13,858 research outputs found

    The spectral dimension of random trees

    Full text link
    We present a simple yet rigorous approach to the determination of the spectral dimension of random trees, based on the study of the massless limit of the Gaussian model on such trees. As a byproduct, we obtain evidence in favor of a new scaling hypothesis for the Gaussian model on generic bounded graphs and in favor of a previously conjectured exact relation between spectral and connectivity dimensions on more general tree-like structures.Comment: 14 pages, 2 eps figures, revtex4. Revised version: changes in section I

    The statistical geometry of scale-free random trees

    Full text link
    The properties of scale-free random trees are investigated using both preconditioning on non-extinction and fixed size averages, in order to study the thermodynamic limit. The scaling form of volume probability is found, the connectivity dimensions are determined and compared with other exponents which describe the growth. The (local) spectral dimension is also determined, through the study of the massless limit of the Gaussian model on such trees.Comment: 21 pages, 2 figures, revtex4, minor changes (published version

    Ising models on power-law random graphs

    Full text link
    We study a ferromagnetic Ising model on random graphs with a power-law degree distribution and compute the thermodynamic limit of the pressure when the mean degree is finite (degree exponent Ď„>2\tau>2), for which the random graph has a tree-like structure. For this, we adapt and simplify an analysis by Dembo and Montanari, which assumes finite variance degrees (Ď„>3\tau>3). We further identify the thermodynamic limits of various physical quantities, such as the magnetization and the internal energy

    Maximal entropy random networks with given degree distribution

    Full text link
    Using a maximum entropy principle to assign a statistical weight to any graph, we introduce a model of random graphs with arbitrary degree distribution in the framework of standard statistical mechanics. We compute the free energy and the distribution of connected components. We determine the size of the percolation cluster above the percolation threshold. The conditional degree distribution on the percolation cluster is also given. We briefly present the analogous discussion for oriented graphs, giving for example the percolation criterion.Comment: 22 pages, LateX, no figur

    Floppy modes and the free energy: Rigidity and connectivity percolation on Bethe Lattices

    Full text link
    We show that negative of the number of floppy modes behaves as a free energy for both connectivity and rigidity percolation, and we illustrate this result using Bethe lattices. The rigidity transition on Bethe lattices is found to be first order at a bond concentration close to that predicted by Maxwell constraint counting. We calculate the probability of a bond being on the infinite cluster and also on the overconstrained part of the infinite cluster, and show how a specific heat can be defined as the second derivative of the free energy. We demonstrate that the Bethe lattice solution is equivalent to that of the random bond model, where points are joined randomly (with equal probability at all length scales) to have a given coordination, and then subsequently bonds are randomly removed.Comment: RevTeX 11 pages + epsfig embedded figures. Submitted to Phys. Rev.

    Cayley Trees and Bethe Lattices, a concise analysis for mathematicians and physicists

    Full text link
    We review critically the concepts and the applications of Cayley Trees and Bethe Lattices in statistical mechanics in a tentative effort to remove widespread misuse of these simple, but yet important - and different - ideal graphs. We illustrate, in particular, two rigorous techniques to deal with Bethe Lattices, based respectively on self-similarity and on the Kolmogorov consistency theorem, linking the latter with the Cavity and Belief Propagation methods, more known to the physics community.Comment: 10 pages, 2 figure

    Slow dynamics and rare-region effects in the contact process on weighted tree networks

    Get PDF
    We show that generic, slow dynamics can occur in the contact process on complex networks with a tree-like structure and a superimposed weight pattern, in the absence of additional (non-topological) sources of quenched disorder. The slow dynamics is induced by rare-region effects occurring on correlated subspaces of vertices connected by large weight edges, and manifests in the form of a smeared phase transition. We conjecture that more sophisticated network motifs could be able to induce Griffiths phases, as a consequence of purely topological disorder.Comment: 12 pages, 10 figures, final version appeared in PR
    • …
    corecore