15,759 research outputs found

    Biorthogonal partners and applications

    Get PDF
    Two digital filters H(z) and F(z) are said to be biorthogonal partners of each other if their cascade H(z)F(z) satisfies the Nyquist or zero-crossing property. Biorthogonal partners arise in many different contexts such as filterbank theory, exact and least squares digital interpolation, and multiresolution theory. They also play a central role in the theory of equalization, especially, fractionally spaced equalizers in digital communications. We first develop several theoretical properties of biorthogonal partners. We also develop conditions for the existence of biorthogonal partners and FIR biorthogonal pairs and establish the connections to the Riesz basis property. We then explain how these results play a role in many of the above-mentioned applications

    Interpolating point spread function anisotropy

    Full text link
    Planned wide-field weak lensing surveys are expected to reduce the statistical errors on the shear field to unprecedented levels. In contrast, systematic errors like those induced by the convolution with the point spread function (PSF) will not benefit from that scaling effect and will require very accurate modeling and correction. While numerous methods have been devised to carry out the PSF correction itself, modeling of the PSF shape and its spatial variations across the instrument field of view has, so far, attracted much less attention. This step is nevertheless crucial because the PSF is only known at star positions while the correction has to be performed at any position on the sky. A reliable interpolation scheme is therefore mandatory and a popular approach has been to use low-order bivariate polynomials. In the present paper, we evaluate four other classical spatial interpolation methods based on splines (B-splines), inverse distance weighting (IDW), radial basis functions (RBF) and ordinary Kriging (OK). These methods are tested on the Star-challenge part of the GRavitational lEnsing Accuracy Testing 2010 (GREAT10) simulated data and are compared with the classical polynomial fitting (Polyfit). We also test all our interpolation methods independently of the way the PSF is modeled, by interpolating the GREAT10 star fields themselves (i.e., the PSF parameters are known exactly at star positions). We find in that case RBF to be the clear winner, closely followed by the other local methods, IDW and OK. The global methods, Polyfit and B-splines, are largely behind, especially in fields with (ground-based) turbulent PSFs. In fields with non-turbulent PSFs, all interpolators reach a variance on PSF systematics σsys2\sigma_{sys}^2 better than the 1×1071\times10^{-7} upper bound expected by future space-based surveys, with the local interpolators performing better than the global ones

    Morphing the CMB: a technique for interpolating power spectra

    Get PDF
    The confrontation of the Cosmic Microwave Background (CMB) theoretical angular power spectrum with available data often requires the calculation of large numbers of power spectra. The standard practice is to use a fast code to compute the CMB power spectra over some large parameter space, in order to estimate likelihoods and constrain these parameters. But as the dimensionality of the space under study increases, then even with relatively fast anisotropy codes, the computation can become prohibitive. This paper describes the employment of a "morphing" strategy to interpolate new power spectra based on previously calculated ones. We simply present the basic idea here, and illustrate with a few examples; optimization of interpolation schemes will depend on the specific application. In addition to facilitating the exploration of large parameter spaces, this morphing technique may be helpful for Fisher matrix calculations involving derivatives.Comment: 18 pages, including 6 figures, uses elsart.cls, accepted for publication in New Astronomy, changes to match published versio

    Polynomial spline-approximation of Clarke's model

    Get PDF
    We investigate polynomial spline approximation of stationary random processes on a uniform grid applied to Clarke's model of time variations of path amplitudes in multipath fading channels with Doppler scattering. The integral mean square error (MSE) for optimal and interpolation splines is presented as a series of spectral moments. The optimal splines outperform the interpolation splines; however, as the sampling factor increases, the optimal and interpolation splines of even order tend to provide the same accuracy. To build such splines, the process to be approximated needs to be known for all time, which is impractical. Local splines, on the other hand, may be used where the process is known only over a finite interval. We first consider local splines with quasioptimal spline coefficients. Then, we derive optimal spline coefficients and investigate the error for different sets of samples used for calculating the spline coefficients. In practice, approximation with a low processing delay is of interest; we investigate local spline extrapolation with a zero-processing delay. The results of our investigation show that local spline approximation is attractive for implementation from viewpoints of both low processing delay and small approximation error; the error can be very close to the minimum error provided by optimal splines. Thus, local splines can be effectively used for channel estimation in multipath fast fading channels

    Fractional biorthogonal partners in channel equalization and signal interpolation

    Get PDF
    The concept of biorthogonal partners has been introduced recently by the authors. The work presented here is an extension of some of these results to the case where the upsampling and downsampling ratios are not integers but rational numbers, hence, the name fractional biorthogonal partners. The conditions for the existence of stable and of finite impulse response (FIR) fractional biorthogonal partners are derived. It is also shown that the FIR solutions (when they exist) are not unique. This property is further explored in one of the applications of fractional biorthogonal partners, namely, the fractionally spaced equalization in digital communications. The goal is to construct zero-forcing equalizers (ZFEs) that also combat the channel noise. The performance of these equalizers is assessed through computer simulations. Another application considered is the all-FIR interpolation technique with the minimum amount of oversampling required in the input signal. We also consider the extension of the least squares approximation problem to the setting of fractional biorthogonal partners

    FRESH – FRI-based single-image super-resolution algorithm

    Get PDF
    In this paper, we consider the problem of single image super-resolution and propose a novel algorithm that outperforms state-of-the-art methods without the need of learning patches pairs from external data sets. We achieve this by modeling images and, more precisely, lines of images as piecewise smooth functions and propose a resolution enhancement method for this type of functions. The method makes use of the theory of sampling signals with finite rate of innovation (FRI) and combines it with traditional linear reconstruction methods. We combine the two reconstructions by leveraging from the multi-resolution analysis in wavelet theory and show how an FRI reconstruction and a linear reconstruction can be fused using filter banks. We then apply this method along vertical, horizontal, and diagonal directions in an image to obtain a single-image super-resolution algorithm. We also propose a further improvement of the method based on learning from the errors of our super-resolution result at lower resolution levels. Simulation results show that our method outperforms state-of-the-art algorithms under different blurring kernels

    Optimising Spatial and Tonal Data for PDE-based Inpainting

    Full text link
    Some recent methods for lossy signal and image compression store only a few selected pixels and fill in the missing structures by inpainting with a partial differential equation (PDE). Suitable operators include the Laplacian, the biharmonic operator, and edge-enhancing anisotropic diffusion (EED). The quality of such approaches depends substantially on the selection of the data that is kept. Optimising this data in the domain and codomain gives rise to challenging mathematical problems that shall be addressed in our work. In the 1D case, we prove results that provide insights into the difficulty of this problem, and we give evidence that a splitting into spatial and tonal (i.e. function value) optimisation does hardly deteriorate the results. In the 2D setting, we present generic algorithms that achieve a high reconstruction quality even if the specified data is very sparse. To optimise the spatial data, we use a probabilistic sparsification, followed by a nonlocal pixel exchange that avoids getting trapped in bad local optima. After this spatial optimisation we perform a tonal optimisation that modifies the function values in order to reduce the global reconstruction error. For homogeneous diffusion inpainting, this comes down to a least squares problem for which we prove that it has a unique solution. We demonstrate that it can be found efficiently with a gradient descent approach that is accelerated with fast explicit diffusion (FED) cycles. Our framework allows to specify the desired density of the inpainting mask a priori. Moreover, is more generic than other data optimisation approaches for the sparse inpainting problem, since it can also be extended to nonlinear inpainting operators such as EED. This is exploited to achieve reconstructions with state-of-the-art quality. We also give an extensive literature survey on PDE-based image compression methods
    corecore