343 research outputs found

    Artificial neural networks in geospatial analysis

    Full text link
    Artificial neural networks are computational models widely used in geospatial analysis for data classification, change detection, clustering, function approximation, and forecasting or prediction. There are many types of neural networks based on learning paradigm and network architectures. Their use is expected to grow with increasing availability of massive data from remote sensing and mobile platforms

    Wide and Deep Neural Networks in Remote Sensing: A Review

    Get PDF
    Wide and deep neural networks in multispectral and hyperspectral image classification are discussed. Wide versus deep networks have always been a topic of intense interest. Deep networks mean large number of layers in the depth direction. Wide networks can be defined as networks growing in the vertical direction. Then, wide and deep networks are networks which have growth in both vertical and horizontal directions. In this report, several directions in order to achieve such networks are described. We first review a methodology called Parallel, Self-Organizing, Hierarchical Neural Networks (PSHNN’s) which have stages growing in the vertical direction, and each stage can be a deep network as well. In turn, each layer of a deep network can be a PSHNN. The second methodology involves making each layer of a deep network wide, and this has been discussed especially with deep residual networks. The third methodology is wide and deep residual neural networks which grow both in horizontal and vertical directions, and include residual learning principles for improving learning. The fourth methodology is wide and deep neural networks in parallel. Here wide and deep networks are two parallel branches, the wide network specializing in memorization while the deep network specializing in generalization. In leading to these methods, we also review various types of PSHNN’s, deep neural networks including convolutional neural networks, autoencoders, and residual learning. Partially due to moderate sizes of current multispectral and hyperspectral image sets, design and implementation of wide and deep neural networks hold the potential to yield most effective solutions. These conclusions are expected to be valid in other areas with similar data structures as well

    A Review of Graph Neural Networks and Their Applications in Power Systems

    Get PDF
    Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many publications generalizing deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks) are summarized, and key applications in power systems, such as fault scenario application, time series prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed

    Modeling Brain Circuitry over a Wide Range of Scales

    Get PDF
    If we are ever to unravel the mysteries of brain function at its most fundamental level, we will need a precise understanding of how its component neurons connect to each other. Electron Microscopes (EM) can now provide the nanometer resolution that is needed to image synapses, and therefore connections, while Light Microscopes (LM) see at the micrometer resolution required to model the 3D structure of the dendritic network. Since both the topology and the connection strength are integral parts of the brain's wiring diagram, being able to combine these two modalities is critically important. In fact, these microscopes now routinely produce high-resolution imagery in such large quantities that the bottleneck becomes automated processing and interpretation, which is needed for such data to be exploited to its full potential. In this paper, we briefly review the Computer Vision techniques we have developed at EPFL to address this need. They include delineating dendritic arbors from LM imagery, segmenting organelles from EM, and combining the two into a consistent representation

    Statistical and Machine Learning Models for Remote Sensing Data Mining - Recent Advancements

    Get PDF
    This book is a reprint of the Special Issue entitled "Statistical and Machine Learning Models for Remote Sensing Data Mining - Recent Advancements" that was published in Remote Sensing, MDPI. It provides insights into both core technical challenges and some selected critical applications of satellite remote sensing image analytics

    A Review of Landcover Classification with Very-High Resolution Remotely Sensed Optical Images—Analysis Unit, Model Scalability and Transferability

    Get PDF
    As an important application in remote sensing, landcover classification remains one of the most challenging tasks in very-high-resolution (VHR) image analysis. As the rapidly increasing number of Deep Learning (DL) based landcover methods and training strategies are claimed to be the state-of-the-art, the already fragmented technical landscape of landcover mapping methods has been further complicated. Although there exists a plethora of literature review work attempting to guide researchers in making an informed choice of landcover mapping methods, the articles either focus on the review of applications in a specific area or revolve around general deep learning models, which lack a systematic view of the ever advancing landcover mapping methods. In addition, issues related to training samples and model transferability have become more critical than ever in an era dominated by data-driven approaches, but these issues were addressed to a lesser extent in previous review articles regarding remote sensing classification. Therefore, in this paper, we present a systematic overview of existing methods by starting from learning methods and varying basic analysis units for landcover mapping tasks, to challenges and solutions on three aspects of scalability and transferability with a remote sensing classification focus including (1) sparsity and imbalance of data; (2) domain gaps across different geographical regions; and (3) multi-source and multi-view fusion. We discuss in detail each of these categorical methods and draw concluding remarks in these developments and recommend potential directions for the continued endeavor

    A Review of Landcover Classification with Very-High Resolution Remotely Sensed Optical Images—Analysis Unit, Model Scalability and Transferability

    Get PDF
    As an important application in remote sensing, landcover classification remains one of the most challenging tasks in very-high-resolution (VHR) image analysis. As the rapidly increasing number of Deep Learning (DL) based landcover methods and training strategies are claimed to be the state-of-the-art, the already fragmented technical landscape of landcover mapping methods has been further complicated. Although there exists a plethora of literature review work attempting to guide researchers in making an informed choice of landcover mapping methods, the articles either focus on the review of applications in a specific area or revolve around general deep learning models, which lack a systematic view of the ever advancing landcover mapping methods. In addition, issues related to training samples and model transferability have become more critical than ever in an era dominated by data-driven approaches, but these issues were addressed to a lesser extent in previous review articles regarding remote sensing classification. Therefore, in this paper, we present a systematic overview of existing methods by starting from learning methods and varying basic analysis units for landcover mapping tasks, to challenges and solutions on three aspects of scalability and transferability with a remote sensing classification focus including (1) sparsity and imbalance of data; (2) domain gaps across different geographical regions; and (3) multi-source and multi-view fusion. We discuss in detail each of these categorical methods and draw concluding remarks in these developments and recommend potential directions for the continued endeavor

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    • …
    corecore