35,701 research outputs found

    Building Gene Expression Profile Classifiers with a Simple and Efficient Rejection Option in R

    Get PDF
    Background: The collection of gene expression profiles from DNA microarrays and their analysis with pattern recognition algorithms is a powerful technology applied to several biological problems. Common pattern recognition systems classify samples assigning them to a set of known classes. However, in a clinical diagnostics setup, novel and unknown classes (new pathologies) may appear and one must be able to reject those samples that do not fit the trained model. The problem of implementing a rejection option in a multi-class classifier has not been widely addressed in the statistical literature. Gene expression profiles represent a critical case study since they suffer from the curse of dimensionality problem that negatively reflects on the reliability of both traditional rejection models and also more recent approaches such as one-class classifiers. Results: This paper presents a set of empirical decision rules that can be used to implement a rejection option in a set of multi-class classifiers widely used for the analysis of gene expression profiles. In particular, we focus on the classifiers implemented in the R Language and Environment for Statistical Computing (R for short in the remaining of this paper). The main contribution of the proposed rules is their simplicity, which enables an easy integration with available data analysis environments. Since in the definition of a rejection model tuning of the involved parameters is often a complex and delicate task, in this paper we exploit an evolutionary strategy to automate this process. This allows the final user to maximize the rejection accuracy with minimum manual intervention. Conclusions: This paper shows how the use of simple decision rules can be used to help the use of complex machine learning algorithms in real experimental setups. The proposed approach is almost completely automated and therefore a good candidate for being integrated in data analysis flows in labs where the machine learning expertise required to tune traditional classifiers might not be availabl

    Locality in Network Optimization

    Full text link
    In probability theory and statistics notions of correlation among random variables, decay of correlation, and bias-variance trade-off are fundamental. In this work we introduce analogous notions in optimization, and we show their usefulness in a concrete setting. We propose a general notion of correlation among variables in optimization procedures that is based on the sensitivity of optimal points upon (possibly finite) perturbations. We present a canonical instance in network optimization (the min-cost network flow problem) that exhibits locality, i.e., a setting where the correlation decays as a function of the graph-theoretical distance in the network. In the case of warm-start reoptimization, we develop a general approach to localize a given optimization routine in order to exploit locality. We show that the localization mechanism is responsible for introducing a bias in the original algorithm, and that the bias-variance trade-off that emerges can be exploited to minimize the computational complexity required to reach a prescribed level of error accuracy. We provide numerical evidence to support our claims

    Prospects and Limitations of Algorithmic Cooling

    Full text link
    Heat-bath algorithmic cooling (AC) of spins is a theoretically powerful effective cooling approach, that (ideally) cools spins with low polarization exponentially better than cooling by reversible entropy manipulations alone. Here, we investigate the limitations and prospects of AC. For non-ideal and semioptimal AC, we study the impact of finite relaxation times of reset and computation spins on the achievable effective cooling. We derive, via simulations, the attainable cooling levels for given ratios of relaxation times using two semioptimal practicable algorithms. We expect this analysis to be valuable for the planning of future experiments. For ideal and optimal AC, we make use of lower bounds on the number of required reset steps, based on entropy considerations, to present important consequences of using AC as a tool for improving signal-to-noise ratio in liquid-state magnetic resonance spectroscopy. We discuss the potential use of AC for noninvasive clinical diagnosis and drug monitoring, where it may have significantly lower specific absorption rate (SAR) with respect to currently used methods.Comment: 12 pages, 5 figure

    Use of composite rotations to correct systematic errors in NMR quantum computation

    Get PDF
    We implement an ensemble quantum counting algorithm on three NMR spectrometers with 1H resonance frequencies of 500, 600 and 750 MHz. At higher frequencies, the results deviate markedly from naive theoretical predictions. These systematic errors can be attributed almost entirely to off-resonance effects, which can be substantially corrected for using fully-compensating composite rotation pulse sequences originally developed by Tycko. We also derive an analytic expression for generating such sequences with arbitrary rotation angles.Comment: 8 pages RevTex including 7 PostScript figures (18 subfigures
    • …
    corecore