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A Review of Graph Neural Networks and
Their Applications in Power Systems

Wenlong Liao, Birgitte Bak-Jensen, Jayakrishnan Radhakrishna Pillai, Yuelong Wang,
and Yusen Wang

Abstract——Deep neural networks have revolutionized many
machine learning tasks in power systems, ranging from pattern
recognition to signal processing. The data in these tasks are typ‐
ically represented in Euclidean domains. Nevertheless, there is
an increasing number of applications in power systems, where
data are collected from non-Euclidean domains and represented
as graph-structured data with high-dimensional features and in‐
terdependency among nodes. The complexity of graph-struc‐
tured data has brought significant challenges to the existing
deep neural networks defined in Euclidean domains. Recently,
many publications generalizing deep neural networks for graph-
structured data in power systems have emerged. In this paper,
a comprehensive overview of graph neural networks (GNNs) in
power systems is proposed. Specifically, several classical para‐
digms of GNN structures, e. g., graph convolutional networks,
are summarized. Key applications in power systems such as
fault scenario application, time-series prediction, power flow cal‐
culation, and data generation are reviewed in detail. Further‐
more, main issues and some research trends about the applica‐
tions of GNNs in power systems are discussed.

Index Terms——Machine learning, power system, deep neural
network, graph neural network, artificial intelligence.

I. INTRODUCTION

AFTER several decades of development, the smart grid
has evolved into a typical dynamic, non-linear, and

large-scale control system. The multi-directional information
makes it hard to find optimal solutions that coordinate all
participants such as distribution systems operators, produc‐
ers, demand response aggregators, and consumers [1]. For
example, high penetration of renewable energy sources
(RESs) such as photovoltaic (PV) plants and wind farms,
brings fluctuation and intermittence to power systems, which
requires more reserve capacity to avoid power outage. The
integration of flexible sources, e. g., electric vehicles, poses

revolutionary changes to radial distribution networks such as
relay protection, bidirectional power flow, and voltage regu‐
lation [2]. Moreover, the deregulation of electricity markets
makes it difficult to find a strategy that is beneficial to both
customers and producers. In these cases, traditional model-
based methods are hard to fully meet the control and analy‐
sis requirements of power systems because of their uncertain‐
ty and complexity. For example, traditional model-based
methods for scenario generations of RES are not able to ac‐
curately capture the probability distribution characteristics
and fluctuations of power curves [3], since they need to arti‐
ficially assume the probability density function of power
curves. Furthermore, traditional model-based methods are
not universal, since the probability distributions of power
curves vary from regions and times.

The outstanding performances of deep neural networks
(DNNs) in computer visions bring new opportunities to
these problems that cannot be solved by traditional model-
based methods in power systems. Many challenging tasks
such as time-series prediction of loads and RESs, fault diag‐
nosis, scenario generation, and operational control, which is
highly dependent on hand-made feature engineering to ex‐
tract information-rich latent features, have recently been
completely changed by a variety of DNNs such as recurrent
neural networks (RNNs), convolutional neural networks
(CNNs), generative adversarial networks (GANs), and auto‐
matic encoders (AEs) [4]. The successful applications of
DNNs in many tasks of power systems are due in part to the
rapid development of advanced sensors, smart meters, com‐
puting resources, and the effectiveness of DNNs that mines
potential representations from various Euclidean data such as
power curves of RES, dissolved gas of power transformers,
and images of insulators. Taking the detection of power line
insulator defects as an example, the image can be considered
as a regular grid in Euclidean domains as shown in Fig. 1(a).
To accurately identify different states of insulators, convolu‐
tional filters of CNNs are used to extract locally latent fea‐
tures due to their advantages in processing compositionality,
local connectivity, and shift-invariance of two-dimentional
data [5]. However, there are some data of power systems re‐
corded from non-Euclidean domains such as the graph-struc‐
tured data with nodes and edges. For instance, the input data
of power flow calculation include loads of each node and an
adjacency matrix, which is a kind of graph-structured data as
shown in Fig. 1(b) [6]. The complex graph-structured data
have posed huge challenges to the existing DNNs, which are
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defined in Euclidean domains [7]. Specifically, the graph-
structured data may have unordered nodes of different sizes,
and the number of neighbors of these nodes may be differ‐
ent, since the graph-structured data may be irregular. Al‐
though some crucial operations, e. g., convolution, are easy
to calculate in Euclidean domains, they are hard to be gener‐
alized to graph domains. In this case, the existing DNNs in
Euclidean domains such as CNNs and RNNs are not suitable
for processing the graph-structured data [8], since they stack
the features of nodes by a specific order and ignore the topo‐
logical information.

Recently, the generalization of DNNs from Euclidean do‐
mains to graph domains has received more and more atten‐
tion. Various new paradigms and definitions of DNNs in
graph domains have been rapidly updated to deal with the
complicated graph-structured data in the past few years. Fig‐
ure 2 visualizes the number of published papers about graph
neural networks (GNNs) from 2010 to 2020 through the ad‐
vanced search function of the Google Scholar, which evident‐
ly shows strong growth over the last three years. The classi‐
cal GNNs mainly include graph convolutional networks
(GCNs), graph recurrent neural networks (GRNNs), graph at‐
tention networks (GATs), graph generative networks
(GGNs), spatial-temporal graph neural networks (STGNNs),
and hybrid forms of GNNs such as graph reinforcement
learning (GRL) and graph transfer learning (GTL) [9], which
have shown outstanding performance for the graph-struc‐
tured data.

There is a limited number of existing review papers relat‐
ed to GNNs or deep learning in power systems. These re‐
view papers either focus on the structures of GNNs and their
applications in computer visions, or analyze the applications
of traditional DNNs in power systems. For example, the
training strategies and model architectures related to five dif‐
ferent types of GNNs are discussed in [10]. A few review pa‐

pers pay close attention to the application for non-structural
scenarios such as image classification [11] and natural lan‐
guage processing [12]. Some methods for how much various
models can be trained on large-scale knowledge graphs are
reviewed in [13]. The theoretical background of GNNs and
some geometric data such as social networks and point
clouds are introduced in [14]. Reinforcement learning (RL)
is becoming increasingly popular because of its success in
dealing with challenging decision-making problems in power
systems. The recent combinations of RL and DNNs in Eu‐
clidean domains and their application in power systems are
critically reviewed in [15], [16]. A comprehensive review of
the advantages of deep representation learning is conducted
in [17], which covers several large ranges, including super‐
vised, unsupervised, and semi-supervised applications. In
general, a part of the existing papers only focus on the appli‐
cation of GNNs in computer science, e. g., recommendation
systems, link prediction, and protein structure classification,
but do not review the applications in power systems. Anoth‐
er part of the papers investigate the advantages of traditional
DNNs in power systems, but does not involve GNNs. Rela‐
tively, this paper provides a comprehensive review of classi‐
cal GNNs and their applications in power systems for inter‐
ested researchers who major in electrical engineering, ma‐
chine learning, and energy.

Although GNNs are still in their infancy, the traditional
DNNs behind them have a very long history in Euclidean do‐
mains. The rapid development of traditional DNNs has great‐
ly promoted the research process of GNNs, since many im‐
portant operations in graph domains draw lessons from oper‐
ations in Euclidean domains. The concept of GNNs is first
proposed in [18] and further clarified in [19]. These early pa‐
pers propagate neighboring information iteratively through
the recurrent neural architecture to learn the representation
of target nodes until stable fixed points are reached. This
process involves huge computational resource, and there
have been many recent research works focusing on this prob‐
lem recently.

Motivated by the outstanding performance of CNNs in
computer visions, the convolutional operation for graph-
structured data was defined by many publications. In 2014,
the first important research on spectral-based GCNs was pro‐
posed in [20], which used the spectral graph theory to devel‐
op a new variant of graph convolutional operation. From
then on, various spectral-based GCNs were continuously pro‐
posed and improved. The spatial theory was an important
theoretical basis of another popular definition of graph con‐
volution. The graph mutual dependence was solved by archi‐
tecturally complex non-recursive layers presented in [21],
while this important research work was ignored at that time.
Recently, spatial-based GCNs have developed rapidly, since
spectral-based GCNs usually deal with the whole graphs si‐
multaneously, and they are difficult to extend to large-scale
graphs. In addition to GCNs, many other GNNs generalized
from traditional DNNs were developed over recent years.
These models mainly include GRNNs, GATs, GGNs,
STGNNs, and hybrid forms of GNNs whose structures and
parameters are given in Section II.
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Fig. 1. Euclidean convolution versus graph convolution. (a) Detection of
insulator defects in Euclidean domains. (b) Power flow calculation of IEEE
14-bus system in graph domains.

5000
4000
3000
2000
1000

0N
o.

 o
f p

ub
lis

he
d

pa
pe

rs

23 31 25 35 18 37 52 95 374
1500

4680

20202010 2012 2014 2016 2018
20192011 2013 2015 2017

Year

Fig. 2. Annual number of published papers about GNNs.
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This paper focuses on providing a comprehensive review
of the GNNs and their applications in power systems, and
identifies future challenges. The contributions of this paper
are summarized as follows.

1) Introducing several classical paradigms of GNN struc‐
tures. Each paradigm provides detailed structure and descrip‐
tions of representative applications, and interested research‐
ers can easily apply it to different fields.

2) Conducting a comprehensive survey of GNNs on pow‐
er systems with the newest developments, e.g., fault scenario
application, time-series prediction, power flow calculation,
data generation, and so forth, particularly over the past three
years. Some possible extended works about the application
of GNNs in power system is proposed.

3) Discussing the limitations of existing models, the theo‐
retical advantage of GNNs, and possible future research ar‐
eas in power systems.

The remainder of this paper is organized as follows. Sec‐
tion II introduces the definition and paradigms. Section III
presents the application in power systems. Section IV shows
the key issues and future development. Section V summariz‐
es conclusions.

II. DEFINITION AND PARADIGMS

A. Definitions of Graph-structured Data

Normally, the graph-structured data are represented as G =
(VE ), where E is a set of edges and V is a set of nodes
[22]. Specifically, vi is the ith node and eij is the edge from
the jth node to the ith node. For the ith node, its neighborhood

can be denoted as N ( )vi = { |uiÎV ( viui ) ÎE}. The graph-

structured data generally have a nodal feature matrix X node of
n ´ f scales, and a feature matrix X edge of m ´ c scales for edg‐
es. The adjacency matrix A is a matrix of n ´ n scales where
aij is equal to 0 if eijÏE and aij is equal to 1 if eijÎE.

For the spatial-temporal graph, it is an attributed graph
where the features of nodes change with time [23]. The spa‐
tial-temporal graph can be represented as G(t)= (VEX (t)).
For the directed graph, it has an asymmetric adjacency ma‐
trix, since these edges are directed from one node to another.
Relatively, the edges of the undirected graph are all undi‐
rected, i. e., the adjacency matrix is symmetric, and its nor‐
malized Laplacian matrix L can be defined as:

L = In -D
-

1
2 AD

-
1
2 (1)

where D is the diagonal matrix of node degrees with Dii =∑
j = 1

n

Aij; and In is an identity matrix.

Since the normalized graph Laplacian matrix L is real
symmetric positive semi-definite, it can be factored as:

L =UΛU T (2)

where U ∈Rn × n is the corresponding eigenvectors ordered by
eigenvalues λ; and Λ is the diagonal matrix with Λ ii = λ i.

Before going further into the next sections, Table I lists
the main characteristics of several popular paradigms of
GNNs.

B. Graph Convolutional Networks

This sub-section will discuss GCNs that are generalized
from Euclidean domains to graph domains. The existing
GCNs mainly include two categories: spectral-based GCNs
and spatial-based GCNs [24]. Since both categories of
GCNs have a large number of variants, only a few classic
models are listed to illustrate the principle and structure.

1) Spectral-based GCNs. Unlike the images in Euclidean
domains, the graph-structured data do not have the character‐
istics of translation invariance, which makes it hard to direct‐
ly define the convolutional operation in graph domains. In
2014, a spectral network was proposed in [20]. It transforms
the samples into the Fourier domains to perform convolution‐
al operations through Fourier transform, and then the sam‐
ples are transformed back to the graph domains through in‐
verse Fourier transform. Specifically, the graph convolution‐
al operation of the sample xÎRn with a filter gÎRn can be
defined as:

g*x =F -1( F ( x ) F ( g ) ) =U (U T xU T g ) =UgWU T x (3)

where * is the graph convolutional operation; F(×) is the Fou‐
rier transform; F -1 (×) is the inverse Fourier transform;  is
the Hadamard product operation; and gW = diag ( )U T g is the
filter parameterized by WÎRn.

In [25], the Chebyshev spectral CNN (ChebNet) that ap‐
proximates gW by the truncated expansion of Chebyshev
polynomials Tk (x) up to the Kth order is proposed as:

g*x »∑
k = 0

K

W 'kTk( )2L
λmax

- In x (4)

ì

í

î

ïïïï

ïïïï

Tk (x)= 2xTk - 1 (x)-Tk - 2 (x)

T0 (x)= 1

T1 (x)= x
(5)

where W 'k ÎRK is a vector that consists of Chebyshev coeffi‐
cients; and λmax is the largest eigenvalue. Because the opera‐

TABLE I
MAIN CHARACTERISTICS OF SEVERAL PARADIGMS OF GNNS

Paradigm

GCNs

GRNNs

GATs

GGNs

STGNNs

Hybrid forms
of GNNs

Variant

Spectral-based
nets

Spatial-based nets

Graph GRUs

Tree LSTM

GAT

GaAN

GAEs

GVAEs

GGANs

RNN-based nets

CNN-based nets

GRL

GTL

Main function

Extracting latent representation of
graph-structured data

Solving long-term dependencies of
graph-structured data

Incorporating attention mechanisms
to propagation step of GNNs

Generating new graph-structured data

Learning hidden patterns from spatial-
temporal graphs

Improving control and perception of
graph-structured data

Transferring knowledge in graph
domains
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tion is a Kth order polynomial in the Laplacian, it is the K-lo‐
calized.

Moreover, a new graph convolutional network is proposed
to approximate ChebNet by assuming that λmax = 2 and K = 1
[26]. Its mathematical formula is:

g*x »W '0 x -W '1 D
-

1
2 AD

-
1
2 x (6)

To alleviate over-fitting problems and restrain the number
of parameters, it further assumes that W =W '0 =-W '1, which
leads to the following formula:

g*x »W ( In +D
-

1
2 AD

-
1
2 ) x (7)

Furthermore, the renormalization trick is utilized to avoid
vanishing gradients problems in GCN [27]:

ì
í
î

ïï

ïïïï

g*x »WD̂
-

1
2 ÂD̂

-
1
2 X

Â =A + In

(8)

where D̂ is the diagonal matrix of node degrees with D̂ii =∑
j = 1

n

Âij.

Finally, (8) can be generalized to the multi-channel convo‐
lution [11], [27]:

Zout = D̂
-

1
2 ÂD̂

-
1
2 XW'' (9)

where XÎRn ´ c is a input signal with n filters and c input
channels; ZoutÎRn ´ f is an output signal, and n is the number
of nodes and f is the number of features; and W''ÎRc ´ f is
the filter parameters.

2) Spatial-based GCNs. Analogous to the convolutional
operation in the Euclidean domains, spatial-based GCNs di‐
rectly define the convolutional operation on the graph do‐
mains by operating on spatially close neighbors. The key
challenges of these spatial-based GCNs are to define convo‐
lutional operations with the different number of neighbor‐
hoods and to keep the local invariance [28], [29].

In 2015, neural FPs defined the convolutional operation
by using different weight matrices for nodes with different
degrees [30]. Its mathematical formula is:

ì

í

î

ïïïï

ï
ïï
ï

H t
FP v = σFP( X t

FPW
|| N(v)

t )
X t

FP =H t - 1
FP v +∑

i = 1

|| N(v)

H t - 1
FP i

(10)

where H t
FP v is the hidden state of node v of the neural FPs

at time step t; σFP (×) is the activation function of neural FPs
such as rectified linear unit (ReLU); N(v) is the neighbor‐
hood of node v; and W || N(v)

t is a weight matrix with the de‐
gree | N(v) | at time step t. The main shortcoming of this con‐
volutional operation is that it cannot be applied to large-
scale graphs of large node degrees.

Moreover, a diffusion-convolutional neural network
(DCNN) is proposed to define the neighborhood for nodes
by transition matrices in [31]. Its mathematical formula is:

H t
DC = σDC(W t

DCPDC X t
DC ) (11)

where X t
DCÎRn ´ f is the input data at time step t; σDC (×) is the

activation function of DCNN; W t
DC is the weight tensor of

DCNN at time step t; the dimensions of the hidden state
H t

DC at time step t and input data X t
DC are the same; and the

degree-normalized transition matrix PDC can be obtained
from the adjacency matrix PDC =D-1 A. Simulation results
have shown that DCNN is not only suitable for graph classi‐
fication, but also applicable to edge classification tasks,
which requires augmenting the adjacency matrix and trans‐
forming edges to nodes.

Furthermore, a dual-graph convolutional network (DGCN)
that consists of two graph convolutional layers in parallel is
proposed to jointly account for the global consistency and lo‐
cal consistency in [32]. The first graph convolutional layer is
the same as (8). The second graph convolutional layer substi‐
tutes the positive pointwise mutual information (PPMI) ma‐
trix for the adjacency matrix:

H t
DG = σDG( D

-
1
2

P XP D
-

1
2

P H t - 1
DG W t

DG ) (12)

where DP is the diagonal degree matrix of PPMI matrix XP;
σDG (×) is the activation function of DGCN; H t

DG is the output
data of DGNN at time step t; and W t

DG is the weight tensor
of DGNN at time step t.

3) Comparison between spectral- and spatial-based GCNs.
The main differences between spectral-based GCNs and spa‐
tial-based GCNs are as follows.

Firstly, spectral-based GCNs either need to deal with the
whole graphs simultaneously or perform eigenvector compu‐
tation, which leads to more computations induced by the for‐
ward and inverse graph Fourier transforms [33]. Relatively,
spatial-based GCNs are extensible to large-scale graphs,
since they directly define convolutional operations in graph
domains. The computation of spatial-based GCNs can be per‐
formed in a batch of nodes in place of the whole graph-struc‐
tured data.

Secondly, spectral-based GCNs which rely on the Fourier
transform generalize unfavorably to various graphs. Any per‐
turbations in the graph-structured data will cause the eigenba‐
sis to change, because they assume that the graphs are fixed
[34]. In contrast, spatial-based GCNs perform graph convolu‐
tional operations locally on each node, and the weights of
networks can be easily shared across different locations.

Thirdly, most of spectral-based GCNs are limited to han‐
dle undirected graphs [12], while spatial-based GCNs are
more flexible to handle multisource graphs such as directed
graphs [31], heterogeneous graphs [35], edge inputs [36],
and signed graphs [37], since these graphs can be easily in‐
corporated into the aggregation function.

In general, spectral-based GCNs perform convolutional op‐
erations in spectral domains through the complex Fourier
transform, while spatial-based GCNs directly define convolu‐
tional operations in graph domains. Therefore, spatial-based
GCNs show stronger generalization and flexibility compared
with most of spectral-based GCNs. In fact, both the spatial-
based and spectral-based GCNs are developing unceasingly.
For example, [34] is a kind of spectral-based GCNs that is
much efficient already. Therefore, the effectiveness of spec‐
tral-based GCNs is also being developed.
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C. GRNN

The GRNNs are designed for the problems defined in
graph domains, e.g., classifications in graph-level and node-
level, which require outputting sequences. This sub-section
will introduce two popular variants of the GRNNs.

To solve long-term dependencies in the graph-structured
data and reduce the restrictions in GNNs, there is increasing
interest in extending gate mechanisms from RNNs such as
gated recurrent units (GRUs) and long short-term memories
(LSTMs) [38] to GRNNs. For example, the graph GRUs are
introduced into the propagation step in [39]. Specifically, the
gated GNNs expand the RNNs to a fixed number of T steps,
and calculate the gradients by back-propagating time. The ba‐
sic mathematical formula of the propagation is:

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

at
v =AT

v [ ]ht - 1
1 h t - 1

2 h t - 1
n

T
+ b

z t
v = σZ( )W zat

v +U zht - 1
v

r t
v = σR( )W rat

v +U rht - 1
v

ĥt
v = tanh ( )W t

v at
v +U t

v( )r t
vh t - 1

v

ht
v = ( )1 - z t

v h t - 1
v + z t

vĥ t
v

(13)

where Av is a part of the adjacency matrix, which is used to
represent the connection between node v and its neighbors; b
is the offset vector; W z and U z are the weights of the update
gate; W r and U r are the weights of the reset gate; W t

v and
U t

v are the weights of the gated GNNs at time step t; z t
v is

the update gate; σZ (×) is the activation function of the update
gate; σR (×) is the activation function of the reset gate; h t

v is
the hidden state at time step t; and r t

v is the reset gate. These
gates like update functions of GRUs which combine the pre‐
vious time step and information of other nodes to update the
hidden state of each node.

Similar to GRUs, LSTMs are also a popular framework
for improving the effectiveness of long-term information
propagation. The basic LSTM architecture called the child-
sum tree-LSTM is proposed in [40]. It includes the input
gate iv, memory unit cv, output gate ov, and hidden state hv.
In addition, it replaces the single forget gate with a forget
gate fvk for each child k, which results in node v aggregating
information from its child nodes accordingly. Its mathemati‐
cal formula is:

ì

í

î

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ĥt - 1
v = ∑

kÎN(v)

h t - 1
k

i t
v = σI( )W i X t

v +U i ĥt - 1
v + bi

f t
vk = σF( )W f X t

v +U f ĥt - 1
k + bf

ot
vk = σO( )W o X t

v +U o ĥt - 1
k + bo

ut
v = tanh ( )W u X t

v +U u ĥt - 1
k + bu

c t
v = i t

vu t
v + ∑

kÎN(v)

f t
vkc t - 1

k

ht
v = o t

v tanh ( )c t
c

(14)

where X t
v is the input data of node v at time step t; σI (×) is

the activation function of the input gate; σF (×) is the activa‐

tion function of the forget gate; σO (×) is the activation func‐
tion of the output gate; W i and U i are the weights of the in‐
put gate; W f and U f are the weights of the forget gate; W o

and U o are the weights of the output gate; W u and U u are
the weights of the child-sum tree-LSTM; bi is the bias vec‐
tor of the input gate; bf is the bias vector of the forget gate;
bo is the bias vector of the output gate; bu is the bias vector
of the child-sum tree-LSTM; and h t

v is the hidden state at
time step t.

D. GATs

In the above-mentioned GCNs, the neighborhood of nodes
is aggregated with equal or predefined weights. Neverthe‐
less, the impacts of neighbors may vary greatly [41]. There‐
fore, they should be learned in the process of training, in‐
stead of being predetermined. Activated by attention mecha‐
nisms, GATs introduce the attention mechanism into graph
domains by revising the graph convolutional operation [42]:

H t + 1
GAT si = σGAT s(∑jÎN(i)

α t
ijW

t
GAT s H

t
GAT sj ) (15)

where H t + 1
GAT i is the hidden state of node i of GATs at time

step t + 1; N(i) is the neighborhood of node i; W t
GAT s is the

weights of GATs at time step t; σGAT s (×) is the activation func‐
tion of GATs; and α t

ij is the attention coefficient of node j to
node i at time step t. Its mathematical formula is:

α t
ij = σSM(et

ij ) = exp ( )et
ij∑

kÎN(i)

exp ( )et
ik

(16)

et
ij = σLR( F [W t

GAT s H
t
GAT si||W

t
GAT s H

t
GAT sj ] ) (17)

where || is the concatenation operation; σLR is the leaky recti‐
fied linear unit (LeakyReLU) function; σSM (×) is the Softmax
function; and F is a function, e.g., multi-layer perceptron, to
be learned.

Furthermore, the multi-head attention mechanism is uti‐
lized to stabilize the learning process. The K independent at‐
tention mechanisms are used to calculate hidden states and
then concatenate these features in GAT [43], which lead to
two different output representations:

H t + 1
GAT 1i = ||

k = 1

K

σGAT1(∑jÎN(i)

αk
ijW

t
GAT k H t

GAT j ) (18)

H t + 1
GAT 2i = σGAT2( 1

K∑k = 1

K ∑
jÎN(i)

αk
ijW

t
GAT k H t

GAT j ) (19)

where σGAT1 (×) is the activation function of the first GAT;
σGAT2 (×) is the activation function of the second GAT; H t + 1

GAT 1i

is the hidden state of node i of the first GAT at time step t +
1; H t + 1

GAT 2i is the hidden state of node i of the second GAT at
time step t + 1; and αk

ij is normalized attention coefficient cal‐
culated by the kth attention mechanism.

Another popular variant is the gated attention network
(GaAN) which employs the dot product attention and key-
value attention mechanism [44]. To replace the average oper‐
ation, the self-attention mechanism is employed to gather in‐
formation from different heads.
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E. GGN

The purpose of GGNs is to generate some new graph-
structured data by learning a series of given historical sam‐
ples. Similar to generative networks in Euclidean domains,
the existing GGNs mainly include the graph automatic en‐
coders (GAEs), variational graph auto-encoders (VGAEs),
and graph generative adversarial networks (GGANs) [45].

The GAEs consist of an encoder and a decoder [46]. First‐
ly, the features X and the adjacency matrix A of the nodes
are fed to the encoder to obtain the embedding matrix ZGAE

of the graph-structured data:

ZGAE =GCN ( )XA (20)

Then, the decoder of GAEs aims to reconstruct the graph
adjacency matrix by feeding the embedding matrix ZGAE

from the encoder:

A͂ = σGAE( ZGAE Z T
GAE ) (21)

where A͂ is the reconstructed adjacency matrix; and σGAE (×) is
the activation function of GAEs.

The new graph-structured data generated by GAEs lacks
diversity and the number is limited. To overcome these short‐
comings, VGAEs introduce the probability to GAEs [47].
The loss function of VGAEs is the variational lower bound:

L =E
q(ZVG| XA)[ lg p ( A|ZVG ) ] -KL é

ë q ( )ZVG|XA p ( )ZVG
ù
û
(22)

where KL[×] is the Kullback-Leibler divergence; p ( )ZVG is

the Gaussian distribution; ZVG is the Gaussian noise; p ( )A|ZVG

is the inner product between latent variables; q ( )ZVG|XA is

the empirical distribution of nodes, which is used to approxi‐
mate the prior distribution; and E

q(ZVG| XA)
is the expectation of

node. VGAE can only approximate the lower bound of loga‐
rithm likelihood of the nodes, which results in the limited
quality of the new graph-structured data.

In order to improve the quality of the generated graph-
structured data, the adversarial loss function of GGANs is in‐
troduced into the training process [48]. Given the graph G,
GGANs aim to train the generator and discriminator by his‐
torical samples. Specifically, the generator G ( )v|vi; θG at‐

tempts to fit the real connected distribution Preal( )v|vi of the

nodes as much as possible and generates the most likely
nodes connected with node vi from the node set to deceive
the discriminator. On the contrary, the discriminator
D ( )vvi; θD tries to identify the connectivity for the nodes

pair ( )vvi and outputs a value that represents the probability

that whether the node is ground-truth neighbors of vi or the
one generated by the generator. Formally, the generator and
discriminator are playing the two-player min-max game, and
the loss function of GGANs is:

min
θG

max
θD

L =∑
i = 1

n (Ev~p real(×|vi )[ ]lg D ( )vvi; θD +

)Ev~G(×|vi ; θG )
é
ë

ù
ûlg ( )1 -D ( )vvi; θD (23)

where Ev~p real(×|vi ) is the expectation of real samples; Ev~G(×|vi ; θG )

is the expectation of generated samples; n is the total num‐
ber of nodes; θD is the parameters of the discriminator to be
learned; and θG is the parameters of the generator to be
learned. The parameters of the generator and discriminator
are updated during the training process by alternately maxi‐
mizing and minimizing the loss function.

F. STGNN

Normally, the structure and feature information of many
graph-structured data may change with time. For example,
the power curves of adjacent wind farms have spatial-tempo‐
ral correlation, which will change with time and environmen‐
tal factors such as wind speed and wind direction. There is a
need to consider spatial dependence when forecasting the
output power of wind farms [49]. To predict values or graph
labels of nodes, the STGNNs are designed to capture spatial-
temporal dependencies of graphs simultaneously. Existing
STGNNs mainly include two categories: RNNs-based mod‐
els and CNNs-based models.

For the RNNs-based models, they try to capture spatial-
temporal dependencies by filtering hidden states and input
data passed to recurrent units using graph convolutional oper‐
ations [44]. Normally, the mathematical formula of RNNs is
shown as:

H t
RNN = σRNN(W t

RNN X t
RNN +U t

RNN H t - 1
RNN + b t

RNN ) (24)

where W t
RNN and U t

RNN are the weights of RNNs; b t
RNN is the

offset vector; X t
RNN is the feature matrix of nodes at time step

t; σRNN (×) is the activation function of RNNs; and H t
RNN is the

hidden states of RNNs at time step t. After inserting graph
convolutional operations, (24) becomes:

H t
RG = σRNN(GCN ( )X t

RNNA; W t
RNN +

GCN ( )H t - 1A; U t
RNN + b t

RNN ) (25)

where H t
RG is the hidden states of RNN-based models at

time step t.
On this basis, the diffusion convolutional RNNs combine

a GRU with diffusion graph convolutional layers in [50],
while the graph convolutional recurrent networks (GCRNs)
incorporates the LSTMs into ChebNet in [51].

In addition, some research works utilize edge-level RNNs
and node-level RNNs to deal with different aspects of tempo‐
ral features [52]. For example, a recurrent structure with the
edge-level RNNs and the node-level RNNs is proposed to
forecast labels of nodes at each time step in [53]. The tempo‐
ral information of nodes and edges passes through the edge-
level RNNs and node-level RNNs, respectively. The output
of the edge-level RNNs is used as the input data of the node-
level to merge spatial information.

The RNN-based models have gradient vanishing problems
and time-consuming iterative propagation. Relatively, the
CNN-based models handle the spatial-temporal graphs in a
non-recursive manner, which has the advantages of the sta‐
ble gradient, parallel computing, and low memory require‐
ment [54]. For example, a PGC layer and a one-dimensional
convolutional layer are used to build spatial-temporal block

350



LIAO et al.: A REVIEW OF GRAPH NEURAL NETWORKS AND THEIR APPLICATIONS IN POWER SYSTEMS

in [55]. The CGCNs [56] combine one-dimensional convolu‐
tional layers with ChebNet, which builds a spatial-temporal
block by sequentially integrating graph convolutional layers
and gated one-dimensional convolutional layers.

G. Hybrid Forms of GNNs

In addition to the GNNs mentioned above, there are also
some extended models such as GRL [57] and GTL [58].

The combination of RL and GNNs has led to a new re‐
search field named GRL, which integrates the decision-mak‐
ing of RL and perception of GNNs. Therefore, GRL can be
applied to a variety of tasks requiring both the precise con‐
trol and rich perception of graph-structured data. Many re‐
searches on GRL are currently being conducted. For exam‐
ple, to predict chemical reaction products, a graph transfor‐
mation policy network is proposed in [59], which combines
the strengths of RNNs and RL to learn the chemical reac‐
tions directly from raw data with minimal prior knowledge.
Specifically, it uses the RNNs to memorize the forecasting
sequences and the GCNs to learn the representations of
nodes. In [60], a graph convolutional policy network that
consists of GCNs and the RL is proposed to discover novel
molecules with specific properties. The generative network
is considered as an RL agent performing in the graph genera‐
tive environment. In addition, the graph generation is regard‐
ed as a Markov decision process, where edges and nodes are
added. Similarly, the GGANs are proposed to directly oper‐
ate on small molecular graphs in [61]. It combines an RL ob‐
jective with GNNs to encourage the generation of small mo‐
lecular graphs with specific desired chemical properties.

GTL is a research topic in machine learning, which aims
to store prior knowledge when solving old problems and ap‐
plying it to the new but related problems [62]. Although
GNNs have shown superior performance in various fields,
training dedicated GNNs will be costly for large-scale
graphs. In this case, a practically useful and theoretically
grounded framework is proposed for the transfer learning of
GNNs in [63]. The proposed framework views towards the
important graph information and activates the capturing of it
as the goals of transferable GNNs training, which motivates
the design of frameworks of GNNs. In [64], a model contain‐
ing transfer learning and GNNs is proposed to solve the re‐
lated tasks in the target domain without training a new mod‐
el from scratch by transferring the natural geometric informa‐
tion learned in the source domain.

III. APPLICATIONS IN POWER SYSTEMS

After years of development, some papers about the appli‐
cation of GNNs have been published, and most of them
have been published since 2018. However, most of these ap‐
plications are focused on computer science and biology such
as social networks, link prediction, protein structure genera‐
tion, and natural language processing. The applications of
GNNs in power systems are relatively limited. Table II lists
some existing publications of GNNs in power systems, cov‐
ering fault scenario application, time-series prediction of
loads and RESs, power flow calculation, data generation,

etc. In the future, it may be divided into more categories as
the number of publications increases. To serve as a catalyst
for further study of applications, this section reviews these
available literatures and discusses oriented researches.

A. Fault Scenario Application

In this sub-section, the applications of four categories in
fault scenario and some potential research directions are dis‐
cussed. The main aspects in this relation are to detect fail‐
ures in order to avoid power outages and ensure the safe op‐
eration of power grid.
1) Transformer Fault Diagnosis

One frequently-used diagnostic method within transformer
fault diagnosis applies dissolved gas analysis. The fault diag‐
nosis of the dissolved gas analysis data is crucial to diag‐
nose the incipient faults of power transformers as early as
possible. Most of the existing methods for transformer fault
diagnosis can be classified into the following three catego‐
ries: model-based methods, e.g., CNNs, distance-based meth‐
ods, e. g., k-nearest neighbors (KNNs), and their hybrid
forms, e. g., ensemble models. Specifically, distance-based
methods attempt to calculate the similarity metrics between
the historical samples and the samples with unknown labels
[65], but they are hard to mine the complex non-linear rela‐

TABLE II
EXISTING APPLICATIONS OF GNNS

Area

Fault scenar‐
io application

Time series
prediction

Power flow
calculation

Data genera‐
tion

Others

Category

Transformer fault diagnosis

Fault location

Fault detection and
isolation

Power outage prediction

Solar power prediction

Wind power or wind
speed prediction

Residential load prediction

Power flow approximation

Optimal power flow

Optimal load shedding

Scenario generation

Synthetic feeder generation

Coupled power and trans‐
portation networks

Line flow control

Maintenance tasks

Operation of distributed
energy resources

Safe operation of power
grid

Synchrophasor recovery

Transient stability
assessment

Wind power estimation

Involved GNNs

Spectral-based GCNs

Spectral-based GCNs

Spectral-based GCNs

Spectral-based GCNs

Spectral-based GCNs

Graph LSTMs and spectral-
based GCNs

Spectral-based GCNs

Spatial-based GCNs, GAEs

Spectral-based GCNs

Spectral-based GCNs

Spectral-based GCNs and
GAEs

Spectral-based GCNs and
GGANs

Spectral-based GCNs and
GRL

Spectral-based GCNs and
GRL

Hybrid forms of GNNs

Spectral-based GCNs

Spectral and spatial-based
GCNs

Graph LSTMs, spectral-based
GCNs, and GGANs

Graph LSTMs and spectral-
based GCNs

Physics-induced GNNs
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tionship between dissolved gas data and labels. In contrast,
model-based methods predict the type of fault through a clas‐
sifier trained with historical samples [66], while they ignore
the similarity metrics or do not use them directly. Further‐
more, the hybrid model can not only account for similarity
metrics, but also train a classifier for fault diagnosis. GCN
can be considered as a kind of hybrid form. On one hand,
similarity metrics between labeled samples and unknown
samples can be represented by an adjacency matrix. On the
other hand, GCNs can accurately explore the complex rela‐
tionship between dissolved gas data and fault types through
graph convolutional layers. As shown in Fig. 3, the spectral-
based GCNs are proposed to improve the accuracy of trans‐
former fault diagnosis in [67].

The simulation results show that the performance of the
GCNs is better than those of the traditional methods such as
multi-layer perceptions (MLPs), support vector machines
(SVMs), CNNs, and KNNs in different data volumes and in‐
put features. Although GCNs show strong performance in
transformer fault diagnosis, there are still some potential ar‐
eas for further research. ① Since the size of the adjacency
matrix depends on the number of samples, GCNs need to be
retrained when the number of samples changes, which leads
to that the existing GCN methods are difficult to be used for
on-line fault diagnosis. It needs further study on how to
avoid retraining GCNs for transformer fault diagnosis. For
example, it may be considered that new samples and their
most similar samples have the same connection relationship
with others. In this case, GCNs can identify new samples
without repeated training. ② The existing research works on‐
ly analyze the performance of spectral-based GCNs for trans‐
former fault diagnosis. These research works may be extend‐
ed to spatial-based GCNs and then explore the performances
of different GCNs for transformer fault diagnosis.
2) Fault Location

Traditional methods of fault location for distribution net‐
works mainly include voltage sag based methods, impedance-
based methods, traveling wave based methods, and auto-mat‐
ed outage mapping methods. Although they have their own
advantages, there are two main challenges [68]: ① they can‐
not flexibly combine measurement data from different buses,
especially in the case of data loss; ② most of traditional

methods have difficulties in modeling the topology of the
distribution network. In order to solve these problems, [69]
employs the graph GRUs to automatically localize the faults
of distribution networks. The feeder topology is represented
by graph edges, and problem data, e. g., measurements and
electrical characteristics, are regarded as graph nodes. Simi‐
larly, the spectral-based GCNs are proposed to explore com‐
prehensive information from multiple measurement units and
capture the spatial correlations among buses in [70]. As
shown in Table III, simulation results show that classifica‐
tion accuracy and one-hop accuracy of GCNs are higher
than those of some machine learning methods such as the hy‐
brid model of the principal component analyses (PCAs) and
SVMs, hybrid model of PCAs and random forests (RFs),
and MLPs. Furthermore, there are still some potential areas
for further research. ① The effectiveness of GCNs in more
realistic settings needs to be further studied. For example,
field data can be utilized to fine-tune the pre-trained model
through GTL. Especially, trained GCNs may be transferred
to other distribution networks with different topologies. ②
The difference between spectral-based GCNs and spatial-
based GCNs on the performance of large-scale distribution
networks can be analyzed, and the impact of different RESs
on GCNs can be discussed.

3) Fault Detection and Isolation
Traditional methods for fault detection and isolation are

used to identify and isolate faults at the level of a single
component by accounting for the features from this compo‐
nent and the corresponding components [71]. These methods
are not good enough, since they are independently applied to
a single component without explicitly considering the depen‐
dencies among multiple components coexisting in power sys‐
tems. The interaction between components brings challenges
to fault isolation. In addition, the traditional methods do not
consider the network structure when designing the fault diag‐
nosis, which causes over-fitting problems. To solve these
problems, the connected components in power systems can
be represented as a weighted undirected graph structure [72].
Then, local relationships between power variables in differ‐
ent components of the distribution network are explored by
GCNs to improve fault detection and isolation. Simulations
show that GCNs are significantly better than several base‐
lines. Moreover, the community-varying GCNs can be used
to explore highly correlated components in distribution net‐
works, so as to improve the performance for fault detection
and isolation.

ReLU ReLU Softmax

Graph
convolutional

layer

Graph
convolutional

layer

Dense layer

…

Output
fault type

(X, A)

Fig. 3. Transformer fault diagnosis via spectral-based GCNs.

TABLE III
FAULT LOCATION ACCURACIES OF DIFFERENT METHODS IN IEEE

123-BUS SYSTEM

Model

PCAs + SVMs

PCAs + RFs

MLPs

GCNs

Accuracy (%)

94.60

94.96

84.64

99.26

One-hop accuracy (%)

98.31

99.28

96.38

99.93
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4) Power Outage Prediction
Power outages have an important impact on economic de‐

velopment because of the strong correlation between power
energy and productive sectors. Traditional methods ignore
the connection relationship of measurement data, resulting in
their limited accuracy [73]. In order to improve the accuracy
of predicting power outages, a new method based on GNNs
is proposed to process weather measurements [74]. Specifi‐
cally, the structure of weather stations is regarded as a graph
where the edges denote the distance between these stations,
and each node represents a station. Then, weather measure‐
ments at stations are modeled as features of each node, and
the corresponding topology is utilized to process these fea‐
tures. The simulation results show that GNNs significantly
improve the accuracy of power outage prediction. Moreover,
this framework may be extended to communities. Each com‐
munity is modeled as a node, and the connection relation‐
ship between communities is modeled as branches. Then, the
correlation of power between communities can be further an‐
alyzed.

As a further example of power outages, a case with a PV
plant is considered. Generally, PV plants are installed in re‐
mote places where the weather may be very bad, which
leads to that PV plant failure is difficult to predict. Tradition‐
al methods either have low accuracy or require a large num‐
ber of historical samples to train the classifier, which is not
suitable for PV fault classification [75]. Therefore, a graph
signal processing technique is proposed to detect PV faults
with a limited amount of labeled samples [76]. The simula‐
tion results show that the graph-based classifier has higher
accuracy and lower computational cost than traditional meth‐
ods such as KNNs, SVMs, and random forests. In Euclidean
domains, Siamese networks and matching networks show
good performance for few-shot learning. Similarly, it can al‐
so employ GCNs or GRNNs to construct graph Siamese net‐
works, which may be suitable for fault diagnosis of the
graph-structured dataset with small samples.
5) Further Ideas for Applications of Fault Scenarios

In addition to the above applications of fault scenarios,
there are some potential areas worthy of further study. ①
Existing works show that ensemble learning can significant‐
ly improve predictive performance by using multiple learn‐
ing algorithms. Therefore, it may ensemble multiple GNNs
or combine GNNs with traditional DNNs in the future. ② In
Euclidean domains, the pooling operation of CNNs loses a
lot of feature information of input data, which limits the ac‐
curacy of fault diagnosis. In order to solve this problem, the
capsule network with primary capsule layers and digital cap‐
sule layers is proposed to significantly improve the accuracy
of fault diagnosis. Similarly, the capsule network may also
be extended to graph domains. ③ For GCNs in [67], their
adjacency matrix represents the similarity metrics between
samples, and the graph convolutional layer captures the com‐
plex non-linear relationship between features of samples and
labels. This framework may be suitable for transformer fault
diagnosis and other classification tasks in the power system
such as power quality disturbance classification and transient
stability assessment of power systems.

B. Time-series Prediction

In this sub-section, the applications of three categories
with time-series prediction and some potential research areas
are discussed.
1) Solar Power Prediction

Accurately predicting short-term powers is of great signifi‐
cance for power systems with high penetration of RESs, be‐
cause PV plant and wind turbine have a great impact on the
economic and stable operation of power systems. However,
traditional methods cannot accurately capture the spatial-tem‐
poral correlations of PV stations [77], because high-dimen‐
sional input vectors require a large number of free parame‐
ters in traditional machine learning models, while the gradi‐
ent descent method based on the loss function cannot be ef‐
fective to adjust a large number of free parameters. In [78],
the CNN-based STGNNs are proposed to leverage spatial-
temporal coherence among PV systems. While in [79], the
GAEs are employed to capture the spatial-temporal manifold
of power loads and PV power, which are considered as spa‐
tial-temporal graphs representing the measurements of units
via nodes and reflecting the mutual correlation between the
units via edges. Similarly, the convolutional GAEs are de‐
vised to predict probabilistic solar irradiance in different mul‐
tiple measurement sites, which are modeled as an undirected
graph [80]. In order to improve the accuracy of PV predic‐
tion, a hybrid algorithm with the LSTMs and GCNs is pro‐
posed in [81]. Specifically, the LSTMs are employed to ex‐
tract the temporal features of the PV power curves, and
GCNs are used to capture the spatial correlation between
multiple adjacent PV plants. Each PV plant is regarded as a
node, and the features of each node include historical power
and weather data. If the correlation coefficient between the
two PV plants is greater than the threshold, they are consid‐
ered to be connected. As shown in Table IV, the mean abso‐
lute error (MAE), mean absolute percentage error (MAPE),
root mean squared error (RMSE) of the proposed hybrid
model are smaller than those of traditional methods such as
the LSTMs and MLPs.

Although this model shows strong performance in short-
term prediction of PV power, there are still some potential
areas for further research. ① More combinations of algo‐
rithms can be tried. For example, the performance of the
GRUs to capture temporal correlation is similar to that of
LSTMs, and the computing time is less than that of LSTMs.
The performance of the combination of the GRUs and
GCNs for short-term PV power can be explored in the fu‐
ture. ② The RNNs in Euclidean domains have been extend‐
ed to the GRNNs in graph domains, and have shown out‐
standing performance in natural language processing. Per‐

TABLE IV
DAY-AHEAD FORECASTING RESULTS OF DIFFERENT MODEL

Model

LSTMs + GCNs

LSTMs

MLPs

MAPE (%)

28.30

54.17

43.35

RMSE

1.10

2.19

1.78

MAE

0.79

1.58

1.31
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haps the spatial-temporal correlation of the PV plants can be
captured by GRNNs.
2) Wind Power or Wind Speed Prediction

Compared with onshore wind powers, the fluctuations and
intermittence of offshore wind powers are stronger, which
poses great challenges to the operation and planning of pow‐
er systems. Traditional methods are difficult to fully exploit
the spatial property of offshore wind powers, resulting in
low forecasting accuracy. To simultaneously represent the
spatial-temporal information of wind farms, a superposition
graph neural network (SGNN) is proposed in [82], which re‐
fers to the superposition structure of CNNs on feature chan‐
nel and the feature transfer method of GNNs. Specifically,
many nearby wind turbines form the wind farms. They are
considered as the graph-structured data that represent the di‐
rect spatial property among wind turbines. For the spatial-
temporal property of wind farms, the encapsulated data struc‐
ture is designed by overlaying spatial maps at different
nodes and time horizons. Then, an SGNN is employed to ex‐
tract features, so as to maximize the utilization of spatial-
temporal property. The simulation results show that SGNN
can accurately capture the spatial-temporal features of wind
farms and achieve higher accuracy than traditional methods.

In [83], the spectral-based GCNs are presented to learn the
interconnection among multiple wind farms for wind speed
prediction. Similarly, a new temporal and spatial wind speed
feature learning framework is proposed to combine graph
deep learning and rough set theory in [84]. As shown in Fig.
4 [84], the wind farms are modeled as the graph-structured
data where the nodes with high wind directions and speed
correlations are connected by edges. Then, the recurrent
LSTMs are used to extract temporal features of each wind
site, which are fed to the spectral-based GCNs. To learn ro‐
bust features, rough set theory is embedded in the GCNs by
extracting interval lower-bound and upper-bound filtering pa‐
rameters. Simulation results show that the model has better
performance than popular deep learning architectures such as
deep belief networks (DBNs). Furthermore, there are still
some potential areas for further research: ① the SGNNs
may be extended to other prediction tasks such as irregular
distribution point clouds of PV systems; ② an effective
graph construction method is able to accelerate the efficien‐
cy of preprocessing in extracting spatial characteristics. Nev‐
ertheless, the SGNNs only use a feasible construction meth‐
od without involving more theories about computer graphics,
which can be further studied.

3) Residential Load Prediction
Short-term load prediction is an important part of provid‐

ing a stable power supply to all electricity consumers of
power systems. In order to accurately predict household
loads, a novel method that consists of graph spectral cluster‐
ing and non-intrusive load monitoring is proposed in [85].
Specifically, the aggregated power curves are decomposed in‐
to the power curve of the individual appliance which is fore‐
casted separately. Then, the total power curve is obtained by
aggregating the forecasted power curve of individual appli‐
ances. Every electrical appliance is regarded as a node, and
branches are constructed by functions of state duration proba‐
bilities of appliances. Simulation results show that this mod‐
el is more accurate compared with the existing approaches
such as similar profile load forecasting and autoregressive in‐
tegrated moving average.
4) Further Ideas for Time-series Prediction

In addition to the above applications of prediction for
loads and RESs, there are some potential directions worthy
of further study. ① In Euclidean domains, CNNs and LST‐

Ms are often combined to predict powers of RESs or power
loads, since CNNs are better at automatically extracting the
features of input data and representing the complex non-lin‐
ear relationship between the features and the real powers.
While LSTMs are better at capturing the temporal correla‐
tion of time-series. Therefore, they are often used to con‐
struct hybrid models. In the same way, it may also combine
GCNs and GRNNs to construct a hybrid model with their ad‐
vantages in graph domains. ② Temporal convolutional net‐
work (TCN) is a novel neural network originated from the
one-dimensional CNNs. It keeps the powerful ability of fea‐
ture extraction of CNNs, and is very suitable for forecasting
time-series. TCN may also be extended to graph domains,
and test its performance in load and renewable energy power
prediction. ③ Like fault diagnosis, ensemble learning can al‐
so be used to improve the forecasting performance of GNNs.
It may even ensemble the traditional RNNs and GRNNs as
well as the impact of different ensemble frameworks on the
accuracy.

Graph
modeling

LSTM

LSTM

LSTM
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…

…
…

Temporal feature
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Rough layer Rough layer…
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Spatial-temporal
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Output layer

…

Fig. 4. Structure of spatial-temporal graph DNN for short-term wind speed prediction.
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C. Power Flow Calculation

The power flow calculation of the power system is the ba‐
sis for operation and planning. In this sub-section, applica‐
tions of three categories given with power flow calculation
and some potential research areas are discussed.
1) Power Flow Approximation

Due to the growing integration of RES and an increasing
amount of power equipment, the physical models of power
systems are becoming more complex, which leads to the lon‐
ger computing time of power flow calculation. This requires
further development of fast power flow approximation meth‐
ods. Traditional methods, e.g., MLPs and CNNs, do not ex‐
ploit the intrinsic network topology of power systems, result‐
ing in low accuracy. Therefore, the spatial-based GCNs are
employed to approximate the power flow in [86]. Specifical‐
ly, the active power and reactive power of each node are re‐
garded as features, and the power flow of each branch and
the voltage of each node are defined as corresponding tags
to be predicted. Simulation results show that the spatial-
based GCNs provide a highly accurate power flow approxi‐
mation and outperform classical methods on large-scale pow‐
er systems. In [87], the voltage magnitude and voltage angle
are estimated by the spectral-based GCNs. In [88], the Cheb‐
Net is employed to calculate distribution characteristics of
power flow without the prior knowledge. The GCNs show
shorter computation time and higher accuracy than the con‐
ventional Monte-Carlo method. To decompose and solve the
power flow equations of transmission networks, the spectral-
based GCNs are presented to provide a geometric picture of
the electrical variables in [89]. Similarly, to calculate the
power flow in parallel and quickly, the GNNs are proposed
to minimize the violation of Kirchhoff’s law at each node
during the training in [90]. Unlike traditional methods, this
graph neural solver learns by itself and does not imitate the
output data of the Newton-Raphson solver. Simulation re‐
sults show that the GNNs can perform predictions faster
than traditional methods such as the Newton-Raphson solver.
Although this model shows strong performance in power
flow calculation of power systems, there are still some poten‐
tial areas for further research. ① The distribution networks
are constantly changing. When the nodes and branches of
the distribution networks increase, the trained models cannot
be used directly. In the next step, it can study how to fine-
tune the trained model through transfer learning so that the
model can be applied to the expanded distribution networks.
② Alternative GCNs model and further investigation about
architecture improvements may be considered in the future.
③ In Euclidean domains, adversarial training has been suc‐
cessfully applied to regression tasks. The adversarial training
such as GGANs may also be introduced into the power flow
calculation.
2) Optimal Power Flow

In addition to being used for power flow calculation,
GNNs can also be further applied to the optimal power flow
of distribution networks. For example, the spectrum-based
GCNs are designed to optimize the reactive power of distri‐
bution networks in [6]. Specifically, the adjacency matrix is
used to represent the topology information between the

nodes in distribution networks, so as to mine the correlation
of nodes. Then, the deep graph convolutional layer is used
to capture the complex non-linear relationship between the
state of the power equipment and the power loads. Simula‐
tion results show that the performance of this model is better
than those of traditional data-driven methods such as CNNs,
MLPs, and case-based reasoning. Similarly, the GNNs are
designed to approximate the optimal power flow solution in
[91]. GNNs are local information and scalable processing ar‐
chitectures that mine the network structure of the input data.
It is trained by taking a given network state as input and us‐
ing the output results to approximate the optimal solution of
interior-point optimizer. Simulation results show that local
solutions adequately exploit the latent grid structure and out‐
perform other comparable methods. Furthermore, there are
still some potential directions for further research. ① The ex‐
isting GNNs are difficult to account for the constraints of op‐
timal power flow such as voltage and current constraints,
which may cause power grids to operate in an unsafe state.
How to consider the constraints in GNNs can be further stud‐
ied. ② The existing methods assume that the topology of
power systems is invariant, i. e., the adjacency matrix is
fixed. However, the reconfiguration of the distribution net‐
work is also a way for regulating power flow. The distribu‐
tion network can be regarded as a kind of spatial-temporal
graph, and the adjacency matrix and features of nodes
change with times. In this case, none of the existing GCNs
can be directly applied to optimal power flow calculations.
Furthermore, spatial-temporal graph convolutional networks
have shown outstanding performance in the field of comput‐
er vision for spatial-temporal graphs. Therefore, they may be
extended to the optimal power flow of distribution networks.③ The existing methods are only suitable to solve static op‐
timal power flow, which is difficult to be directly used in ac‐
tual engineering due to the fluctuation of power loads.
GCNs may be extended to the dynamic optimal power flow.
3) Optimal Load Shedding

Load shedding is very important for operations of distribu‐
tion networks particularly under contingency events such as
line failure. Since traditional methods need to solve complex
optimization models, the computation time is very long,
which cannot meet the real-time requirements of distribution
networks. To solve these problems, the GCNs are used for
load-shedding operations in [92]. Specifically, the features of
nodes include voltage amplitude, voltage angle, active pow‐
er, and reactive power. The adjacency matrix represents the
topology information of distribution networks. As shown in
Table V, this model significantly outperforms the MLPs and
linear regressions (LRs) in different testing systems. Further‐
more, the existing methods do not account for the impact of
graph pooling layers and dropout layers on accuracy and
computation time, which can be further discussed.
4) Further Ideas for Power Flow Calculation

In addition to the above applications of power flow calcu‐
lation, there are some potential directions worthy of further
study. ① In Euclidean domains, DBNs also show good per‐
formance in the optimal power flow of distribution net‐
works. DBNs may be generalized to graph domains for the
optimal power flow. ② The existing methods need massive
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data to train GNNs. The next step is to design a structure of
GNNs suitable for the dataset with small samples. Besides,
GGANs may also be used to expand samples to train these
GNNs.

D. Data Generation

In this sub-section, the applications of two categories with
data generation and some potential research direction are dis‐
cussed.
1) Scenario Generation

Stochastic scenario generation is an important way to cap‐
ture the uncertainties of solar irradiance by generating a set
of possible time-series. Traditional methods need to artificial‐
ly assume the probability distributions of solar curves, and
use historical samples to fit the key parameters in the proba‐
bility distribution, which leads to poor quality and general‐
ization ability. To solve these problems, the convolutional
GAEs are introduced to capture generated samples from the
probability densities learned at each node in [93]. The simu‐
lation results show that the generated samples are very simi‐
lar to the observed historical samples, which is helpful for
PV probability prediction. In [94], the spatial-temporal
graphs are used to represent both the temporal correlation of
the bus states and the spatial correlation among the buses in
distribution networks. Then, a regression neural network is
trained to generate missing measurements. Furthermore,
there are still some potential areas for further research. ①
The new graph-structured data generated by GAEs lacks di‐
versity and the number of samples are limited. Therefore,
GAEs may be replaced with VGAEs which generate any so‐
lar irradiance by feeding Gaussian noises. ② GAEs may be
extended to conditional VGAEs where Gaussian noise and
labels are fed into the generator to obtain the solar irradi‐
ance with specified properties such as fluctuating patterns.
2) Synthetic Feeder Generation

To generate new feeders of distribution networks similar
to real samples in both topology and attributes, the GGANs
with a discriminator and a generator are proposed in [95]. A
framework of a typical GGANs is shown in Fig. 5. Specifi‐
cally, the device connectivity and device properties are repre‐
sented with the adjacent matrix and feature matrix to allow

GGANs to learn topology and features from real distribution
network feeder model input files. Wasserstein distance is em‐
ployed to optimize the GGANs for distinguishing the gener‐
ated graphs from the real samples. A baseline comparison of
feeder generation is performed on a dataset, as shown in Ta‐
ble VI [95]. Simulation results show that GGANs improve
the connected rate by 18.9%, the perfect rate and success
rate by 27.2%. Furthermore, GGANs may be combined with
VGAEs to improve the quality of generated samples and
avoid vanishing gradients and exploding gradients problems
in the training process.

3) Further Ideas for Data Generation
In addition to the above applications of data generation,

there are some potential areas worthy of further study. ① In
Euclidean domains, there are some other deep generative net‐
works with strong performance such as flow-based genera‐
tive networks, implicit maximum likelihood estimation mod‐
els, and generative moment matching networks. They may
be extended to graph domains for data generation of power
systems. ② Besides feeder generation, GGNs may also be
applied to other fields of power systems such as modeling
power curves for loads and RESs.

E. Others

There are some other papers that apply GNNs to other
technical branches of power systems.

To deal with the huge challenge of large-scale disordered
and fast-charging electric vehicles to coupled power transpor‐
tation networks, a multi-objective optimization model includ‐
ing electric vehicle charging station, transportation network,
and power systems is proposed in [96]. Then, fast charging
guidance strategy and regular environment information ex‐
traction are realized by using GRL. In addition, GRL can al‐
so be used for other control problems in power systems. For

TABLE V
PREDICTION RESULTS OF DIFFERENT TESTING SYSTEMS

System

9-bus

30-bus

57-bus

118-bus

Model

GCNs

MLPs

LRs

GCNs

MLPs

LRs

GCNs

MLPs

LRs

GCNs

MLPs

LRs

RMSE for training

0.0282

0.0940

0.0929

0.1330

0.1375

0.1446

0.0744

0.1158

0.1507

0.0086

0.1034

0.2422

RMSE for testing

0.0685

0.1209

0.0980

0.1457

0.1582

0.1734

0.1231

0.6394

0.5251

0.0291

6.5755

3.1741

TABLE VI
PERFORMANCE COMPARISON OF DIFFERENT METHODS

Method

Random matrix-based method

GGANs

Connected rate
(%)

8.3

27.2

Success
rate (%)

0

27.2

Perfect
rate (%)

0

27.2

…
Random

noise

Real graphs

Generator

Discriminator

Real graph

True

Fake
Fake graph

Fig. 5. Framework of a typical GGANs.
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example, [97] proposes a simulation-constraint GRL to pro‐
vide solutions for line flow control of power systems. The
spectral-based GCNs are employed to extract features from
network topology and real measurements.

Normally, power communication networks have the diffi‐
culty in quickly obtaining knowledge and completing the
maintenance tasks. To solve these problems, a Relation-Tu‐
ple-Entity Heterogeneous GNNs are proposed to capture se‐
mantic information in different granularities for knowledge
reasoning in [98].

In order to coordinately control distributed energy resourc‐
es such as RESs and electric vehicles, [99] proposes a mod‐
el-free probabilistic graphical framework to predict the grid
congestion of power systems using GNNs. In [100], a Cheb‐
Net is presented to solve economic dispatch and unit com‐
mitment in a day-ahead trading market of power systems.

The automatic topology identification of distribution net‐
works is crucial for the data-driven safe operation of power
grids. In [101], the input data are represented as the graph-
structured data, and then the spectral-based GCNs are em‐
ployed to identify power network topology. In [102], the
novel hybrid forms of GNNs are designed to test whether
medium-voltage distribution networks satisfy the safe proper‐
ty of the topology or not. To improve the state awareness of
distribution networks, [103] uses the spatial-based GCNs to
realize the super-resolution of measurements such as topolo‐
gy graphs.

Data integrity of power systems plays a crucial role in the
operation and control of smart grids, since state measure‐
ments and communication latency are not immediately avail‐
able at the control center, resulting in slow responses of
time-sensitive applications. In [104], a graph convolutional
recurrent adversarial network is designed to extract graphical
information and temporal correlations of data.

Reliable online transient stability assessment is critical to
the safe operation of power systems. To improve the accura‐
cy of transient stability assessment, [105] aggregates the
LSTMs and GCNs to obtain a recurrent graph convolutional
network where the LSTMs subsequently capture the tempo‐
ral features and GCNs integrate the node states with the to‐
pological information.

To accurately estimate power outputs of wind turbines un‐
der different conditions, the wind farm configuration is repre‐
sented as a graph in [106], and then the physics-induced
GNNs are utilized to model the interaction among wind tur‐
bines.

IV. KEY ISSUES AND FUTURE DEVELOPMENT

Although GNNs have received extensive attention, and
rich literature works on this area have been published, the
development in GNNs and the power system itself will cer‐
tainly lead to new opportunities and problems. In this sec‐
tion, the main issues and future development are highlighted.

A. Main Issues

The power systems are very complicated and have many
uncertain factors. The successful applications of GNNs in
computer visions prove that they can explore complex objec‐

tive laws of high-dimensional data through unsupervised
learning. However, the existing parameters and structures of
GNNs are designed for the data of computer vision, which
is not suitable for the one-dimensional time-series in power
systems. Therefore, it needs further research on how to ad‐
just parameters and structures of GNNs with strong feature
extraction ability and high-quality solutions according to the
characteristics of the data from power systems.

Up to now, the application of GNNs in power systems has
rarely been commercially viable and practical. On one hand,
the theory about GNNs is still not perfect and is still in the
primary stage of exploration and verification. On the other
hand, the power systems have high requirements for stability
and reliability of control approaches [107], [108], while cur‐
rent GNNs are still based on statistical law and probability.

B. Future Development

Traditional DNNs can get better performance by stacking
hundreds of layers, since the deeper structure has more pa‐
rameters, which significantly improves the representing abili‐
ty. However, GNNs are suitable for shallow structures, and
most of GNNs are no more than three layers. How to design
real deep structures of GNNs is an exciting challenge for fu‐
ture research.

Another problem is how to deal with graph-structured da‐
ta with dynamic structures. Static graph-structured data are
stable, which can be modeled feasibly, while dynamic graph-
structured data include changing structures. For example, the
number of branches and nodes in power systems may often
increase, and GNNs can not adapt to these changes. There‐
fore, finding the dynamic GNNs will be a big milestone
about the adaptability and stability of general GNNs.

V. CONCLUSION

This paper provides a comprehensive review of GNNs in
power systems, including several classical paradigms and
their applications in fault scenario application, time-series
prediction, power flow calculation, and data generation. The
main issues and future development in this area have been
summarized and discussed. In general, GNNs and their appli‐
cation in power systems still face many challenges and op‐
portunities, which will attract more attention and research.
There will inevitably be more outstanding developments in
the future.
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