21 research outputs found

    A biomechanics-based articulation model for medical applications

    Get PDF
    Computer Graphics came into the medical world especially after the arrival of 3D medical imaging. Computer Graphics techniques are already integrated in the diagnosis procedure by means of the visual tridimensional analysis of computer tomography, magnetic resonance and even ultrasound data. The representations they provide, nevertheless, are static pictures of the patients' body, lacking in functional information. We believe that the next step in computer assisted diagnosis and surgery planning depends on the development of functional 3D models of human body. It is in this context that we propose a model of articulations based on biomechanics. Such model is able to simulate the joint functionality in order to allow for a number of medical applications. It was developed focusing on the following requirements: it must be at the same time simple enough to be implemented on computer, and realistic enough to allow for medical applications; it must be visual in order for applications to be able to explore the joint in a 3D simulation environment. Then, we propose to combine kinematical motion for the parts that can be considered as rigid, such as bones, and physical simulation of the soft tissues. We also deal with the interaction between the different elements of the joint, and for that we propose a specific contact management model. Our kinematical skeleton is based on anatomy. Special considerations have been taken to include anatomical features like axis displacements, range of motion control, and joints coupling. Once a 3D model of the skeleton is built, it can be simulated by data coming from motion capture or can be specified by a specialist, a clinician for instance. Our deformation model is an extension of the classical mass-spring systems. A spherical volume is considered around mass points, and mechanical properties of real materials can be used to parameterize the model. Viscoelasticity, anisotropy and non-linearity of the tissues are simulated. We particularly proposed a method to configure the mass-spring matrix such that the objects behave according to a predefined Young's modulus. A contact management model is also proposed to deal with the geometric interactions between the elements inside the joint. After having tested several approaches, we proposed a new method for collision detection which measures in constant time the signed distance to the closest point for each point of two meshes subject to collide. We also proposed a method for collision response which acts directly on the surfaces geometry, in a way that the physical behavior relies on the propagation of reaction forces produced inside the tissue. Finally, we proposed a 3D model of a joint combining the three elements: anatomical skeleton motion, biomechanical soft tissues deformation, and contact management. On the top of that we built a virtual hip joint and implemented a set of medical applications prototypes. Such applications allow for assessment of stress distribution on the articular surfaces, range of motion estimation based on ligament constraint, ligament elasticity estimation from clinically measured range of motion, and pre- and post-operative evaluation of stress distribution. Although our model provides physicians with a number of useful variables for diagnosis and surgery planning, it should be improved for effective clinical use. Validation has been done partially. However, a global clinical validation is necessary. Patient specific data are still difficult to obtain, especially individualized mechanical properties of tissues. The characterization of material properties in our soft tissues model can also be improved by including control over the shear modulus

    Mathematics & Statistics 2017 APR Self-Study & Documents

    Get PDF
    UNM Mathematics & Statistics APR self-study report, review team report, response report, and initial action plan for Spring 2017, fulfilling requirements of the Higher Learning Commission

    Physics-Based Probabilistic Motion Compensation of Elastically Deformable Objects

    Get PDF
    A predictive tracking approach and a novel method for visual motion compensation are introduced, which accurately reconstruct and compensate the deformation of the elastic object, even in the case of complete measurement information loss. The core of the methods involves a probabilistic physical model of the object, from which all other mathematical models are systematically derived. Due to flexible adaptation of the models, the balance between their complexity and their accuracy is achieved

    Pacific Symposium on Biocomputing 2023

    Get PDF
    The Pacific Symposium on Biocomputing (PSB) 2023 is an international, multidisciplinary conference for the presentation and discussion of current research in the theory and application of computational methods in problems of biological significance. Presentations are rigorously peer reviewed and are published in an archival proceedings volume. PSB 2023 will be held on January 3-7, 2023 in Kohala Coast, Hawaii. Tutorials and workshops will be offered prior to the start of the conference.PSB 2023 will bring together top researchers from the US, the Asian Pacific nations, and around the world to exchange research results and address open issues in all aspects of computational biology. It is a forum for the presentation of work in databases, algorithms, interfaces, visualization, modeling, and other computational methods, as applied to biological problems, with emphasis on applications in data-rich areas of molecular biology.The PSB has been designed to be responsive to the need for critical mass in sub-disciplines within biocomputing. For that reason, it is the only meeting whose sessions are defined dynamically each year in response to specific proposals. PSB sessions are organized by leaders of research in biocomputing's 'hot topics.' In this way, the meeting provides an early forum for serious examination of emerging methods and approaches in this rapidly changing field

    Properties and Performance of Concrete Materials and Structures

    Get PDF
    The Special Issue on “Properties and Performance of Concrete Materials and Structures” presents the current and relevant research and advances in the field of concrete composites, as well as covering a broad range of experimental studies in relation to high-performance, fiber-reinforced, self-compacting, and eco-efficient concrete materials and structures. Furthermore, analytical studies and numerical simulations are presented to show developments in the design methods of concrete composites. This Special Issue collects the most recent experimental techniques, analytical and numerical methods in relation to concrete materials and structures

    Preface

    Get PDF

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    36th Rocky Mountain Conference on Analytical Chemistry

    Get PDF
    Program, abstracts, and information about the 36th annual meeting of the Rocky Mountain Conference on Analytical Chemistry, co-sponsored by the Colorado Section of the American Chemical Society and the Rocky Mountain Section of the Society for Applied Spectroscopy. Held in Denver, Colorado, July 31 - August 5, 1994

    Alzheimer’s Dementia Recognition Through Spontaneous Speech

    Get PDF
    corecore