14,681 research outputs found

    Three-dimensional connectivity index for texture recognition

    Get PDF
    AbstractThis work proposes a new method of texture analysis for grey-level images based on the distribution of connectivity indexes in local neighbourhoods. The connectivity index acts as a measure of homogeneity of textures and its distribution is computed at various local neighbourhood sizes. The resulting descriptors provide an efficient multiscale representation of connectivity at different scales. The method was tested in the classification of UIUC, Outex, and KTH-TIPS2b databases and outperformed several state-of-the-art approaches, including such as LBP, LBP+VAR, MR8, multifractals among others

    Learning Discriminative Stein Kernel for SPD Matrices and Its Applications

    Full text link
    Stein kernel has recently shown promising performance on classifying images represented by symmetric positive definite (SPD) matrices. It evaluates the similarity between two SPD matrices through their eigenvalues. In this paper, we argue that directly using the original eigenvalues may be problematic because: i) Eigenvalue estimation becomes biased when the number of samples is inadequate, which may lead to unreliable kernel evaluation; ii) More importantly, eigenvalues only reflect the property of an individual SPD matrix. They are not necessarily optimal for computing Stein kernel when the goal is to discriminate different sets of SPD matrices. To address the two issues in one shot, we propose a discriminative Stein kernel, in which an extra parameter vector is defined to adjust the eigenvalues of the input SPD matrices. The optimal parameter values are sought by optimizing a proxy of classification performance. To show the generality of the proposed method, three different kernel learning criteria that are commonly used in the literature are employed respectively as a proxy. A comprehensive experimental study is conducted on a variety of image classification tasks to compare our proposed discriminative Stein kernel with the original Stein kernel and other commonly used methods for evaluating the similarity between SPD matrices. The experimental results demonstrate that, the discriminative Stein kernel can attain greater discrimination and better align with classification tasks by altering the eigenvalues. This makes it produce higher classification performance than the original Stein kernel and other commonly used methods.Comment: 13 page

    Grey-matter texture abnormalities and reduced hippocampal volume are distinguishing features of schizophrenia

    Get PDF
    Neurodevelopmental processes are widely believed to underlie schizophrenia. Analysis of brain texture from conventional magnetic resonance imaging (MRI) can detect disturbance in brain cytoarchitecture. We tested the hypothesis that patients with schizophrenia manifest quantitative differences in brain texture that, alongside discrete volumetric changes, may serve as an endophenotypic biomarker. Texture analysis (TA) of grey matter distribution and voxel-based morphometry (VBM) of regional brain volumes were applied to MRI scans of 27 patients with schizophrenia and 24 controls. Texture parameters (uniformity and entropy) were also used as covariates in VBM analyses to test for correspondence with regional brain volume. Linear discriminant analysis tested if texture and volumetric data predicted diagnostic group membership (schizophrenia or control). We found that uniformity and entropy of grey matter differed significantly between individuals with schizophrenia and controls at the fine spatial scale (filter width below 2 mm). Within the schizophrenia group, these texture parameters correlated with volumes of the left hippocampus, right amygdala and cerebellum. The best predictor of diagnostic group membership was the combination of fine texture heterogeneity and left hippocampal size. This study highlights the presence of distributed grey-matter abnormalities in schizophrenia, and their relation to focal structural abnormality of the hippocampus. The conjunction of these features has potential as a neuroimaging endophenotype of schizophrenia

    From receptive profiles to a metric model of V1

    Full text link
    In this work we show how to construct connectivity kernels induced by the receptive profiles of simple cells of the primary visual cortex (V1). These kernels are directly defined by the shape of such profiles: this provides a metric model for the functional architecture of V1, whose global geometry is determined by the reciprocal interactions between local elements. Our construction adapts to any bank of filters chosen to represent a set of receptive profiles, since it does not require any structure on the parameterization of the family. The connectivity kernel that we define carries a geometrical structure consistent with the well-known properties of long-range horizontal connections in V1, and it is compatible with the perceptual rules synthesized by the concept of association field. These characteristics are still present when the kernel is constructed from a bank of filters arising from an unsupervised learning algorithm.Comment: 25 pages, 18 figures. Added acknowledgement
    • …
    corecore