3 research outputs found

    Three-Dimensional Modeling in Medical Image Processing by Using Fractal Geometry

    No full text
    WOS: 000410160800012Medical images are visualized by computer and processed to obtain larger, more organized, and three-dimensional (3D) images. Thus, significant images are provided. The processed data facilitate diagnosis and treatment in the medical fields. The 3D surface models of related areas are formed by using volumetric data obtained by employing medical imaging methods such as Magnetic Resonance (MR) and Computer Tomography (CT). The purpose of this study is to obtain 3D images from the two-dimensional CT slices. These slices are obtained from the existing medical imaging devices and transferred to the z space and a mesh structure is provided between them. In addition, we investigated 3D imaging techniques, visualization, basic data types, conversion into main graphical components, and imaging algorithms. At the phase of obtaining 3D images; the image processing methods such as surface and volume imaging techniques, smoothing, denoising, and segmentation were used. The complexity and efficiency properties of the imaging algorithms were investigated and image enhancement algorithms were utilized

    Three-Dimensional Modeling in Medical Image Processing by Using Fractal Geometry

    No full text

    Adaptive 3D web-based environment for heterogeneous volume objects.

    Get PDF
    The Internet was growing fast on the last decade. Interaction and visualisation became an essential feature online. The demand for online modelling and rendering in a real-time, adaptive and interactive manner exceeded the growth and development of the hardware resources including computational power and memories. Building up and accessing an instant 3D Web-based and plugin-free platform started to be a must in order to generate 3D volumes. Modelling and rendering complicated heterogeneous volumes using online applications requires good Internet bandwidth and high computational power. A large number of 3D modelling tools designed to create complicated models in an interactive manner are now available online, the problem of using such tools is that the user needs to acquire a certain level of modelling knowledge In this work, we identify the problem, introduce the theoretical background and discuss the theory about Web-based modelling and rendering, including client- server approach, scenario optimization by solving constraint satisfaction problem, and complexity analysis. We address the challenges of designing, implementing and testing an online, Web-based, instant 3D modelling and rendering environment and we discuss some of its characteristics including adaptivity, platform independence, interactivity, and easy-to-use after presenting the theoretical part of implementing such an environment. We also introduce platform-independent modelling and rendering environment for complicated heterogeneous volumes with colour attributes based on client- server architecture. The work includes analysis and implementation for different rendering approaches suitable for different kind of users. We also discuss the performance of the proposed environment by comparing the rendering approaches. As an additional feature of our modelling system, we discuss aspects of securing the model transferring between client and the server
    corecore