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Abstract. We present in this article the basic properties of projecieometry,
coding theory, and cryptography, and show how finite geomegin contribute to
coding theory and cryptography. In this way, we show linksveen three research
areas, and in particular, show that finite geometry is not iméresting from a pure
mathematical point of view, but also of interest for apgimas. We concentrate
on introducing the basic concepts of these three reseaees and give standard
references for all these three research areas. We alsoomgatiticular results in-
volving ideas from finite geometry, and particular resuitsryptography involving
ideas from coding theory.
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1. Introduction to projective geometry

The classical Euclidean geometry contains two very intargsveaker geometries.

e Theabsolute geometrwhich explores what can be proved without the famous
parallel postulate.

e The affine geometryhich explores what can be proved without the axiom of
measure (length and angles).

The axioms of the affine plane are:

(A1) Each two points are joined by exactly one line.

(A2) For each lind and each poinP not on/, there is exactly one line through
which does not interseét

(A3) There are three points which do not lie on a common line.

When working in the affine plane, one almost always distislges between parallel
and intersecting lines. This distinction can be removeddiggto the projective closure.
For each parallel class of lines we add a “point at infinity”iethlies on all lines of
the parallel class. There is also a “line at infinity” whichegahrough all the points at
infinity.

This leads to the projective plane with the axioms:

(P1) Each two points are joined by exactly one line.
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(P2) Each two lines meet in exactly one point.
(P3) There are at least two lines and each line contains stttlei@e points.

To extend the projective geometry to higher dimensions, wstmeplace (P2) by
an axiom that states that two lines in a plane have a comman.ddie Veblen-Young
axiom does exactly this but avoids the use of the word plane.

(P2) Let A, B, C andD be four points such that the linesB andC'D intersect.
ThenAC and BD have a common point.
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Figure 1. The Veblen-Young axiom

We now present the classical construction of a projectieesp

Theorem 1
Let V' be a vector space of dimensidn+ 1 > 3 over a (skew) field. The geometry
PG(V) is defined by

e The points ofPG(V') are thel-dimensional subspaces Bt

e The lines ofPG(V) are the2-dimensional subspaces Bt

e A point of PG(V) is incident with a line ofPG(V) if the correspondingl-
dimensional subspace is contained in the correspon2lidgmensional subspace.

ThenPG(V) is a projective space.

Proof. Let (v), (w) be two points of PG), then (v, w) is the unique2-dimensional
subspace containingandw, which proves axiom (P1).

Let A = (u), B = (v), C = (w), D = {(x) be four points ofPG(V). If the lines
AB = (u,v) andCD = (w,z) intersect in a common point, the dimension formula
gives

dim (u, v, w, z) = dim (u, v) + dim (w, z) — dim({u, v) N (w,x)) =24+2—-1=3.
Again by the dimension formula, we get
dim((u, w) N (v, z)) = dim (u, w) + dim (v, z) — dim (u, v, w,x) =2+2 -3 =1,

and hencedAC' = (u,w) and BD = (v, z) meet in a common point of A®). This
proves axiom (P2").



Each line{v, w) of PG(V') contains at least three points), (w) and(v + w). Since
dim V' > 3, there are at least two subspaces of dimen3idrhis proves axiom (P3)

Two extremely important “Theorems” of projective geomedrg:

Theorem 2 (Desargues Theorem)
Let A; A; A5 and By B, B3 be two triangles for which the line4, By, A; B, and A3 B3
are different and go through a common podrit

Then the pOint?lg = A1A5 N B1Bsy, P53 = A1A3 N B1B3 andP23 = A2A3 n
By Bs lie on a common line.
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Figure 2. Desargues Theorem

Theorem 3 (Pappus Theorem)
Let! andh be two intersecting lines. Let;, A,, A3 be distinct points ohdifferent from
I[N hand letB;, By, Bs be distinct points ot different froml N A.

Then the point§12 = A1B2 N AQBl, Glg = AlBg N AgBl andG23 = A2B3 n
A3 Bs lie on a common line.

Without proof we note:

Theorem 4
A projective space satisfies the Theorem of Desargues if ahdifit is of the form
PG(V') for some vector spacé.

A projective space satisfies the Theorem of Pappus if andibitlis of the form
PG(V) for some vector spacé over a commutative fielll.

In the following, all projective spaces will be of the form PiG) whereV is a finite
dimensional vector space over a finite fi&lgof orderg. Letd + 1 be the dimension of
V, then we also write P@, ¢) for PG(V).

Fix a basisvg, ...,vq of V. Letu = vy + --- + vg. Then any vector = agvg +
-+ 4 aqug € V is uniquely determined by its coordinates, . . ., aq).



Figure 3. Pappus Theorem

We call (ao, . . ., aqs) thehomogeneous coordinate§the point(v) of PG(V') with
respect to the projective reference systgm), . . . , (vq), (u)}, whereu = vo+- - - +vg4.
Since(v) = (uv) for anyu # 0 the homogeneous coordinates of a projective point are
unique up to a nonzero scalar factor.

Example 1
The line through the points with homogeneous coordin@igs . ., aq) and(bo, . . ., ba)
consists of the points with the following coordinates, . .., aq4) and (b, ...,bq) +

x(ag,...,aq), Withz € F.

If V is a vector space over a finite field, then (PG has a finite number of points
and lines. Theorem 5 counts them.

Theorem 5 .
The projective spac®G(d,q) has ——+ = ¢? + ¢%~! + .-+ + ¢ + 1 points. and

pa
d, d—1 d—1, d—2 ]
(@+q"" +-+q+1) (¢ " +¢° 7"+ +q+1) lines.

g+1
Each line ofPG(d, q) contains exactly + 1 points.

Proof. The vector spacé’gJrl containsg?*! — 1 nonzero vectors and &dimensional
subspace o}Fg“ containsg — 1 nonzero vectors. ThuEgl+1 has% subspaces of
dimensiont.

As special cases we have that a two dimensional vector spesep hasq + 1
subspaces of dimensidni.e. a line of PGd, ¢) hasg + 1 points.

There arg¢?*t! — 1)(¢%+! — q) possibilities to choose linearly independent vectors
u,v € Fd*1, Every two dimensional spade, v) has(¢® — 1)(¢* — ¢) different bases.

ThusIFg+1 contains

(@' =1 —q)  (¢“+- g+ D@+ g+ 1)

(¢* = 1)(¢* — q) q+1

subspaces of dimensi@n O



As indicated in the abstract, projective geometry is firglbihvestigated because of
its pure mathematical importance. But projective geomistalso important because of
its links to other research areas. We now present codingythae of the most important
research areas linked to projective geometry. For a ddtdiseussion of finite projective
spaces we refer to [12, 13, 15].

2. Coding theory
2.1. Introduction to coding theory

When sending a message there is always a small probabilitsefesmission errors. The
goal of coding theory is to develop good codes to detect an@citransmission errors.

noise

| encodef—| channe|—| decode*—>

Figure 4. Transmission of data through a noisy communication channel

Suppose for example that we transmit a binary message. Witblability p of 2%
a transmission error occurs and dnis received a9 and vice versa.

Example 2 (Triple repetition code)
We repeat every symbol three times, i.e. we $80dnstead of) and111 instead ofl. If
an error occurs we guess that the majority of the receivedsysris correct, i.e. we will
decodel10 as1.

The probability that more tham error occurs in a triplet is3p?(1 — p) + p3. If
p = 0.02 we lowered the probability for incorrect decoding@@012. The price is that
we have to sen8 times more symbols.

Example 3 (The Hamming code)
Now we use the following encoding

(550,561,132,133) — (CCO, e ,1’6)
with
Ta=21+ 22 +2x3 mod 2,
rs =29+ 2+ 23 mod 2,

Te =20+ 1 +x3 mod 2.



For examplg(1101) is encoded a$1101001).

Every7-bit word is either a codeword or differs at most one placerfra codeword.
The decoding will send the received word to the “most simitadeword.

If you compute the error probability for this example youlfifid that the average
probability for a wrong bit is0.0034 whenp = 0.02.

Thus the Hamming code gives almost the same error probah8ithe simple triple
repetition code, but we must send oélyimes more symbols. Thus the Hamming code
allows a faster data transmission.

The last example shows some important aspects:

e Linear mappings are often good codes.

e The mapping itself is not so important; the image under th@ mahe most
important aspect of a code.

e Codewords should differ in as many positions as possiblétai a good error
correction rate.

This motivates the following definition.

Definition 1
The Hamming distancel(z,y) of z,y € F?, with z = (z1,...,2,) andy =
(Y155 Yn), IS

d(z,y) = {i |z #yi}].

The Hamming distance afto 0 is called theweightof z; w(z) = d(«, 0).
Alinear[n, k], block codeC is a k-dimensional subspace Bbf;.
Theminimum distancel of a linear[n, k|, block codeC' is defined as

d= min d = mi .
oin d(z,y) = min w(z)

An|n, k, d],-codeis an|n, k],-code with minimum distancé

A generator matrixG for an [n, k, d],-codeC' is ak x n matrix whose rows form a
basis for the codé€’.

A parity check matrix for an [n, k, d],-codeC is an(n — k) x n matrix of rank
n — k whose rows are orthogonal to all the codewordgbfi.e.,

ceCsc-H =0.
A main goal of coding theory is to determine for givenk andq the largesti for
which an[n, k, d],-code exists.
A good introduction into coding theory is [20]. For furtheference, see also [21,
25].
2.2. MDS codes

We start with a very simple upper bound on the minimum distasfcan[n, k],-code.
Consider the systematic generator matrix ofark],-code:



1 0 91,k+1 e gl,n
G=| . b = (I Gix(neny) -
0 1 gk,k-i-l . gkﬂl

Each row ofG has at most — & + 1 nonzero entries and henge- k£ + 1 > d.

Theorem 6 (Singleton bound [29])
An|n, k,d],-code satisfies — k +1 > d.

Codes that meet the Singleton bound are cat@dtimum distance separaliedes
(MDS codes).

LetC be an[n, k, d], MDS code. Its parity check matrii is an(n — k) x n matrix
with the property that any — k columns ofH are linearly independent.

Example 4 (Generalized Doubly-Extended Reed-Solomon (GO codes [26])
Leth = {0, Alyenny aqfl}.

Let
o 1 -+ 1 0
0 a1 aq_1 0
0 a? - ail 0
H= Do
0ah=F=2... af;:lkf2 0
1 a?_k_l e aZ__f_l 1

For instance, the determinant of tife — k) x (n — k) submatrix

1 ... 1
a1 e Qp—k
n—k—1 n—k—1

a; Ay

is ngi<j§n_k(aj — ai) 7é 0.
Anyn — k columns offf are linearly independent, i.d{ is a parity check matrix of
an MDS code.

Interpreting the columns aff as points in a projective space, we get a structure
calledarc.

Definition 2
Anr-arcof PG(n, q) is a set of points that spa®G(n, ¢) and such that any hyperplane
contains at most points of thisr-arc.

The (¢ + 1)-arc corresponding to a GDRS-code is calledoamal rational curve
Here {(1,¢,...,t* )|t €e F,} U{(0,...,0,1)} is the standard form for a normal ratio-
nal curve in PGk — 1, q).

The study of linear MDS codes was performed mostly by gedoatmethods. We
now mention a number of the most important results.



Theorem 7 (Segre, Thas [27,32])
For

e ¢ an odd prime power,
o 2<Fk<./q/4,
everyln =g+ 1,k,d = g+ 2 — k]-MDS code is a GDRS code.

This preceding result was obtained using methods from aégebeometry and pro-
jection arguments.

The motivation for the next result is as follows. The GDRSendre MDS codes of
lengthg + 1. Maybe they can be extended to MDS codes of lengt2. The following
result proves that this is practically never the case.

Theorem 8 (Storme [31])
Consider thdg + 1, k,q — k + 2],-GDRS code.

Forqoddand2 < k < ¢+ 3 — 6y/qlogq, and forg evenandt < k < ¢+ 3 —
6v/qlogq, this[g+1, k, ¢+2— k] ,~-GDRS code cannot be not extended {g-a2, k, ¢+
3 — k],-MDS code.

2.3. Minihypers and the Griesmer bound

Let N,4(d, k) denote the minimat for which an[n, k, d],-code exists and I§t:] denote
the smallest integer larger than or equatto

Theorem 9 (Griesmer bound [9, 30])

Ny(k,d) > d+ Nyl — 1, (31) 1)
and
k—1 d
M) = Gylld) = 3| 5] @)
1=0

Proof. Let C' be an[n, k, d],-code. Without loss of generality we can assume tHat
contains the codewor@, ..., 0,1,..., 1) of weightd.
Thus we have a generator matrix of the form

0---01---1
6= (")
This matrixG; has ranki — 1 since otherwise we could make a rom@f zero and
C would contain a codeword of weight less thanThusG;, is the generator matrix of
an[n —d, k — 1, d,]4-code.
Let (u,v) € C, with w(u) = d;. Since also all codewords of the forfm, v + a1)
are inC, we can select with weight at mosi{%dj.

Since (u,v) € C, we havew(u) + w(v) > dordy > d — [g}. This proves
Equation (1).



Iterating Equation (1) gives:
d
Ny(k,d) > d + Ng(k -1, (51)

d d
>d+ (51 + Ng(k -2, fq—ﬂ)

O

Now we want to construct linear codes that meet the Griesmoend, i.e. we are
interested iNG,(k, d), k, d]4-codes.

By 0, = % we denote the number afdimensional subspaces Eﬁ, i.e. the
number of points in PG: — 1, ¢).

ThesimplexcodesSy, is a[fy, k, ¢*~1],-code whose generator matrix is formed by
0, pairwise linearly independent vectors]H}ij. For eacht, the copy oft simplex codes
is a[tfy, tk, tg"~1],-code that satisfies the Griesmer bound.

An excellent way to construct more linear codes satisfyhmg Griesmer bound is
to start with a copy ot simplex codes and delete columns of the generator matrix. Th
columns to be deleted form the generator matrix of what idananticode This is
a code with an upper bound on the distance between its codswieven the distande
between codewords is allowed, i.e. an anticode may cord¢gi@ated codewords.

Definition 3

If G is ak x m matrix of F,, then theg* combinations of its rows form the codewords
of ananticodeof lengthm. Themaximum distancé of the anticode is the maximum
weight of any of its codewords./fink G = r, each codeword occurg ~" times.

If we start witht¢ copies of the simplex code and deletecolumns that form an
anticode with maximum distande we obtain gt¢y — m, k, tqg"~* — §],-code.

Codes meeting the Griesmer bound and their anticodes haiee geometrical in-
terpretation.

Let C' be an[n, k],-code with generator matrig. Each column of the generator
matrix describes a point of R& — 1, ¢). We represenf’ by the multiset\/ of thesen
points.

For instance, the simplex cod® is represented by the point set of RG- 1, q).

An i-point is a point of multiplicityi. For each subset of PG(k — 1, ¢), we denote
the number of points a¥/ in S by ¢(S). Let

~vi = max{c(S) | S is a subspace of dimensioh.



Then~y is the maximal for which ani-point in M exists. The minimum distance
of C is the minimal number of points d#f lying in the complement of a hyperplane, i.e.
d=n— k2.

If an [n, k, d],-code meets the Griesmer bound we can compute the va/desm
its parameters. At this moment we only need the followingrieam

Lemma 1 (Maruta [22])
Let(s — 1)¢"! < d < s¢*~! and letC be an[n, k, d],-code meeting the Griesmer
bound. Theny = max{c¢(P) | P € PGk — 1,q)} = s.

Proof. By the pigeonhole principle, we get > s >s— 1L
Assumey, > s, then there exists a poift = (po, . .., pr—1) described by at least
s + 1 columns of the generator matrix. Consider the subcgdef C' defined by

k—1

C'={z=(zo,. ., Tx—1) EIFZ | Zwipi =0}G.
i=0

The codewords of”’ have entry0 at the columns corresponding id PuncturingC”’ at
these columns yields gn’, &', d'],-code withn’ <n —s— 1,k = k — 1 andd’ > d.
But the Griesmer bound says that

K d k—2 k-1 d d
n-s—lzn'2) [212) [51=3 [51-[551=n-s
=0 q 1=0 1=0 q q
a contradiction. O

We represent the linear codeby the multiset)V/’ in which each poinf® of PG(k —
1, q) has weightw(P) equal tos minus the number of columns in the generator matrix
defining P. In fact, M’ is the multiset of columns of the anticode corresponding'to
in the copy ofs simplex codes. We have shown above that for linear codesmgetee
Griesmer bouna(P) > 0 for each pointP. Letd = sq"“’*lef;OQ tigh, 0 <t; <q—1
fori =0,...,k — 2. Then the total weight of all points if/’ is Zf;(f t;0;+1 and each
hyperplane has a weight of at least- d = .7 t,0;.

This geometrical structure is important enough to desenemnae.

Definition 4
An (n,w;d, ¢)-minihyperis a multiset ofn. points in PGd, ¢) with the property that
every hyperplane meets it in at leasipoints.

Many characterisation theorems of minihypers are knowe.siimplest is:

Theorem 10 (Bose and Burton [2])
Letk < d. A(0k+1,0%; d, g)-minihyper always is &-dimensional subspace of RG q).

Proof. LetH be a(6y+1, 0x; d, ¢)-minihyper. We claim that fos < k every codimension
s space ofPG(d, g) meetsH in at leas®y,_1 points.

For s = 1 this is the definition of a minihyper. Now lat > 1 and assume that a
codimensiors spacer meetsH in less thard,_,,1 points. Then the average number of
points ofH in a codimension — 1 space through is less than



ek_‘_leﬂ + Op—st1 = ¢ T+ O g1 = Ot
in contradiction to the already proved result that a codisimns — 1 space contains at
leastfy_ .2 points of H.

Now assume thai{ is not ak-space of P@&, q), i.e. there is a liné that contains
at least two points of{ but does not lie completely it. Let P € [\'H. There exists
a subspace’ of dimensiond — k£ — 1 throughP that has no point in common witH.
(There are simply not enough pointsfifito block all the(d — k — 1)-spaces througF).

The average number of points&fin a (d — k)-space through’ is 0y.1/6k11 = 1.
But the (d — k)-space containing contains at leas? points of H, thus there must be
a (d — k)-space through’ that contains no point of. A contradiction, i.e/H is a
subspace. O

There are many other characterization results on minilsyMge refer to the litera-
ture for the known results. As a concrete example of a deectaization result, we
mention the following result of Hamada, Helleseth, and Maek

Theorem 11 (Hamada, Helleseth, and Maekawa [10, 11])
Let F be a(Zf;OQ €ibii1, Zf;oz €;0;; k— 1, g)-minihyper, Wichi:O2 €; < /q+1,then

F is the union ok points,¢; lines,. . ., ex—2 (k — 2)-dimensional subspaces, which all
are pairwise disjoint.

2.4. Covering radius

For ane-error correcting code, we search for a large set of pairgispint spheres
of radiuse in the Hamming spac&; . The problem of covering codes is an opposite
problem. Here, we wish to cover all the points of the HammipgcelF; with as few
spheres as possible. Covering codes find applications incdabpression.

Formally we define:

Definition 5

LetC be alinear[n, k, d],-code. Theovering radiusf the code”' is the smallest integer
R such that every.-tuple inFy lies at Hamming distance at moBtfrom a codeword in
C.

The following theorem will be the basis for making the linktkwvthe geometrically
equivalent objects of theaturating sets in finite geometry

Theorem 12
LetC be alinear[n, k, d],-code with parity check matri&l = (hy - - - hy).

Then the covering radius @f is equal toR if and only if every(n — k)-tuple over
F, can be written as a linear combination of at méstolumns offf.

Definition 6
Let.S be a subset aPG(N, q). The setS is calledp-saturatingvhen every poinP from
PG(N, q) can be written as a linear combination of at mest 1 points ofS.



Taking into account Theorem 12, the preceding definitionmadhat:

p-saturating sets$' in PG(n—k—1, q) determine the parity check matrices of linear
[n, k, d],-codes with covering radiuB = p + 1.

Covering codes are linked to many geometrical objects.

Obviously the goal of covering codewords becomes easienwhe can use more
codewords. So we are interested in small covering codesuivagntly in small saturat-
ing sets.

Example 5 (Brualdi et al. [3], Davydov [5])
We construct d-saturating set inPG(3, q) of size2q + 1. We give the description via
coordinates.

Take a conia: = {(1,¢,¢%,0)|t € F,} U {(0,0,1,0)} in a planer : X5 = 0 of
PG(3,¢q) andletP = (0,0, 1,0) be a point of this conie. For g even, letP’ = (0,1, 0,0)
be the nucleus of the conic. Ferodd, letP’ = (0,1, 0, 0) be a point of the tangent line
to ¢ through P. Let! be a line throughP notin .

We claim thatS = (c Ul U {P'})\{P} is al-saturating set in PG3, q).

® (0,00.1)

¢ (0.0.1.3)

£

(1 ,t.tz.l]}
® P'=(0,1,0,0)

F=(0,0,1,0)

11:)(3:0

Figure 5. A 1-saturating set in PG, q)

First note that every point in the planelies on a secant of. Now take a poin)
not in 7. Together with/, it spans a plane that either intersects the conin a point
different fromP or containsP’. Thus( lies on a line which meetS in two points.

Example 6 (Ostergard and Davydov [6])
Example 5 can be extended t®&aturating set in PG, ¢) of size3q + 1. We again
give the description via coordinates.



Take two skew planesandr. Letc be a conic inr and lete be a conic inr. Let P
be a point ofc and let P be a point ofe. For ¢ even, letP’ be the nucleus af and forg
odd, choosé”’ on the tangent line te through P. Similarly choose””.

ThenS = (cucuU PP U {P’, P'})\{P, P} is a2-saturating set in PG, q).

2 2
{1,t1,0,0.0) (0,0,0,t°1,1)

o (0.0.1.8,0,0)
. - o eF

P'=(0,1,0,0,0,0) (0,0,1,0,0.0}] I {0,0,0,1,0,0) (0.0.0,0.1.0)

m F
Figure 6. A 2-saturating set in PG, q)

As in Example 5, a point of or 7 lies on a line meeting in two points.

A point@ notin s or 7 lies on a unique liné’ that meets both planes. As in Exam-
ple 5, we get thatl, ') meetsc U {P’})\{P} and(¢ U {P'})\{P} in Q; andQ>. The
span{Q, Q1, Q2) meetd in a point@Qs; and hence) lies in the plangQ1, Q2, Q3).

An interesting geometrical research problem, that in falites problems in coding
theory, is therefore the problem of constructing smpadhturating sets in finite projective
spaces.

3. Cryptography
3.1. Secret sharing

Secret sharing schemes are the cryptographic equivaléatyault that needs several
keys to be opened. In the simplest cases therevgyarticipants and each group bf
participants can reconstruct the secret, but less thaarticipants have no way to learn
anything about the secret.



Example 7 (Shamir's k-out-of-n secret sharing scheme [28])
LetF be a finite field.

The dealer chooses a polynomjale Flx| of degree at most — 1 and gives par-
ticipant number: a point(x;, f(z;)) on the graph off (x; # 0). The valuef(0) is the
secret.

A set ofk participants can reconstruct by interpolation. Then they can compute
the secretf(0). If ¥’ < k persons try to reconstruct the secret, they see that foryever
valuey € F there are exactl3|/IF|’€—’€/—1 polynomials of degree at makt— 1 which pass
through their shares and the poi(t, y). Thus they gain no information aboif0).

secret point

| s
W /
S,

Figure 7. Example for the Shamir secret sharing scheme

Many secret sharing schemes are constructed by finite gepret example one
can use arcs to construckeout-of-n secret sharing scheme.

Example 8
Letw be a hyperplane oPG(k, ¢) and letF, ..., P, be an(n + 1)-arcin . Let! be a
line of PG(k,q) withm NI = F.

The participant numbeir(1 < i < n) gets the poinf>; as his share. All participants
are told that the secret poitit, lies onl, but the hyperplane is kept secret by the dealer.

Less thark participants see the following: their sharés, ..., P; (: < k) span an
(1 — 1)-dimensional space skew toFor every pointP’ € [ there exists a hyperplang
with an arc containing®’, Py, ..., P;. Thus there is no way to decide which point &f
the secretP,.

At leastk participants can compute the spaf, ..., P;) = 7 with their shares.
The secret point, is computed as N 1.

Thus we have constructediaout-ofn secret sharing scheme.

One can consider more complex access structures. For exawglvant that three
staff members together can open the vault, but also two sst@fi members alone can
open the vault. Definition 7 formalises the idea of an accesastsire.

Definition 7
Let P be a set of persons.
Anaccess structur@ is a subset oP (P) with the property

Ael' = BeT



for everyB D A.

Example 8 shows how to realisgseout-of-n access structure with finite geometry.
We want to generalise this example. The secret and the sélaoefd be subspaces of a
finite projective space P@, ¢). As in Example 8, the reconstruction of the secret should
be done by computing the span of the shares. This leads toltbeiihg definition.

Definition 8
LetI" be an access structure for the person BefA subspace configuratidar I' is a set
of subspaces,, withp € P, and a secret spacg with the properties

e SN(S,|peA)y=0forall A¢T.
e SC(S,|peAforall AeT.

Theorem 13 (Ito, Saito and Nishizeki [16])
LetT" be an access structure, then there exists a subspace catfaurealisingl in
PG(d, q), for d large enough.

Proof. Letil = {Uy, ..., Uy} be the set of maximal unauthorised set§'ofA setA ¢ T’
is maximal unauthorised if every proper superBep A is in I'.) We will construct a
subspace configuration farin PG(d, q). Let e;, thei-th vector of unity, correspond to
the setl;.

Forp € P, defineS, = (e; | p ¢ U;) and letS = ((1,...,1)).

An unauthorised set of persofisis contained in at least one maximal unauthorised
setU;. By constructiong; ¢ (J,c;; Sp and hencelJ, ., Sp) cannot contaire; and
S ={((1,...,1)), i.e. the secret is not reconstructed.

If @ is a qualified set of persons then for every maximal unautkedrset;, @
contains a persop; notinU;. Henceg; € S, C UPEQ S, for everyi. This proves that
S={(1,...,1)) C (S, | p € Q), i.e. the persons frory can reconstruct the secrefl

For further applications of finite geometry in secret shgysee [17].
Secret sharing schemes can also be constructed by errecting codes.

Example 9 (McEliece and Sarwarte [24])
LetC be anjn +1,k,n — k + 2], MDS code.

For a secretey € Fy, the dealer creates a codewotd= (co, c1,...,c,) € C. The
share of the participant numbeiis symbok;.

SinceC' is an MDS code with minimum distange- k + 2, the codeword can be
uniquely reconstructed if onlly symbols are known.

So any set of persons can compute the seargt

On the other hand, less thanpersons do not learn anything about the secret, since
for any possible secref, the same number of codewords that fit to the se¢@td their
shares exist.

This is an alternative description of thieout-ofx secret sharing scheme from Ex-
ample 8.

The use of error-correcting codes for describing secratrsigchemes motivates
the following definition.



Definition 9 (Massey [23])
Thesupportof a worde € Fy is defined by

sup(c) = {i | c; # 0}.

LetC be alinear code.
A nonzero codeword € C is calledminimalif

Ve’ € C :sup(d’) Csup(c) = ¢ €{(c).

Lemma 2 (Massey [23])
LetC be anjn+ 1, k],-code. A secret sharing scheme is constructed ffolby choosing
a codeword: = (co, ..., c,). The secret ig, and the shares of the participants are the
coordinates:; (1 < i <mn).

The minimal qualified sets of the secret sharing scheme gpored to the minimal
codewords o> with 0 in their supports.

Proof. Suppose the sétl, . . ., k} is a qualified set. This means thgtcan be determined
fromey, ..., ¢, i.e. there exist constands, . . ., ax, with

co = aicy + -+ agck, )
which meansthatl, —ay, ..., —ag,0,...,0) is a codeword o€+ with 0 in its support.

On the other hand a codeword 6f- with 0 in its support gives an equation of
type (3) and hence its support, minus the zero position, eefiqualified set of partici-
pants. 0

3.2. Authentication codes

Consider the following cryptographic problem: Alice wattssend Bob a message.
Perhaps an attacker intercepts the message and sendgaatatteanessage to Bob. How
can Bob be sure that the message he gets is the correct ongolDtien is that Alice and
Bob agree on a secret kdy. Alice computes an authentication tag (m) and sends
ml|ex (m) to Bob. Then Bob can check that the authentication tag fitheontessage
and since the ke¥ is private he knows that Alice has computegg(m). This leads to:

Definition 10
A message authentication code (MA€R 4-tuple (S, A, K, £) with

1. S afinite set of source states (messages).

2. A afinite set of authentication tags.

3. K afinite set of keys.

4. For eachK e K, we have an authentication rutg; € £ witheg : S — A.

The security of a MAC is measured by the following probateitit

Definition 11

Letp,; denote the probability of an attacker to construct a p@ire i (s)) without knowl-
edge of the keyy, if he only knows different pairs(s;, ex (s;)). The smallest value
for whichp,+; = 1is called theorderof the scheme.



For r = 1, the probabilityp, is also known as the probability of ampersonation
attackand the probabilityp, is called the probability of &ubstitution attack

Example 10
Letr be a projective plane of orderand letl be a line ofr.

The possible messages should be the points A$ keys we take the points in the
affine planer\! and as authentication tagss (s) we take the line through the message
s and the keyk'.

If an attacker wants to create a messageex (s)) without knowing the keys,
he must guess an affine line throughThere areq possibilities, i.e. the chance for an
impersonation attack i%.

If the attacker already knows an authenticated mesgagex (s')), he knows that
the keyK must lie on the linex (s’). But for every of the affine points on that line
there exists a line through So he cannot do better than guess the keyefs’) which
gives a probability o% for a successful substitution attack.

In the following we will generalise Example 10 and show thia bptimal.
One can bound the number of keys by the attack probabilfi@s: = 1 andpg =
p1, itis stated in [8], and for arbitrary with po = p; = - - - = p,, it was proven in [7].

Theorem 14
If a MAC has attack probabilities; = 1/n; (0 < i < r), then|K| > ng - - - n,.

Proof. Suppose that we send the messagesex (s1)), - - -, (sr, ex(s:)). LetK; be the
set of all keys which give the same authentication tag fofitee; messages, i.e.

Ki ={K €K |ep(sj) =ex(s;)forj <i}.
By definition, we haveéC, = K. Formally, we defin&C,. ., = {K}.

An attacker who knows the firstmessages can create a false signature by guessing
akeyK € K; and computing j; (s;11). The attack is successfullf € K;;. Therefore

|Kiq1l
pi < .
K

Multiplying these inequalities proves the theorem. O
A MAC that satisfies this theorem with equality is calleerfect
A geometrical construction of perfect MACs uses generdlégal arcs [18, 19].

Definition 12
A generalised dual arP of order! with dimensiongl; > dy > -+ > dj+1 of PQ(n, q)
is a set of subspaces of dimensiinsuch that:

1. eachj of these subspaces intersect in a subspace of dimedsior< j < [ +1,
2. eachl + 2 of these subspaces have no common intersection.

We call(n,ds, ..., d;+1) theparametersf the dual arc.



Construction 1
Let PG(V') be ann-dimensional space with basis (0 < ¢ < n).

Let PG(W) be an(("ﬂf) - 1)—dimensional space with basig, ..., (0 < ip <
i <o <ig < ).

To simplify notations, we will write;, _;, with0 <, ...,iq < n when we mean
the vector;,, whereo is a permutation with) < i, o) <iy1) <o Sigg) <

»»»»» io(d)
n.
Letd : V!l — W be the multilinear mapping
9:(2 zz(-(?)eio,...,Zzz(-j)eid)»—» Z x53)~...~:p§j)ei0 ,,,,, i (4)
10=0 1q=0 0<ip,..,iq<n
For each pointP = [z] of PG(V'), we define a subspade(P) of PG(W) by
D(P) = (f(z,v1,...,v4) | v1,...,04 € V) . (5)
Theorem 15

The setD = {D(P) | P € PG(V)} is a generalised dual arc with dimensiods =

(") = 1i=0,...,d+ 1.

Proof. Sincef is a multilinear form, we get
D(Py)N---ND(Pr—1) ={0(x0,. -y Tke1,Vky-,0d) | Vky-..,vq € V)

and hencelim(D(Py) N --- N D(Py_q)) = ("5HF) — 1. (The -1 is because the

projective dimension is one less than the vector space diimen O
The link between dual arcs and MACs is:

Theorem 16
Letw be a hyperplane of PG + 1, ¢) and letD be a generalised dual arc of ordéin
7 with parametergn, ds, ..., d;+1).

The elements dP are the messages and the points/#(n + 1,¢) not in 7 are
the keys. The authentication tag that belongs to a messagj@ &ey is the generated
(dy + 1)-dimensional subspace.

This defines a perfect MAC of order= [ + 1 with attack probabilities

pi =gt

Proof. After : message tag paisn1, t1),. .., (m;,t;) are sent, the attacker knows that
the key must lie in théd; + 1)-dimensional space = ¢, N - - - N ¢;. This space contains
g%t different keys. A message, | intersectan; N --- N m; in ad,,-dimensional
spacer’. Two keysK and K generate the same authentication tag if and only énd
K generate together with' the saméd,,; + 1)-dimensional space. Thus the keys form
groups of sizey%+1*! and keys from the same group give the same authentication tag
The attacker has to guess a group. The probability to guessdirect group is
p; = qdi+1+1/qdi+1_ 0



3.3. AES

In 1997 the American National Institute of Standards anchfietogy started a compe-
tition to design a successor for the old Data Encryption &ach DES. In 2000 the pro-
posal of J. Daemen and V. Rijmen was selected as the new atvancryption standard
AES [4].

AES works onl128 bit words which are interpreted dsx 4 matrices over the field
Fas56.

The non-linear part of the AES substitution replaces eveayrion element by its
inverse inFy56.

An other part of the AES is the mix column step which has a lmkadding theory.
Purpose of this step is to spread a change in the input (offijis

The input of the mix column step is a vector of four bytes, . . . , a4) and its output
are four bytegby, ..., bs). It should have the following properties:

e Implementation of the mix column step should be simple ast fa
e It should have optimal diffusion (a differencefirinput bytes { < k£ < 4) should
result in the difference of at least- k output bytes).

To satisfy the first condition the designers chose the mixrool step to be a linear
mapping, i.e. mix column is done by

b1 miy,1 M1,21M1,3M14 ai
bo _ | M2,1 M22 M2 3 1M24 ag
bs | | m31masemssmsa as
by My 1 My 2 T4 3 M4 4 ay

To satisfy the second property, every square submatrix/of= (m; ;) must be
non-singular. This is equivalent to

1000my1mi2mi3mig
0100m2,1 ma32m23m24
0010mg3,1 m32m33msy4
0001mg41 ma2ma3may

is the parity check matrix of {8, 4, 5] MDS code oveffas.
Any MDS code would do the job. The designers of AES chose thading matrix:

b1 a a+1 1 1 ai
by | 1 a a+1 1 as
bs | 1 1 a o+l as
by a+1 1 1 o aq

wherea is a root ofz® + z* + 23 4+ x + 1.
The simple structure of AES mix columns has some additiodeaatages for the

implementation.
e We haveb1 = f(al,ag,ag,a4), b2 = f(ag,ag,a4,a1), bg = f(ag,a4,a1,a2)
andby = f(a4,a1,as2,a3). Thus we must implement only one linear function
f N F%56 — F256.



o f(a1,az,a3,as) = ala; + az) + (a2 + az + as)
Addition in 56 is just a bitwise XOR. This is a cheap operation.
The only difficult operation is the multiplication with. Most AES implementa-
tions do this operation by a table look up.

Remark 1

This concludes this article describing applications ofténjeometry in coding theory
and cryptography, and also ideas from coding theory appi@dryptography. For all
three research areas, we have given standard references. $arvey article containing
a large number of tables with results on substructures indigeometry, we refer to [14],
and for a collected work describing current research topicinite geometry and their
applications in coding theory and cryptography, we refelp This latter collected
work can guide interested readers to research in finite gexymand its applications,
enabling them to contribute to finite geometry and its agtians.
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