13,769 research outputs found

    Modeling and Analyzing Adaptive User-Centric Systems in Real-Time Maude

    Full text link
    Pervasive user-centric applications are systems which are meant to sense the presence, mood, and intentions of users in order to optimize user comfort and performance. Building such applications requires not only state-of-the art techniques from artificial intelligence but also sound software engineering methods for facilitating modular design, runtime adaptation and verification of critical system requirements. In this paper we focus on high-level design and analysis, and use the algebraic rewriting language Real-Time Maude for specifying applications in a real-time setting. We propose a generic component-based approach for modeling pervasive user-centric systems and we show how to analyze and prove crucial properties of the system architecture through model checking and simulation. For proving time-dependent properties we use Metric Temporal Logic (MTL) and present analysis algorithms for model checking two subclasses of MTL formulas: time-bounded response and time-bounded safety MTL formulas. The underlying idea is to extend the Real-Time Maude model with suitable clocks, to transform the MTL formulas into LTL formulas over the extended specification, and then to use the LTL model checker of Maude. It is shown that these analyses are sound and complete for maximal time sampling. The approach is illustrated by a simple adaptive advertising scenario in which an adaptive advertisement display can react to actions of the users in front of the display.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    Optimal Staged Self-Assembly of General Shapes

    Get PDF
    We analyze the number of tile types tt, bins bb, and stages necessary to assemble n×nn \times n squares and scaled shapes in the staged tile assembly model. For n×nn \times n squares, we prove O(logntbtlogtb2+loglogblogt)\mathcal{O}(\frac{\log{n} - tb - t\log t}{b^2} + \frac{\log \log b}{\log t}) stages suffice and Ω(logntbtlogtb2)\Omega(\frac{\log{n} - tb - t\log t}{b^2}) are necessary for almost all nn. For shapes SS with Kolmogorov complexity K(S)K(S), we prove O(K(S)tbtlogtb2+loglogblogt)\mathcal{O}(\frac{K(S) - tb - t\log t}{b^2} + \frac{\log \log b}{\log t}) stages suffice and Ω(K(S)tbtlogtb2)\Omega(\frac{K(S) - tb - t\log t}{b^2}) are necessary to assemble a scaled version of SS, for almost all SS. We obtain similarly tight bounds when the more powerful flexible glues are permitted.Comment: Abstract version appeared in ESA 201

    A New Approach for Quality Management in Pervasive Computing Environments

    Full text link
    This paper provides an extension of MDA called Context-aware Quality Model Driven Architecture (CQ-MDA) which can be used for quality control in pervasive computing environments. The proposed CQ-MDA approach based on ContextualArchRQMM (Contextual ARCHitecture Quality Requirement MetaModel), being an extension to the MDA, allows for considering quality and resources-awareness while conducting the design process. The contributions of this paper are a meta-model for architecture quality control of context-aware applications and a model driven approach to separate architecture concerns from context and quality concerns and to configure reconfigurable software architectures of distributed systems. To demonstrate the utility of our approach, we use a videoconference system.Comment: 10 pages, 10 Figures, Oral Presentation in ECSA 201

    The resupply interface mechanism RMS compatibility test

    Get PDF
    Spacecraft on-orbit servicing consists of exchanging components such as payloads, orbital replacement units (ORUs), and consumables. To accomplish the exchange of consumables, the receiving vehicle must mate to the supplier vehicle. Mating can be accomplished by a variety of docking procedures. However, these docking schemes are mission dependent and can vary from shuttle bay berthing to autonomous rendezvous and docking. Satisfying the many docking conditions will require use of an innovative docking device. The device must provide fluid, electrical, pneumatic and data transfer between vehicles. Also, the proper stiffness must be obtained and sustained between the vehicles. A device to accomplish this, the resupply interface mechanism (RIM), was developed. The RIM is a unique device because it grasps the mating vehicle, draws the two vehicles together, simultaneously mates all connectors, and rigidizes the mating devices. The NASA-Johnson Manipulator Development Facility was used to study how compatible the RIM is to on orbit docking and berthing. The facility contains a shuttle cargo bay mockup with a remote manipulator system (RMS). This RMS is used to prepare crew members for shuttle missions involving spacecraft berthing operations. The MDF proved to be an excellant system for testing the RIM/RMS compatibility. The elements examined during the RIM JSC test were: RIM gross and fine alignment; berthing method sequence; visual cuing aids; utility connections; and RIM overall performance. The results showed that the RIM is a good device for spacecraft berthing operations. Mating was accomplished during every test run and all test operators (crew members) felt that the RIM is an effective device. The purpose of the JSC RIM test and its results are discussed

    High-voltage dc power processing thermal control and packaging techniques

    Get PDF
    The power processor operates in several modes, delivering up to 100 amperes of regulated electrical power, operating at input voltages to 375 volts with outputs controlled by an integral microprocessor. Several alternative packaging concepts are discussed and evaluated. High-voltage design applications, power stage interconnection and EMI considerations are also discussed. Preliminary thermal analyses were performed and the results presented for each conceptual approach with parametric study results given for the selected concept

    Tangle and Brauer Diagram Algebras of Type Dn

    Full text link
    A generalization of the Kauffman tangle algebra is given for Coxeter type Dn. The tangles involve a pole or order 2. The algebra is shown to be isomorphic to the Birman-Murakami-Wenzl algebra of the same type. This result extends the isomorphism between the two algebras in the classical case, which in our set-up, occurs when the Coxeter type is of type A with index n-1. The proof involves a diagrammatic version of the Brauer algebra of type Dn in which the Temperley-Lieb algebra of type Dn is a subalgebra.Comment: 33 page

    Some Graph-Colouring Theorems with Applications to Generalized Connection Networks

    Get PDF
    With the aid of a new graph-colouring theorem, we give a simple explicit construction for generalized n-connectors with 2k - 1 stages and O( n1 + 1 / k (log n )( k - 1)/ 2 ) edges. This is asymptotically the best explicit construction known for generalized connectors
    corecore