537, 2020.

[47] Mingjie Feng, Marwan Krunz, and Wenhan Zhang. Joint task partitioning and user
association for latency minimization in mobile edge computing networks. IEEE
Transactions on Vehicular Technology, 70(8):8108–8121, 2021.

[48] J. Liu and Q. Zhang. Code-partitioning offloading schemes in mobile edge computing for
augmented reality. IEEE Access, 7:11222–11236, 2019.

[49] Tayebeh Bahreini and Daniel Grosu. Efficient algorithms for multi-component application
placement in mobile edge computing. IEEE Transactions on Cloud Computing, pages 1–1,
2020.

[50] Mithun Mukherjee, Suman Kumar, Constandinos X. Mavromoustakis, George Mastorakis,
Rakesh Matam, Vikas Kumar, and Qi Zhang. Latency-driven parallel task data offloading
in fog computing networks for industrial applications. IEEE Transactions on Industrial
Informatics, 16:6050–6058, 2020.

[51] Yuyi Mao, Jun Zhang, and Khaled B Letaief. Dynamic computation offloading for mobile-
edge computing with energy harvesting devices. IEEE Journal on Selected Areas in
Communications, 34(12):3590–3605, 2016.

[52] Norman D Curet. A primal-dual simplex method for linear programs. Operations Research
Letters, 13(4):233–237, 1993.

[53] Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys Bowden, and Matthew Roughan.
The internet topology zoo. IEEE Journal on Selected Areas in Communications,
29(9):1765–1775, 2011.

[54] Ernesto QV Martins and Marta MB Pascoal. A new implementation of yen’s ranking
loopless paths algorithm. Quarterly Journal of the Belgian, French and Italian Operations
Research Societies, 1(2):121–133, 2003.

[55] S. Eman Mahmoodi, R. N. Uma, and K. P. Subbalakshmi. Optimal joint scheduling
and cloud offloading for mobile applications. IEEE Transactions on Cloud Computing,
7(2):301–313, 2019.

[56] Anousheh Gholami, Kunal Rao, Wang-Pin Hsiung, Oliver Po, Murugan Sankaradas,
and Srimat Chakradhar. Roma: Resource orchestration for microservices-based 5g
applications. In NOMS 2022-2022 IEEE/IFIP Network Operations and Management
Symposium, pages 1–9, 2022.

[57] Qiang Liu and Tao Han. DIRECT: Distributed cross-domain resource orchestration in
cellular edge computing. In Proceedings of the Twentieth ACM International Symposium
on Mobile Ad Hoc Networking and Computing, pages 181–190, 2019.

146



[58] Salvatore D’Oro, Leonardo Bonati, Francesco Restuccia, Michele Polese, Michele Zorzi,
and Tommaso Melodia. Sl-EDGE: Network slicing at the edge. In Proceedings of the
Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol
Design for Mobile Networks and Mobile Computing, pages 1–10, 2020.

[59] Cagatay Sonmez, Can Tunca, Atay Ozgovde, and Cem Ersoy. Machine learning-based
workload orchestrator for vehicular edge computing. IEEE Transactions on Intelligent
Transportation Systems, 22(4):2239–2251, 2020.

[60] Mutaz Al-Tarawneh and Saif Alnawayseh. Performance Assessment of Context-aware
Online Learning for Task Offloading in Vehicular Edge Computing Systems. International
Journal of Advanced Computer Science and Applications (IJACSA), 12:304–320, 05 2021.

[61] João Paulo Esper, Abdallah S. Abdallah, Stuart Clayman, Waldir Moreira, Antonio
Oliveira, Sand Luz Correa, and Kleber Vieira Cardoso. eXP-RAN—An emulator for
gaining experience with radio access networks, edge computing, and slicing. IEEE Access,
8:152975–152989, 2020.

[62] Cagatay Sonmez, Atay Ozgovde, and Cem Ersoy. EdgeCloudSim: An environment
for performance evaluation of edge computing systems. Transactions on Emerging
Telecommunications Technologies, 29(11):e3493, 2018.

[63] Kunal Rao, Giuseppe Coviello, Wang-Pin Hsiung, and Srimat T. Chakradhar. ECO: Edge-
Cloud Optimization of 5G applications. In The 21st IEEE/ACM International Symposium
on Cluster, Cloud and Internet Computing (CCGrid 2021), Melbourne, Victoria, Australia,
pages 649–659, 2021.

[64] Multitech. https://www.multitech.com/brands/multiconnect-ecell.

[65] Celona. https://celona.io/.

[66] Kubernetes. https://kubernetes.io/.

[67] Ffmpeg. http://ffmpeg.org/.

[68] Glpk (gnu linear programming kit). https://www.gnu.org/software/glpk/.

[69] Marco Wiering and Jürgen Schmidhuber. Fast online q (λ). Machine Learning, 33(1):105–
115, 1998.

[70] Yong Zeng, Rui Zhang, and Teng Joon Lim. Wireless communications with unmanned
aerial vehicles: Opportunities and challenges. IEEE Communications Magazine,
54(5):36–42, 2016.

[71] Anousheh Gholami, Usman A Fiaz, and John S Baras. Drone-assisted communications
for remote areas and disaster relief. arXiv preprint arXiv:1909.02150, 2019.

[72] Anousheh Gholami, Nariman Torkzaban, John S. Baras, and Chrysa Papagianni. Joint
Mobility-Aware UAV Placement and Routing in Multi-Hop UAV Relaying Systems. In
Ad Hoc Networks, pages 55–69. Springer International Publishing, 2021.

147



[73] Shuhang Zhang, Hongliang Zhang, Qichen He, Kaigui Bian, and Lingyang Song. Joint
trajectory and power optimization for uav relay networks. IEEE Communications Letters,
22(1):161–164, 2017.

[74] Yong Zeng, Rui Zhang, and Teng Joon Lim. Throughput maximization for uav-enabled
mobile relaying systems. IEEE Transactions on Communications, 64(12):4983–4996,
2016.

[75] Jiangbin Lyu, Yong Zeng, and Rui Zhang. Uav-aided offloading for cellular hotspot. IEEE
Transactions on Wireless Communications, 17(6):3988–4001, 2018.

[76] Nariman Torkzaban, Anousheh Gholami, John S Baras, and Chrysa Papagianni. Joint
satellite gateway placement and routing for integrated satellite-terrestrial networks. In ICC
2020-2020 IEEE International Conference on Communications (ICC), pages 1–6. IEEE,
2020.

[77] Mohammad Mozaffari, Walid Saad, Mehdi Bennis, Young-Han Nam, and Mérouane
Debbah. A tutorial on uavs for wireless networks: Applications, challenges, and open
problems. IEEE communications surveys & tutorials, 21(3):2334–2360, 2019.

[78] Bin Li, Zesong Fei, and Yan Zhang. Uav communications for 5g and beyond: Recent
advances and future trends. IEEE Internet of Things Journal, 6(2):2241–2263, 2018.

[79] Konstantinos Poularakis, Qiaofeng Qin, Kelvin M Marcus, Kevin S Chan, Kin K Leung,
and Leandros Tassiulas. Hybrid sdn control in mobile ad hoc networks. In 2019 IEEE
International Conference on Smart Computing (SMARTCOMP), pages 110–114. IEEE,
2019.

[80] Qingqing Wu, Yong Zeng, and Rui Zhang. Joint trajectory and communication design for
multi-uav enabled wireless networks. IEEE Transactions on Wireless Communications,
17(3):2109–2121, 2018.

[81] Arvind Merwaday and Ismail Guvenc. Uav assisted heterogeneous networks for
public safety communications. In 2015 IEEE wireless communications and networking
conference workshops (WCNCW), pages 329–334. IEEE, 2015.

[82] Boris Galkin, Jacek Kibilda, and Luiz A DaSilva. Deployment of uav-mounted access
points according to spatial user locations in two-tier cellular networks. In 2016 Wireless
Days (WD), pages 1–6. IEEE, 2016.

[83] Mohammad Mozaffari, Walid Saad, Mehdi Bennis, and Mérouane Debbah. Efficient
deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE
Communications Letters, 20(8):1647–1650, 2016.

[84] Mohamed Alzenad, Amr El-Keyi, and Halim Yanikomeroglu. 3-d placement of an
unmanned aerial vehicle base station for maximum coverage of users with different qos
requirements. IEEE Wireless Communications Letters, 7(1):38–41, 2017.

148



[85] Pankaj K Sharma and Dong In Kim. Random 3d mobile uav networks: Mobility modeling
and coverage probability. IEEE Transactions on Wireless Communications, 18(5):2527–
2538, 2019.

[86] R Irem Bor-Yaliniz, Amr El-Keyi, and Halim Yanikomeroglu. Efficient 3-d placement of
an aerial base station in next generation cellular networks. In 2016 IEEE international
conference on communications (ICC), pages 1–5. IEEE, 2016.

[87] Elham Kalantari, Halim Yanikomeroglu, and Abbas Yongacoglu. On the number and
3d placement of drone base stations in wireless cellular networks. In 2016 IEEE 84th
Vehicular Technology Conference (VTC-Fall), pages 1–6. IEEE, 2016.

[88] Ursula Challita and Walid Saad. Network formation in the sky: Unmanned aerial
vehicles for multi-hop wireless backhauling. In GLOBECOM 2017-2017 IEEE Global
Communications Conference, pages 1–6. IEEE, 2017.

[89] Guangchi Zhang, Haiqiang Yan, Yong Zeng, Miao Cui, and Yijun Liu. Trajectory
optimization and power allocation for multi-hop uav relaying communications. IEEE
Access, 6:48566–48576, 2018.

[90] Zhenyu Kang, Changsheng You, and Rui Zhang. Placement learning for multi-uav
relaying: A gibbs sampling approach. In ICC 2020-2020 IEEE International Conference
on Communications (ICC), pages 1–6. IEEE, 2020.

[91] Akram Al-Hourani, Sithamparanathan Kandeepan, and Simon Lardner. Optimal lap
altitude for maximum coverage. IEEE Wireless Communications Letters, 3(6):569–572,
2014.

[92] Xiaoyan Hong, Mario Gerla, Guangyu Pei, and Ching-Chuan Chiang. A group mobility
model for ad hoc wireless networks. In Proceedings of the 2nd ACM international
workshop on Modeling, analysis and simulation of wireless and mobile systems, pages
53–60, 1999.
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