401 research outputs found

    Applications of finite geometry in coding theory and cryptography

    Get PDF
    We present in this article the basic properties of projective geometry, coding theory, and cryptography, and show how finite geometry can contribute to coding theory and cryptography. In this way, we show links between three research areas, and in particular, show that finite geometry is not only interesting from a pure mathematical point of view, but also of interest for applications. We concentrate on introducing the basic concepts of these three research areas and give standard references for all these three research areas. We also mention particular results involving ideas from finite geometry, and particular results in cryptography involving ideas from coding theory

    Problems on q-Analogs in Coding Theory

    Full text link
    The interest in qq-analogs of codes and designs has been increased in the last few years as a consequence of their new application in error-correction for random network coding. There are many interesting theoretical, algebraic, and combinatorial coding problems concerning these q-analogs which remained unsolved. The first goal of this paper is to make a short summary of the large amount of research which was done in the area mainly in the last few years and to provide most of the relevant references. The second goal of this paper is to present one hundred open questions and problems for future research, whose solution will advance the knowledge in this area. The third goal of this paper is to present and start some directions in solving some of these problems.Comment: arXiv admin note: text overlap with arXiv:0805.3528 by other author

    Coding Theory and Algebraic Combinatorics

    Full text link
    This chapter introduces and elaborates on the fruitful interplay of coding theory and algebraic combinatorics, with most of the focus on the interaction of codes with combinatorial designs, finite geometries, simple groups, sphere packings, kissing numbers, lattices, and association schemes. In particular, special interest is devoted to the relationship between codes and combinatorial designs. We describe and recapitulate important results in the development of the state of the art. In addition, we give illustrative examples and constructions, and highlight recent advances. Finally, we provide a collection of significant open problems and challenges concerning future research.Comment: 33 pages; handbook chapter, to appear in: "Selected Topics in Information and Coding Theory", ed. by I. Woungang et al., World Scientific, Singapore, 201

    Disjoint difference families and their applications

    Get PDF
    Difference sets and their generalisations to difference families arise from the study of designs and many other applications. Here we give a brief survey of some of these applications, noting in particular the diverse definitions of difference families and the variations in priorities in constructions. We propose a definition of disjoint difference families that encompasses these variations and allows a comparison of the similarities and disparities. We then focus on two constructions of disjoint difference families arising from frequency hopping sequences and showed that they are in fact the same. We conclude with a discussion of the notion of equivalence for frequency hopping sequences and for disjoint difference families

    Categoric aspects of authentication

    Get PDF
    [no abstract available

    High-rate self-synchronizing codes

    Full text link
    Self-synchronization under the presence of additive noise can be achieved by allocating a certain number of bits of each codeword as markers for synchronization. Difference systems of sets are combinatorial designs which specify the positions of synchronization markers in codewords in such a way that the resulting error-tolerant self-synchronizing codes may be realized as cosets of linear codes. Ideally, difference systems of sets should sacrifice as few bits as possible for a given code length, alphabet size, and error-tolerance capability. However, it seems difficult to attain optimality with respect to known bounds when the noise level is relatively low. In fact, the majority of known optimal difference systems of sets are for exceptionally noisy channels, requiring a substantial amount of bits for synchronization. To address this problem, we present constructions for difference systems of sets that allow for higher information rates while sacrificing optimality to only a small extent. Our constructions utilize optimal difference systems of sets as ingredients and, when applied carefully, generate asymptotically optimal ones with higher information rates. We also give direct constructions for optimal difference systems of sets with high information rates and error-tolerance that generate binary and ternary self-synchronizing codes.Comment: 9 pages, no figure, 2 tables. Final accepted version for publication in the IEEE Transactions on Information Theory. Material presented in part at the International Symposium on Information Theory and its Applications, Honolulu, HI USA, October 201

    Linear Codes from Some 2-Designs

    Full text link
    A classical method of constructing a linear code over \gf(q) with a tt-design is to use the incidence matrix of the tt-design as a generator matrix over \gf(q) of the code. This approach has been extensively investigated in the literature. In this paper, a different method of constructing linear codes using specific classes of 22-designs is studied, and linear codes with a few weights are obtained from almost difference sets, difference sets, and a type of 22-designs associated to semibent functions. Two families of the codes obtained in this paper are optimal. The linear codes presented in this paper have applications in secret sharing and authentication schemes, in addition to their applications in consumer electronics, communication and data storage systems. A coding-theory approach to the characterisation of highly nonlinear Boolean functions is presented

    Authentication of Quantum Messages

    Full text link
    Authentication is a well-studied area of classical cryptography: a sender S and a receiver R sharing a classical private key want to exchange a classical message with the guarantee that the message has not been modified by any third party with control of the communication line. In this paper we define and investigate the authentication of messages composed of quantum states. Assuming S and R have access to an insecure quantum channel and share a private, classical random key, we provide a non-interactive scheme that enables S both to encrypt and to authenticate (with unconditional security) an m qubit message by encoding it into m+s qubits, where the failure probability decreases exponentially in the security parameter s. The classical private key is 2m+O(s) bits. To achieve this, we give a highly efficient protocol for testing the purity of shared EPR pairs. We also show that any scheme to authenticate quantum messages must also encrypt them. (In contrast, one can authenticate a classical message while leaving it publicly readable.) This has two important consequences: On one hand, it allows us to give a lower bound of 2m key bits for authenticating m qubits, which makes our protocol asymptotically optimal. On the other hand, we use it to show that digitally signing quantum states is impossible, even with only computational security.Comment: 22 pages, LaTeX, uses amssymb, latexsym, time
    corecore