3,642 research outputs found

    Progress on tilted axis cranking covariant density functional theory for nuclear magnetic and antimagnetic rotation

    Full text link
    Magnetic rotation and antimagnetic rotation are exotic rotational phenomena observed in weakly deformed or near-spherical nuclei, which are respectivelyinterpreted in terms of the shears mecha-nism and two shearslike mechanism. Since their observations, magnetic rotation and antimagnetic rotation phenomena have been mainly investigated in the framework of tilted axis cranking based on the pairing plus quadrupole model. For the last decades, the covariant density functional theory and its extension have been proved to be successful in describing series of nuclear ground-states and excited states properties, including the binding energies, radii, single-particle spectra, resonance states, halo phenomena, magnetic moments, magnetic rotation, low-lying excitations, shape phase transitions, collective rotation and vibrations, etc. This review will mainly focus on the tilted axis cranking covariant density functional theory and its application for the magnetic rotation and antimagnetic rotation phenomena.Comment: 53 pages, 19 figure

    Magnetic rotations in 198Pb and 199Pb within covariant density functional theory

    Full text link
    Well-known examples of shears bands in the nuclei 198Pb and 199Pb are investigated within tilted axis cranking relativistic mean-field theory. Energy spectra, the relation between spin and rotational frequency, deformation parameters and reduced M1M1 and E2E2 transition probabilities are calculated. The results are in good agreement with available data and with calculations based on the phenomenological pairing plus-quadrupole-quadrupole tilted-axis cranking model. It is shown that covariant density functional theory provides a successful microscopic and fully self-consistent description of magnetic rotation in the Pb region showing the characteristic properties as the shears mechanism and relatively large B(M1) transitions decreasing with increasing spin.Comment: 22 pages, 8 figure

    Uniaxial and biaxial soft deformations of nematic elastomers

    Full text link
    We give a geometric interpretation of the soft elastic deformation modes of nematic elastomers, with explicit examples, for both uniaxial and biaxial nematic order. We show the importance of body rotations in this non-classical elasticity and how the invariance under rotations of the reference and target states gives soft elasticity (the Golubovic and Lubensky theorem). The role of rotations makes the Polar Decomposition Theorem vital for decomposing general deformations into body rotations and symmetric strains. The role of the square roots of tensors is discussed in this context and that of finding explicit forms for soft deformations (the approach of Olmsted).Comment: 10 pages, 10 figures, RevTex, AmsTe

    Geometric transformations in octrees using shears

    Get PDF
    Existent algorithms to perform geometric transformations on octrees can be classified in two families: inverse transformation and address computation ones. Those in the inverse transformation family essentially resample the target octree from the source one, and are able to cope with all the affine transformations. Those in the address computation family only deal with translations, but are commonly accepted as faster than the former ones for they do no intersection tests, but directly calculate the transformed address of each black node in the source tree. This work introduces a new translation algorithm that shows to perform better than previous one when very small displacements are involved. This property is particularly useful in applications such as simulation, robotics or computer animation.Postprint (published version

    Quantum Transport in Molecular Rings and Chains

    Full text link
    We study charge transport driven by deformations in molecular rings and chains. Level crossings and the associated Longuet-Higgins phase play a central role in this theory. In molecular rings a vanishing cycle of shears pinching a gap closure leads, generically, to diverging charge transport around the ring. We call such behavior homeopathic. In an infinite chain such a cycle leads to integral charge transport which is independent of the strength of deformation. In the Jahn-Teller model of a planar molecular ring there is a distinguished cycle in the space of uniform shears which keeps the molecule in its manifold of ground states and pinches level crossing. The charge transport in this cycle gives information on the derivative of the hopping amplitudes.Comment: Final version. 26 pages, 8 fig

    Linear hydrodynamics and viscoelasticity of nematic elastomers

    Full text link
    We develop a continuum theory of linear viscoelastic response in oriented monodomain nematic elastomers. The expression for dissipation function is analogous to the Leslie-Ericksen version of anisotropic nematic viscosity; we propose the relations between the anisotropic rubber moduli and new viscous coefficients. A new dimensionless number is introduced, which describes the relative magnitude of viscous and rubber-elastic torques. In an elastic medium with an independently mobile internal degree of freedom, the nematic director with its own relaxation dynamics, the model shows a dramatic decrease in the dynamic modulus in certain deformation geometries. The degree to which the storage modulus does not altogether drop to zero is shown to be both dependent on frequency and to be proportional to the semi-softness, the non-ideality of a nematic network. We consider the most interesting geometry for the implementation of the theory, calculating the dynamic response to an imposed simple shear and making predictions for effective moduli and (exceptionally high) loss factors.Comment: Latex 2e or PDFlatex (4 EPS or JPG figures) - to appear in Euro.Phys.J.

    Hex Player—a virtual musical controller

    Get PDF
    In this paper, we describe a playable musical interface for tablets and multi-touch tables. The interface is a generalized keyboard, inspired by the Thummer, and consists of an array of virtual buttons. On a generalized keyboard, any given interval always has the same shape (and therefore fingering); furthermore, the fingering is consistent over a broad range of tunings. Compared to a physical generalized keyboard, a virtual version has some advantages—notably, that the spatial location of the buttons can be transformed by shears and rotations, and their colouring can be changed to reflect their musical function in different scales. We exploit these flexibilities to facilitate the playing not just of conventional Western scales but also a wide variety of microtonal generalized diatonic scales known as moment of symmetry, or well-formed, scales. A user can choose such a scale, and the buttons are automatically arranged so their spatial height corresponds to their pitch, and buttons an octave apart are always vertically above each other. Furthermore, the most numerous scale steps run along rows, while buttons within the scale are light-coloured, and those outside are dark or removed. These features can aid beginners; for example, the chosen scale might be the diatonic, in which case the piano’s familiar white and black colouring of the seven diatonic and five chromatic notes is used, but only one scale fingering need ever be learned (unlike a piano where every key needs a different fingering). Alternatively, it can assist advanced composers and musicians seeking to explore the universe of unfamiliar microtonal scales
    corecore