50 research outputs found

    Concurrent Models for Object Execution

    Full text link
    In previous work we developed a framework of computational models for the concurrent execution of functions on different levels of abstraction. It shows that the traditional sequential execution of function is just a possible implementation of an abstract computational model that allows for the concurrent execution of function. We use this framework as base for the development of abstract computational models that allow for the concurrent execution of objects

    Implementation, Compilation, Optimization of Object-Oriented Languages, Programs and Systems - Report on the Workshop ICOOOLPS'2006 at ECOOP'06

    Get PDF
    ICOOOLPS'2006 was the first edition of ECOOP-ICOOOLPS workshop. It intended to bring researchers and practitioners both from academia and industry together, with a spirit of openness, to try and identify and begin to address the numerous and very varied issues of optimization. This succeeded, as can be seen from the papers, the attendance and the liveliness of the discussions that took place during and after the workshop, not to mention a few new cooperations or postdoctoral contracts. The 22 talented people from different groups who participated were unanimous to appreciate this first edition and recommend that ICOOOLPS be continued next year. A community is thus beginning to form, and should be reinforced by a second edition next year, with all the improvements this first edition made emerge.Comment: The original publication is available at http://www.springerlink.co

    Draining the Swamp: Micro Virtual Machines as Solid Foundation for Language Development

    Get PDF
    Many of today\u27s programming languages are broken. Poor performance, lack of features and hard-to-reason-about semantics can cost dearly in software maintenance and inefficient execution. The problem is only getting worse with programming languages proliferating and hardware becoming more complicated. An important reason for this brokenness is that much of language design is implementation-driven. The difficulties in implementation and insufficient understanding of concepts bake bad designs into the language itself. Concurrency, architectural details and garbage collection are three fundamental concerns that contribute much to the complexities of implementing managed languages. We propose the micro virtual machine, a thin abstraction designed specifically to relieve implementers of managed languages of the most fundamental implementation challenges that currently impede good design. The micro virtual machine targets abstractions over memory (garbage collection), architecture (compiler backend), and concurrency. We motivate the micro virtual machine and give an account of the design and initial experience of a concrete instance, which we call Mu, built over a two year period. Our goal is to remove an important barrier to performant and semantically sound managed language design and implementation

    Synchronising C/C++ and POWER

    Get PDF
    Shared memory concurrency relies on synchronisation primitives: compare-and-swap, load-reserve/store-conditional (aka LL/SC), language-level mutexes, and so on. In a sequentially consistent setting, or even in the TSO setting of x86 and Sparc, these have well-understood semantics. But in the very relaxed settings of IBM®, POWER®, ARM, or C/C++, it remains surprisingly unclear exactly what the programmer can depend on. This paper studies relaxed-memory synchronisation. On the hardware side, we give a clear semantic characterisation of the load-reserve/store-conditional primitives as provided by POWER multiprocessors, for the first time since they were introduced 20 years ago; we cover their interaction with relaxed loads, stores, barriers, and dependencies. Our model, while not officially sanctioned by the vendor, is validated by extensive testing, comparing actual implementation behaviour against an oracle generated from the model, and by detailed discussion with IBM staff. We believe the ARM semantics to be similar. On the software side, we prove sound a proposed compilation scheme of the C/C++ synchronisation constructs to POWER, including C/C++ spinlock mutexes, fences, and read-modify-write operations, together with the simpler atomic operations for which soundness is already known from our previous work; this is a first step in verifying concurrent algorithms that use load-reserve/store-conditional with respect to a realistic semantics. We also build confidence in the C/C++ model in its own terms, fixing some omissions and contributing to the C standards committee adoption of the C++11 concurrency model

    TriCheck: Memory Model Verification at the Trisection of Software, Hardware, and ISA

    Full text link
    Memory consistency models (MCMs) which govern inter-module interactions in a shared memory system, are a significant, yet often under-appreciated, aspect of system design. MCMs are defined at the various layers of the hardware-software stack, requiring thoroughly verified specifications, compilers, and implementations at the interfaces between layers. Current verification techniques evaluate segments of the system stack in isolation, such as proving compiler mappings from a high-level language (HLL) to an ISA or proving validity of a microarchitectural implementation of an ISA. This paper makes a case for full-stack MCM verification and provides a toolflow, TriCheck, capable of verifying that the HLL, compiler, ISA, and implementation collectively uphold MCM requirements. The work showcases TriCheck's ability to evaluate a proposed ISA MCM in order to ensure that each layer and each mapping is correct and complete. Specifically, we apply TriCheck to the open source RISC-V ISA, seeking to verify accurate, efficient, and legal compilations from C11. We uncover under-specifications and potential inefficiencies in the current RISC-V ISA documentation and identify possible solutions for each. As an example, we find that a RISC-V-compliant microarchitecture allows 144 outcomes forbidden by C11 to be observed out of 1,701 litmus tests examined. Overall, this paper demonstrates the necessity of full-stack verification for detecting MCM-related bugs in the hardware-software stack.Comment: Proceedings of the Twenty-Second International Conference on Architectural Support for Programming Languages and Operating System

    CheckFence: Checking Consistency of Concurrent Data Types on Relaxed Memory Models

    Get PDF
    Concurrency libraries can facilitate the development of multithreaded programs by providing concurrent implementations of familiar data types such as queues or sets. There exist many optimized algorithms that can achieve superior performance on multiprocessors by allowing concurrent data accesses without using locks. Unfortunately, such algorithms can harbor subtle concurrency bugs. Moreover, they require memory ordering fences to function correctly on relaxed memory models. To address these difficulties, we propose a verification approach that can exhaustively check all concurrent executions of a given test program on a relaxed memory model and can verify that they are observationally equivalent to a sequential execution. Our Check- Fence prototype automatically translates the C implementation code and the test program into a SAT formula, hands the latter to a standard SAT solver, and constructs counterexample traces if there exist incorrect executions. Applying CheckFence to five previously published algorithms, we were able to (1) find several bugs (some not previously known), and (2) determine how to place memory ordering fences for relaxed memory models
    corecore