5,256 research outputs found

    Ground Robotic Hand Applications for the Space Program study (GRASP)

    Get PDF
    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time

    On the Collaboration of an Automatic Path-Planner and a Human User for Path-Finding in Virtual Industrial Scenes

    Get PDF
    This paper describes a global interactive framework enabling an automatic path-planner and a user to collaborate for finding a path in cluttered virtual environments. First, a collaborative architecture including the user and the planner is described. Then, for real time purpose, a motion planner divided into different steps is presented. First, a preliminary workspace discretization is done without time limitations at the beginning of the simulation. Then, using these pre-computed data, a second algorithm finds a collision free path in real time. Once the path is found, an haptic artificial guidance on the path is provided to the user. The user can then influence the planner by not following the path and automatically order a new path research. The performances are measured on tests based on assembly simulation in CAD scenes

    Hybrid optical and magnetic manipulation of microrobots

    Get PDF
    Microrobotic systems have the potential to provide precise manipulation on cellular level for diagnostics, drug delivery and surgical interventions. These systems vary from tethered to untethered microrobots with sizes below a micrometer to a few microns. However, their main disadvantage is that they do not have the same capabilities in terms of degrees-of-freedom, sensing and control as macroscale robotic systems. In particular, their lack of on-board sensing for pose or force feedback, their control methods and interface for automated or manual user control are limited as well as their geometry has few degrees-of-freedom making three-dimensional manipulation more challenging. This PhD project is on the development of a micromanipulation framework that can be used for single cell analysis using the Optical Tweezers as well as a combination of optical trapping and magnetic actuation for recon gurable microassembly. The focus is on untethered microrobots with sizes up to a few tens of microns that can be used in enclosed environments for ex vivo and in vitro medical applications. The work presented investigates the following aspects of microrobots for single cell analysis: i) The microfabrication procedure and design considerations that are taken into account in order to fabricate components for three-dimensional micromanipulation and microassembly, ii) vision-based methods to provide 6-degree-offreedom position and orientation feedback which is essential for closed-loop control, iii) manual and shared control manipulation methodologies that take into account the user input for multiple microrobot or three-dimensional microstructure manipulation and iv) a methodology for recon gurable microassembly combining the Optical Tweezers with magnetic actuation into a hybrid method of actuation for microassembly.Open Acces

    Machine Systems for Exploration and Manipulation: A Conceptual Framework and Method of Evaluation

    Get PDF
    A conceptual approach to describing and evaluating problem-solving by robotic systems is offered. One particular problem of importance to the field of robotics, disassembly, is considered. A general description is provided of an effector system equipped with sensors that interacts with objects for purposes of disassembly and that learns as a result. The system\u27s approach is bottom up, in that it has no a priori knowledge about object categories. It does, however, have pre-existing methods and strategies for exploration and manipulation. The sensors assumed to be present are vision, proximity, tactile, position, force, and thermal. The system\u27s capabilities are described with respect to two phases: object exploration and manipulation. Exploration takes the form of executing exploratory procedures, algorithms for determining the substance, structure, and mechanical properties of objects. Manipulation involves manipulatory operators, defined by the type of motion, nature of the end-effector configuration, and precise parameterization. The relation of the hypothesized system to existing implementations is described, and a means of evaluating it is also proposed

    Design and implementation of a compliant robot with force feedback and strategy planning software

    Get PDF
    Force-feedback robotics techniques are being developed for automated precision assembly and servicing of NASA space flight equipment. Design and implementation of a prototype robot which provides compliance and monitors forces is in progress. Computer software to specify assembly steps and makes force feedback adjustments during assembly are coded and tested for three generically different precision mating problems. A model program demonstrates that a suitably autonomous robot can plan its own strategy

    CONDOR: Long endurance high altitude vehicle, volume 5

    Get PDF
    The results of a design study resulting in the proposed CONDOR aircraft are presented. The basic requirements are for the aircraft to maintain continuous altitude at or above 45,000 feet for at least a 3-day mission, be able to comfortably support a two-man crew during this period with their field of vision not obstructed to a significant degree, carry a payload of 200 pounds, and provide a power supply to the payload of 2000 watts. The take-off and landing distances must be below 5000. feet, and time to reach cruise altitude must not exceed 3 hours. The subjects discussed are configuration selection, structural analysis, stability and control, crew and payload accomodations, and economic estimates

    A Desktop Networked Haptic VR Interface for Mechanical Assembly

    Get PDF
    This paper presents the development of a PC-based 3D human computer interface for virtual assembly applications. This system is capable of importing complex CAD (Computer Aided Design) models, rendering them in stereo, and implementing haptic force feedback for realistic part interaction in virtual environments. Such an application will facilitate wider acceptance of the use of a VR interface for prototyping assembly tasks. This interface provides both visual and haptic feedback to the user, while allowing assembly tasks to be performed on a desktop virtual environment. The network module has the ability to communicate with multiple VR systems (such as CAVE etc.) at geographically dispersed locations using a non-dedicated network channel. The potential benefits of such a system include identification of assembly issues early in the design process where changes can be made easily, resulting in a more efficient and less costly product design process
    corecore