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FRESH – FRI-based single-image super-resolution
algorithm

Xiaoyao Wei and Pier Luigi Dragotti

Abstract—In this paper we consider the problem of single
image super-resolution and propose a novel algorithm that
outperforms state-of-the-art methods without the need of learning
patches pairs from external datasets. We achieve this by modeling
images and, more precisely, lines of images as piecewise smooth
functions and propose a resolution enhancement method for
this type of functions. The method makes use of the theory of
sampling signals with finite rate of innovation (FRI) and combines
it with traditional linear reconstruction methods. We combine
the two reconstructions by leveraging from the multiresolution
analysis in wavelet theory and show how an FRI reconstruction
and a linear reconstruction can be fused using filter-banks. We
then apply this method along vertical, horizontal and diagonal
directions in an image to obtain a single-image super-resolution
algorithm. We also propose a further improvement of the method
based on learning from the errors of our super-resolution result at
lower resolution levels. Simulation results show that our method
outperforms state-of-the-art algorithms under different blurring
kernels.

Index Terms—super resolution, resolution enhancement,
wavelet theory, sampling, finite rate of innovation (FRI).

I. INTRODUCTION

S INGLE-IMAGE super-resolution refers to the problem of
obtaining a high-resolution (HR) version of a single low-

resolution (LR) image. This differs from the more traditional
multi-frame super-resolution problem where one has access to
multiple shifted versions of the LR image and tries to estimate
a single HR image from these multiple images (see [1] for
a nice overview). The single image super-resolution problem
is highly ill-posed since it is possible to find many high-
resolution images that can lead to the same low-resolution
one. Thus prior knowledge of the properties of natural images
has to be used to regularize the problem.

Strategies to solve the resolution enhancement problem are
typically categorized into three broad methods: interpolation
based methods, constrained reconstruction based methods, and
learning based methods. Interpolation based techniques [2],
[3], e.g. bilinear, bicubic interpolation algorithms have their
roots in sampling theory and their essence is to recover the
continuous-time signal from the given discrete pixels. They
are computationally simple, however they typically are based
on a slow-varying image model (sum of weighted and shifted
versions of a basis function) so often produce images with-
out high frequency details. Reconstruction based approaches
(e.g., [4]–[10]) define constraints for the target high-resolution

Xiaoyao and Pier Luigi are with the Communications and Signal Process-
ing Group, Department of Electrical and Electronic Engineering, Imperial
College London, London SW7 2AZ, UK. e-mail: ivy.wei@imperial.ac.uk;
p.dragotti@imperial.ac.uk.

image. Commonly used priors includes statistical prior of
natural images [4], [5], total-variation prior [6], gradient-
profile prior [8]. There are also learning based algorithms
which infer missing high frequency information based on
a dictionary containing pairs of low-resolution and high-
resolution patches. The dictionary is either trained externally
using a database of low-resolution (LR) and high-resolution
(HR) image pairs [11]–[16] or internally using self-similarities
of the image at different scales [17]–[20].

lens sensor 
camera continuous scene digital image 

Fig. 1. Image formation process. The incoming irradiance light field is blurred
by the lens and sampled by the image sensor.

In this paper we connect the single image super-resolution
problem to the one of sampling and reconstructing piecewise
regular functions. We note that the high-resolution, high-
frequency information of an image is lost during the acquisi-
tion process (see Fig. 1) because of lens blur (usually modeled
by the point spread function) and limited density of imaging
sensors. This process is very similar to the way acquisition
is modeled in traditional sampling theory where the analogue
signal is low-pass filtered (equivalent to the blurring due to
lenses) and then sampled (equivalent to the sensor grid in a
digital camera). Linear interpolation methods have the merit
of making this connection explicit. However, they are not
effective in practice because they can only recover globally
smooth functions, whereas images and scan-lines of images
are piecewise regular (see Fig. 2).
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Fig. 2. Natural images and scan-lines of natural images are approximately
2-D and 1-D piecewise smooth functions respectively.

The recently developed theory of sampling signals with
finite rate of innovation (FRI) [21]–[28] overcomes in some
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cases the limitation of the linear interpolation methods by ex-
ploiting the fact that many signals, like piecewise polynomial
functions, are fully specified by a finite number of parame-
ters. FRI theory has shown that these signals, although non-
bandlimited, can be uniquely reconstructed by only a small
number of samples taken with specific acquisition devices. In
other words, there is a unique mapping between a specific low-
resolution version to the infinite-resolution version for these
signals and there is a constructive way for recovery. The FRI
theory is later extended to the approximate FRI framework
that works with any sampling kernel [28].

This insight inspires a novel method for sampling
continuous-time image scan-lines or 1-D piecewise smooth
functions: a piecewise smooth signal can be modelled as the
sum of a piecewise polynomial and a globally smooth part
and we propose a hybrid reconstruction method based on
classical linear recovery of the smooth part and non-linear
recovery of the piecewise polynomial part using FRI on the
same set of samples. We then leverage from wavelet theory and
the corresponding multi-resolution analysis [29] to adapt this
hybrid reconstruction method to the resolution enhancement
problem. In particular, enhancing the resolution of a signal
is equivalent to finding the detail wavelet coefficients at finer
scales. We do this using FRI and we combine the details with
the coarse linear approximation. Because of the connection
with wavelet theory this can be achieved using filter banks.
This leads to a fast and extremely effective algorithm to
enhance the resolution of 1-D piecewise smooth functions.

We extend this approach to images by approximating the
point-spread-function with a scaling function in the wavelet
theory (typically a spline of a certain order) and apply the
1-D method along vertical, horizontal and diagonal direc-
tions. These reconstruction are then combined with the low-
resolution version of the image using a 2-D filter-bank.

Finally, inspired by the works in single image super-
resolution based on self-learning, we propose correcting the
error in our FRI upsampling result by learning from the pair
of input LR image and the corresponding FRI image of same
size recovered from an even lower scale. Contrary to [17],
[19], we use self-learning algorithms only to refine our FRI
based method. As a result, we do not require learning at every
small increment of scales and our upsampled images have less
artefacts. The end result is an FRi-based singlE-image Super-
resolution algoritHm - FRESH, which outperforms state-of-
the-art methods in most situations. Fig. 3 shows a comparison
on an example.

The paper is organized as follows. In Section II we review
the classical sampling theory whose reconstruction process is
linear, and the recently developed FRI sampling theory. In
Section III, we first show our interpretation of sampling from
multi-resolution property of wavelet transform and propose
how to sample piecewise smooth signals, then by relating
the resolution enhancement problem to sampling problem we
propose a method for enhancing the resolution of piecewise
smooth signals using filter-banks. In Section IV, we show
how the 1-D upsampling method is extended to enhance
the resolution of 2-D images. We then propose an improved
upsampling method which corrects errors in the FRI upsam-

pled image by exploiting the similarities between images at
different resolutions. We show simulation results in Section V
and conclude in Section VI.

(a) the original im-
age

(b) linear reconstr.
PSNR=25.91dB

(c) A+ [16]
PSNR=27.34dB

(d) our algorithm
PSNR=27.72dB

Fig. 3. Upsampling results (factor 4) of woman by different methods. The
downsampling kernel is bior4.4.

II. OVERVIEW OF RECENT DEVELOPMENTS IN SAMPLING
THEORY

A. Sampling Problem and Classical Linear Reconstruction

Fig. 4 depicts the typical sampling setup, where the original
continuous-time signal x(t) is filtered with a linear-time in-
variant filter with impulse response h(t) and then is sampled
with sampling period T . Under this model the samples yn are
given by

yn = 〈x(t), ϕ̃(t/T − n)〉, (1)

where ϕ̃(t) is the sampling kernel and is the scaled and time-
reversed version of h(t).

x(t) h(t) = ϕ̃(−t/T )
T

yn

Fig. 4. Sampling set-up. Here x(t) is the input signal, h(t) is the impulse
response of the acquisition device and T is the sampling period. The samples
are given by yn = 〈x(t), ϕ̃(t/T − n)〉.

h(t) = ϕ̃(−t/T )
T yn

ϕ(t/T )
x̂(t)x(t)

Fig. 5. Linear reconstruction set-up. The reconstruction of the input signal
is given by x̂(t) =

∑
n ynϕ(t/T − n).

Traditionally, see Fig. 5, x(t) is reconstructed using a linear
filter with response ϕ(t) where the pair {ϕ̃(t), ϕ(t)} is chosen
so that 〈ϕ(t − n), ϕ̃(t − k)〉 = δn−k. Under this model the
sampling and reconstruction process can be interpreted as
computing the orthogonal projection of x(t) onto the shift-
invariant subspace V spanned by ϕ(t) and its shifted versions:
V = span{ϕ(t/T − n)}n∈Z. Therefore perfect reconstruction
of x(t) is achieved when x(t) ∈ V. Interestingly, this
framework includes the classical Shannon sampling theorem,
where, in that case, ϕ(t) is the sinc function, ϕ̃(t) = ϕ(t)
and V is the shift-invariant space of functions bandlimited
to fs/2 = 1/2T . However, ϕ(t) does not have to be limited
to the sinc function and alternative choices are possible. For
example, ϕ(t) could be a polynomial B-spline of a certain
order. We also note that slightly more sophisticated forms of
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linear reconstruction are also possible where, for example,
one tries to impose consistency. Specifically, the goal is to
reconstruct a signal x̂(t) that would lead to the same samples
yn if x̂(t) were to be sampled again. This new constraint leads
to a different synthesis filter and to a reconstruction that gives
an oblique projection rather than orthogonal projection of x(t)
onto V. For more details on the topic, we refer to the insightful
review [30].

B. Non-linear Reconstruction Method based on FRI

Signals that are neither bandlimited nor belong to a fixed
subspace cannot be reconstructed perfectly using the classical
linear reconstruction methods. However recently it was shown
that it is possible to develop sampling schemes for classes of
signals having parametric representations with finite number of
degrees of freedom, called signals with finite rate of innovation
(FRI) [21]. Examples of FRI signals include streams of Diracs
and piecewise polynomial signals. The reconstruction process
for this scheme is non-linear and is based on the use of the
annihilating filter method. In what follows we show how to
recover a piecewise polynomial signal p(t) from the samples
yn = 〈p(t), ϕ̃(t/T − n)〉 taken with sampling kernel ϕ̃(t) of
Fig. 4. Emphasis is given to the key aspects of this method
which will be useful to understand the signal upsampling
approach which will be introduced in the following sections.

We consider a piecewise polynomial function p(t) with
pieces of maximum degree R − 1. We denote the R-th
derivative of p(t) by p(R)(t), and note that p(R)(t) is a
stream of (differentiated) Diracs. By using the link between
discrete differentiation and derivation in continuous domain
(see Appendix A for more details) we note that the R-th finite
differences

z(R)
n =

R∑
k=0

(−1)R−k
(
R

k

)
yn+k with yn = 〈p(t), ϕ̃(t/T − n)〉

(2)
corresponds to the samples 〈p(R)(t), ϕ̃eq(t/T−n)〉 obtained by
acquiring p(R)(t) with the new kernel ϕ̃eq(t) = ϕ̃(t)∗βR−1(t),
where βR−1(t) is the polynomial B-spline of degree R − 1.
Because of this connection in what follows we focus on the
reconstruction of streams of differentiated Diracs to solve the
problem of sampling piecewise polynomials.

We consider a sampling kernel satisfying the generalised
Strang-Fix conditions [28]:

ˆ̃ϕ(jωm) 6= 0 and ˆ̃ϕ(jωm + j2πl) = 0 l ∈ Z\{0} (3)

where ˆ̃ϕ(jω) is the Fourier transform of ϕ̃(t), and jωm =
m′λ where m′ = m − (M + 1)/2 and m = 0, . . . ,M .
This kernel can reproduce exponentials at frequencies jωm.
This means that there exists coefficients bm,n such that∑
n∈Z bm,nϕ̃(t/T − n) = ejωmt/T . The new kernel ϕ̃eq(t) =

ϕ̃(t) ∗ βR−1(t) also satisfies the generalised Strang-Fix con-
ditions and can reproduce exponentials:∑
n∈Z

cm,nϕ̃eq(t/T − n) = ejωmt/T with m = 0, 1, . . . ,M

(4)
for a proper choice of coefficients cm,n.

The stream of differentiated Diracs p(R)(t) can be expressed
as follows:

p(R)(t) =

K−1∑
k=0

R−1∑
r=0

ak,rδ
(r)(t− tk), (5)

and the samples z(R)
n can be written as:

z(R)
n = 〈p(R)(t), ϕ̃eq(t/T − n)〉. (6)

Consider now the weighted sum of the samples z(R)
n : τm =∑

n cm,nz
(R)
n , where the weights cm,n are those in (4) that

reproduce ejωmt/T . We can prove that:

τm =

K−1∑
k=0

R−1∑
r=0

âk,r(m
′)rum

′

k ,
m = 0, 1, . . . ,M and
m′ = m− (M + 1)/2,

(7)
where âk,r = (−λ/T )rak,r and uk = eλtk/T . See Appendix B
for more details.

Given τm we can then recover the locations tk’s of the
Diracs as well as the amplitudes ak’s using the Prony’s
method. This is explained in more detail in Appendix B.

When ϕ̃eq(t) is an exponential reproducing kernel we can
retrieve the tk’s and ak,r’s exactly and can achieve exact
reconstruction of p(R)(t). For any other kernel ϕ̃eq(t) which
does not satisfy the generalized Strang-Fix conditions we
want to find a linear combination of ϕ̃eq(t) with its shifted
versions that provides the best approximation to a specific
exponential [28]. More precisely, we want to find coefficients
cm,n such that: ∑

n∈Z
cm,nϕ̃eq(t− n) ≈ ejωmt . (8)

For the sake of clarity, we use cm,n = c0 e
jωmn and then

we can show that the error in approximating the exponential
is [28]:

εapprox,m(t) = ejωmt[1− c0
∑
l∈Z

ˆ̃ϕeq(j(ωm+2πl)) ej2πlt]. (9)

Note that if the Fourier transform of ϕ̃eq(t) decays sufficiently
quickly, which is true for any low-pass filter, we can assume
the terms ˆ̃ϕeq(j(ωm+2πl)) are close to zero for l ∈ Z\{0}. In
this case, the approximation error is small and is minimised
when cm,n = ˆ̃ϕeq(jωm)−1 ejωmn. This approximate Strang-
Fix theory enables accurate reconstruction of the input FRI
signal with arbitrary sampling kernels. In particular, it shows
that any acquisition device that behaves approximately like
a low-pass filter can be used in the FRI framework and this
fact will be particularly useful for the rest of the paper since
point spread functions are approximately low-pass filters. We
conclude by summarizing FRI method discussed so far in
Algorithm 1.

III. SAMPLING AND RESOLUTION ENHANCEMENT OF 1-D
PIECEWISE SMOOTH SIGNALS

We now go back to the original problem of enhancing the
resolution of images and make the following observations.
First of all we note that the image formation process in a
digital camera (refer to Fig. 1) can be seen as a 2-D version
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Algorithm 1: FRI method for reconstructing piecewise
polynomial signals

input : samples yn
output: reconstruction of p(t)

1 Calculate R-th finite difference z(R)
n of the samples yn

(refer to (2)).
2 Compute τm =

∑
n cm,nz

(R)
n , with

cm,n = ˆ̃ϕeq(jωm)−1 ejωmn.
3 Apply Prony’s method to the sequence τm to solve for

locations of discontinuity and then for the amplitudes.

of the sampling set-up of Fig. 4 where the sampling kernel
now is the point spread function of the camera. Moreover,
images are piecewise regular functions (see Fig. 2), therefore,
enhancing images to infinite resolution can be interpreted as
the problem of sampling and reconstructing 2-D piecewise
smooth functions.

In this section, we consider a 1-D version of this problem
and discuss the 2-D case in Sec. IV. We consider the sampling
and reconstruction of 1-D continuous-time functions first and
then the resolution enhancement of 1-D discrete-time signals.

A. Sampling of Piecewise Smooth Signals

We consider the case where the sampling kernel (or point
spread function in 2-D case) is the scaling function of a
wavelet transform because the wavelet framework naturally
relates the linear and FRI non-linear reconstruction methods
to the notion of resolution enhancement and therefore provides
a proper way to combine them. Here we emphasize that the
FRI sampling method itself is universal since it works with
any kernel.

Now we provide an interpretation of the problem of sam-
pling an input signal x(t) from the multi-resolution representa-
tion of x(t). Denote with ϕ(t) and ψ(t) the scaling and wavelet
functions respectively, and with ϕJ,n(t) = 2−J/2ϕ(2−J t −
n) and ψm,n(t) = 2−m/2ψ(2−mt− n), J,m, n ∈ Z the set
of dilated and shifted versions of the scaling and wavelet func-
tion. Consider the following multi-resolution representation of
a signal x(t) in terms of the scaling and wavelet functions:

x(t) =

∞∑
n=−∞

yJ,nϕJ,n(t)︸ ︷︷ ︸
xJ (t)

+

J∑
m=−∞

∞∑
n=−∞

dm,nψm,n(t),

(10)
where yJ,n = 〈x(t), ϕ̃J,n〉 and dm,n = 〈x(t), ψ̃m,n〉. Here
ϕ̃J,n, ψ̃m,n are the dual bases of ϕJ,n and ψm,n respectively.
We also note that xJ(t) in (10) represents an approximation of
x(t) at resolution 2J . Adding more and more levels of details∑∞
n=−∞ dm,nψm,n(t) to the coarse version xJ(t) gives finer

and finer resolution approximations and eventually the original
signal x(t).

The inner products yJ,n = 〈x(t), ϕ̃J,n〉 are equivalent to
the samples obtained by sampling x(t) with sampling kernel
ϕ̃J,n and sampling period T = 2J (see Fig. 4). Moreover, the
coarse approximation xJ(t) =

∑∞
n=−∞ yJ,nϕJ,n(t) in (10)
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Fig. 7. The details we need for resolution enhancement are due only to the
piecewise polynomial part. (a) The piecewise smooth signal x(t) = p(t) +
r(t), the piecewise polynomial part p(t) and the globally smooth part r(t).
(b) Wavelet decomposition of x(t), p(t) and r(t) respectively.

corresponds to the linear reconstruction process in classical
sampling theory discussed in Sec. II-A (see also Fig. 5),
which finds projection of x(t) onto the shift-invariant subspace
spanned by {ϕJ,n(t)}n∈Z [30]. However, for the purpose of
resolution enhancement, we are after an algorithm which is
able to recover details from yJ,n which are beyond the coarse
approximation.

+

Fig. 6. We model piecewise smooth signals by the sum of a piecewise
polynomial signal and a globally smooth signal.

We assume x(t) is piecewise smooth and model piecewise
smooth functions as the combination of a piecewise polyno-
mial signal p(t) and a globally smooth function r(t) (see
Fig. 6). We assume the smooth part r(t) lives in the shift-
invariant subspace generated by integer shifts of ϕ(2−J t). The
piecewise smooth function can then be expressed as:

x(t) = p(t) + r(t)

=

∞∑
n=−∞

ypJ,nϕJ,n(t) +

J∑
m=−∞

∞∑
n=−∞

dpm,nψm,n(t)︸ ︷︷ ︸
p(t)

+

∞∑
n=−∞

yrJ,nϕJ,n(t)︸ ︷︷ ︸
r(t)

=

∞∑
n=−∞

(ypJ,n + yrJ,n)︸ ︷︷ ︸
yJ,n

ϕJ,n(t) +

J∑
m=−∞

∞∑
n=−∞

dpm,nψm,n(t).

(11)

By comparing (11) with (10), we notice that the details
dpm,n we need for resolution enhancement are due only to
the piecewise polynomial part p(t) (see also Fig. 7), and the
remaining part can simply be obtained through linear recovery
using coefficients yJ,n.

This observation together with the fact that the approximate
reproduction formula of (8) enables reconstructing approxi-
mately piecewise polynomial signals using any kernel ϕ̃(t),



5

leads to the proposed hybrid reconstruction strategy high-
lighted in Fig. 8, which recovers p(t) using FRI method and
r(t) using the traditional linear reconstruction approach.

T
yn

x(t) FRI
reconstru-

p̂(t)

ϕ(t)
r̂(t)

ϕ̃(t) T
ŷpn −

ŷrn = yn − ŷpn

+
ction

Fig. 8. The Schematic diagram of our proposed sampling and reconstruction
strategy for piecewise smooth signals. The blue solid part: FRI reconstruction
of the piecewise polynomial function p(t). The black dashed part: linear
reconstruction of the smooth residual r(t).

Specifically, our proposed scheme first reconstructs the
piecewise polynomial part p(t) using the approximate Strang-
Fix theory of Algorithm 1 from the samples yJ,n by treating
the globally smooth residual as noise (the blue solid part in
Fig. 8). Given the estimated picewise polynomial p̂(t), we
compute ŷpJ,n = 〈p̂(t), ϕ̃J,n(t)〉 which can then be removed
from the samples yJ,n to obtain the contribution ŷrJ,n =
yJ,n − ŷpJ,n due to the smooth residual r(t). Then r(t) can
be reconstructed by classical linear method using the dual
of the sampling kernel, i.e. r(t) =

∑∞
n=−∞ ŷrJ,nϕJ,n(t) (the

black dashed part in Fig. 8). The estimation of x(t) is then the
summation of estimated piecewise polynomial and estimated
smooth part.

B. Resolution Enhancement of 1-D Piecewise Smooth Signal
Given the discrete-time sequence yJ,n = 〈x(t), ϕ̃J,n〉, rather

than trying to reconstruct the original continuous-time signal
x(t), one could be more interested in just trying to enhance the
resolution of yJ,n and the multi-resolution decomposition of
(10) provides the right framework to achieve this goal. Assume
that ϕ̃(t) is a valid scaling function satisfying the two-scale
relation:

ϕ̃(t) =
√
2
∑

h0[n]ϕ̃(2t− n), (12)

and that we aim to enhance the resolution of yJ,n by a factor
2K for some positive integer K. It is then natural to seek for
the signal yJ−K,n which corresponds to the sequence obtained
by sampling x(t) with scaling function ϕ̃J−K(t) at finer scale
2J−K .

Because of the two-scale equation (12) we can relate yJ,n to
yJ−K,n using the K-level filter bank of Fig. 9. More precisely,

yJ = (yJ−K ∗ h(K)
0 ) ↓2K , (13)

where h
(K)
0 in z-domain is H

(K)
0 (z) =

H0(z)H0(z
2) . . . H0(z

2K−1

) and is derived based on
the fact that the cascade of K analysis filters H0(z)
each followed by subsampling by 2 is equivalent to one
filter H(K)

0 (z) = H0(z)H0(z
2) . . . H0(z

2K−1

) followed by
subsampling by 2K . Here H0(z) is the z-transform of h0 in
(12).

Therefore, one reasonable linear upsampling of yJ,n is
the version obtained by simply feeding yJ,n to the wavelet
reconstruction stage, and can be expressed as:

ŷJ−K = yJ ↑2
K ∗g(K)

0 , (14)

H0(z)

H1(z)

2

2

H0(z)

H1(z)

2

2

yJ

2

G1(z)
2

G1(z)

2

G0(z)

+ 2

G0(z)

+
yJ−KyJ−K

... ...

Decomposition Reconstruction

dJ

dJ−K+1

K-level K-level

Fig. 9. K-level biorthogonal filter bank. Given the approximation coefficients
yJ = 〈x(t), ϕ̃J,n〉 we are looking for a higher resolution version yJ−K =
〈x(t), ϕ̃J−K,n〉.

where g
(K)
0 in z-domain is G

(K)
0 (z) =

G0(z)G0(z
2) . . . G0(z

2K−1

) and ŷJ−K is the projection
of yJ−K to the subspace spanned by {g(K)

0 [n − 2Kk]}k∈Z.
Here G0(z) is the synthesis low-pass filter.

However, as Fig. 9 also indicates, this linear reconstruction
does not allow us to retrieve the missing detail coefficients
dJ . . . dJ−K+1, so in order to get a better estimate of yJ−K
we estimate the detail coefficients using FRI.

More specifically, knowing the low-pass filter ϕ̃J(t) we first
apply FRI method of Algorithm 1 to estimate the piecewise
polynomial part p(t) from the approximation coefficients yJ,n,
with the assumption that the contribution to yJ,n only comes
from p(t) and that the smooth part r(t) is noise. We call
this estimated piecewise polynomial signal p̂FRI(t). We then
put p̂FRI(t) onto a grid of resolution 2J−K−L with L > 0,
which is a grid finer than the resolution 2J−K we are
looking for, and we denote this discretized polynomial with
p̂FRI
J−K−L[n]. Recall that in our piecewise smooth model the

detail coefficients are due only to the piecewise polynomial,
we therefore obtain the detail coefficients at resolution 2J

to 2J−K+1 from p̂FRI
J−K−L[n] through (K + L)-level filter-

bank decomposition. Finally the estimation of yJ−K,n is
obtained by computing K-level wavelet reconstruction using
the approximation coefficients yJ,n and the estimated detail
coefficients dJ [n] . . . dJ−K+1[n]. We summarize this resolu-
tion enhancement method in Fig. 10.
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Fig. 10. The schematic diagram of resolution enhancement of a piecewise
smooth signal by factor of 2K using a biorthogonal filter bank. From the
given approximation coefficients yJ = 〈x(t), ϕ̃J,n〉 and the detail coefficients
dJ , . . . , dJ−K+1 estimated using FRI, we are able to recover a higher
resolution version yJ−K = 〈x(t), ϕ̃J−K,n〉.

IV. IMAGE UP-SAMPLING

Equipped with the resolution enhancement method of the
previous section, we now approach image upsampling by
modeling lines (along different directions) of images as 1-
D piecewise smooth functions and extend the method of 1-D
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case to 2-D images. For clarity and simplicity, we denote the
image at original low-resolution with y0 and its upsampled
version by factor 2K with y−K . The low-resolution image y0
of size N×N is the low-pass version of a K-level 2D wavelet
transform applied to the high-resolution image y−K of size
2KN×2KN with all the high-pass coefficients discarded (see
Fig. 11).

(a) The high-resolution
piecewise smooth image

(b) Low-pass and high-
pass subbands of a 2-
level 2D wavelet trans-
form of (a)

(c) We only have access
to the low-pass subband
in (b)

Fig. 11. Assume we only have access to the low-pass subband y0 of a 2D
wavelet transform applied to the high-resolution image y−K . We want to
estimate the high-pass coefficients using FRI in order to recover the high-
resolution image.

The 2D wavelet decomposition leads to a set of approxi-
mation coefficients and three types of high-pass coefficients,
representing horizontal, vertical and diagonal high-frequency
details respectively. Similar to the 1D case, a simple linear
reconstruction of y−K from approximation coefficients y0
merely increases the size of y0 without increasing the res-
olution. The goal is to estimate the high-pass coefficients for
the purpose of resolution enhancement.

In part A, we introduce the basic FRI image upsampling
algorithm, and we explain in part B an improved method which
uses the basic algorithm and also exploits patch repetitions
across scales to correct errors of the basic upsampling method.

A. Basic Image Up-sampling Algorithm

The basic idea is that high-pass coefficients can be esti-
mated from the set of FRI recovered images (stacks of high-
resolution piecewise polynomials) along horizontal, vertical
and diagonal directions. The proposed image upsampling
method is summarized in the block diagram of Fig. 12 and
described in further detail in this section.

We first linearly interpolate column by column the low-
resolution image y0 to size 2KN × N using the synthesis
filter g

(K)
0 (refer to (14)). Then from the N samples of

each horizontal line we reconstruct a piecewise polynomial
of length 2KN using the resolution enhancement method
described in Sec. III-B. In this way we get an image ŷFRI

−K,h
of size 2KN × 2KN which contains estimates of the vertical
edges of y−K . Similarly, we operate on the other coordinate of
y0 to recover an image ŷFRI

−K,v that contains horizontal edges.
Then we obtain a first reconstruction ŷFRI

−K by inputting
ŷFRI
−K,h to the decomposition channels that capture vertical

edges, ŷFRI
−K,v to the channels that capture horizontal edges

and either one of them to the channels that capture diagonal
edges.

We then improve this reconstruction by operating diago-
nally. We do this to remove jaggies in ŷFRI

−K . We first downsam-
ple each 45 degree diagonal line of ŷFRI

−K by factor 2, and then
recover it with FRI and we call the recovered image ŷFRI

−K,d1.
We then do the same on -45 degree diagonal lines of ŷFRI

−K and
obtain the image ŷFRI

−K,d2. Then we reconstruct a final image
by selecting patch by patch (size 4× 4 with 1-pixel overlap)
from ŷFRI

−K,d1 and ŷFRI
−K,d2. For patch with dominant gradient

direction closer to 45 degrees we use the patch from ŷFRI
−K,d1

and otherwise from ŷFRI
−K,d2. Then we ensure the consistency

between our reconstruction and the input data y0 by replacing
the approximation coefficients of our reconstruction with y0.
The final unsampled image with upsampling factor 2K is
denoted with yFRI

−K .
Fig. 13 demonstrates that our proposed method is able to

upsample a piecewise smooth image with sharp edges. It is
evident that we gain by adding our estimated high-frequency
information.

(a) linear reconstruction,
PSNR=36.49dB

(b) our reconstruction,
PSNR=42.81dB

Fig. 13. Upsampling results of a piecewise smooth image by linear recon-
struction and by proposed method.

B. Exploiting Cross Scale Similarities
Inevitably, there are errors in our FRI reconstruction yFRI

−K ,
some are due to imperfection of the piecewise smooth model—
for example not all edges behave like an immediate transition
between two nearby pixels. Inspired by the idea of deriving a
HR patch from an input LR patch with a linear transformation
learnt from internal LR and HR dictionary patches [19], we
propose estimating and correcting the error in upsampled FRI
image by learning the relationship between the ground truth
input LR image and our FRI reconstruction recovered from
an even lower resolution version of the input LR image. More
precisely, a specific patch in yFRI

−1 is expected to be corrected
by a linear transformation M which transforms its similar
patches in yFRI

−1+m to corresponding patches in y−1+m, where
y−1+m is an intermediate scale 1.25 times smaller than y−1
(1.6 times larger than y0). This is possible because there are
patch repetitions across small-scale factors (typically 1.25).
This is also the prior typically used in most single-image
super-resolution techniques without external dictionary [17]–
[19].

Now we explain in detail our proposed algorithm for up-
sampling by 2. Its main idea is depicted in Fig. 14. For an
upsampling factor 2K(K > 1), we iterate the algorithm K
times.

First of all, we use the basic FRI upsampling method
explained in Section IV-A to upsample input low-resolution
image y0 to yFRI

−1 (see Fig. 14a).
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inverse

HL: horizontal

LH: vertical

HH: diagonal

wavelet transform

FRI diagonal
upsampling

edges

edges

edges

wavelet transform

wavelet transform

upsampling
FRI vertical

upsampling
FRI horizontal

ŷFRI
−K,v

ŷFRI
−K,h

yFRI
−K

K-level

K-level

low-pass y0

y0

Fig. 12. The block diagram of our proposed upsampling scheme.

Then for updating the yFRI
−1 we try to create the FRI image

yFRI
−1+m and ground truth image y−1+m pair, whose resolution

is slightly lower than y−1. A temporary version of y−1+m
is obtained by bicubic interpolation of y0 by factor 1.6
(see Fig. 14a), and its corresponding FRI image yFRI

−1+m is
obtained by downsampling y−1+m by factor 2 followed by
upsampling by 2 using basic FRI image upsampling method
of Section IV-A (see Fig. 14b).

Having obtained the first version of y−1+m and yFRI
−1+m

pair, we use them to update yFRI
−1 as follows (see Fig. 14c):

first, for each patch bFRI
−1,i in yFRI

−1 (size 5 × 5 with 1-pixel
shift each time), we search for P (e.g. 4) similar patches
{bFRI
−1+m,i,j}Pj=1 in yFRI

−1+m. We do the search locally within
a small window of 25 by 25 pixels centered around the
relative center-coordinates of bFRI

−1,i. Now we compute the
transformation Mi ∈ R25×25 that maps the P vectorized
patches in yFRI

−1+m to the corresponding P vectorized patches
in y−1+m. This tranformation Mi is expected to correct bFRI

−1,i
and the way to compute it is explained in detail later. We apply
the Mi learnt to correct bFRI

−1,i:

bcorrected
−1,i (:) = Mib

FRI
−1,i(:), (15)

where b(:) denote the vectorized version of patch b. All the cor-
rected patches bcorrected

−1,i are then combined to obtain a corrected
high-resolution image ycorrected

−1 by averaging contributing patch
values at each pixel. Then we ensure data fidelity by replacing
the low-pass coefficients of ycorrected

−1 with the ground-truth y0.
Lastly, we want to update y−1+m, yFRI

−1+m and subsequently
ycorrected
−1 because the current y−1+m we learnt from is simply

a bicubic interpolation of y0 which is blurred and is not well
served as the ground truth image at resolution 2−1+m. So we
update it (see Fig. 14d) by downsampling ycorrected

−1 by factor
1.25 using bicubic interpolation. Its corresponding FRI version
yFRI
−1+m is updated by downsampling y−1+m by 2 followed

by upsampling by 2 using the basic FRI image upsampling
method. Then given the new y−1+m and yFRI

−1+m pair we re-
calculate the transformation Mi for each patch bFRI

−1,i in yFRI
−1

and apply the new Mi to bFRI
−1,i as in (15). Again, we combine

all the patches and ensure the low-pass version of ycorrected
−1 is

y0. We note that we could further repeat this updating step.
However, we have numerical evidence that further iterations
would not improve the result significantly, so we stick with
one updating iteration.

FRI upsampling results 

bicubic interpolation of y0  
by factor 1.6 

Ground truth/updated upsampling result 

upsample by 2 using 

FRI 

y-1,corrected 

Input LR image y0  

y-1+m 

ym 

y-1+m, FRI 

y-1, FRI 

(a) Creating yFRI
−1 and the first version of the intermediate level y−1+m.

FRI upsampling results Ground truth/updated upsampling result 

upsample by 2 using 

FRI downsample y-1+m  
by 2 with scaling 
function 
 

y-1,corrected 

Input LR image y0  

y-1+m 

ym 

y-1+m, FRI 

y-1, FRI 

(b) Creating the FRI version of the intermediate level, yFRI
−1+m.

3. apply M 

2. calculate the 
transformation M 

1. search for 
similar patches 
locally 

FRI upsampling results Ground truth/updated upsampling result 

y-1,corrected 

Input LR image y0  

y-1+m 

ym 

y-1+m, FRI 

y-1, FRI 

(c) Correcting yFRI
−1 using the intermediate image pair y−1+m and yFRI

−1+m

and obtaining ycorrected
−1 .

2. apply M 

1. re-calculate the 
transformation M 

FRI upsampling results 

y-1,corrected 

Input LR image y0  

y-1+m 

ym 

update y-1+m: bicubic 
interpolation of 
y-1,FRI 

 

y-1+m, FRI 

Ground truth/updated upsampling result 

downsample y-1+m  
by 2 with scaling 
function 
 

upsample by 2 using 

FRI 

updated y-1+m, FRI 

 

y-1, FRI 

(d) Updating the intermediate image pair y−1+m and yFRI
−1+m followed by

updating ycorrected
−1 .

Fig. 14. The schematic diagram of how to correct our FRI upsampled image
yFRI
−1 .
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The linear transformation Mi ∈ RD2×D2

that maps the P
FRI patches {bFRI

−1,i,j ∈ RD×D}Pj=1 to ground truth patches
{b−1,i,j ∈ RD×D}Pj=1 can be found by minimizing the em-
pirical fitting error between all P pairs of examples. However,
this problem is underdetermined and Tikhonov regularization
is added to solve it stably:

Mi = argmin
Mi∈RD2×D2

P∑
j=1

‖bi,j(:)−MbFRI
i,j (:)‖22 + λ‖M‖2F

= argmin
Mi∈RD2×D2

‖Bi −MBFRI
i ‖22 + λ‖M‖2F ,

(16)
where λ is a regularization parameter, Bi and BFRI

i are
matrices with {bi,j(:)}Pj=1 and {bFRI

i,j (:)}Pj=1 as their columns
respectively. The solution of (16) can be written in a close-
form as follows:

Mi = BiB
FRI
i

>
(
BFRI
i BFRI

i

>
+ λI

)−1
, (17)

where I is the identity matrix.
To conclude, we summarize the complete upsampling

method in Algorithm 2.

Algorithm 2: FRI-based single image super-resolution
algorithm

input : y0
output: y−1: upsampled version of y0

1 Upsample y0 to yFRI
−1 by the basic FRI algorithm in part

A.
2 Create the intermediate level y−1+m by upsampling y0

by a factor 1.6 using bicubic interpolation
3 Create the corresponding intermediate FRI level yFRI

−1+m
by first downsampling y−1+m by 2 followed by
upsampling it using the basic FRI algorithm.

4 for patch bFRI
−1,i in yFRI

−1 do
5 Search for P similar patches {bFRI

−1+m,i,j}Pj=1 in
yFRI
−1+m, locally within the small window centered

around the relative center-coordinates of bFRI
−1,i.

6 Calculate the linear transformation Mi that
transforms the patches {bFRI

−1+m,i,j}Pj=1 to the
corresponding ground truth patches {b−1+m,i,j}Pj=1

in y−1+m (refer to (17)).
7 Correct bFRI

−1,i by applying the linear transformation
Mi to it (refer to (15)).

8 end
9 Combine all the corrected patches and replace the

low-pass coefficients of the corrected yFRI
−1 with the

ground-truth y0, and call the image ycorrected
−1 .

10 Update the intermediate level y−1+m by downsampling
yFRI
−1 with bicubic interpolation.

11 Update yFRI
−1+m by downsampling the updated y−1+m by

2 followed by upsampling by 2 with the basic FRI
algorithm.

12 Repeat step 4 to 9 with the updated pair of intermediate
images except step 5 need not to be recalculated.

V. SIMULATION RESULTS

A. 1-D Piecewise Smooth Signal Upsampling

In the following simulations, we show the resolution
enhancement results using our novel hybrid reconstruction
method introduced in Sec. III-B. In this section we assume
our samples y0 (refer to Fig. 9) are the low-pass coefficients
of 2-level wavelet decomposition applied to a high-resolution
piecewise smooth signal and we want to recover it to its
original resolution.

First, we demonstrate in Fig. 15 that when the signal is
exactly the discrete-time version of model (11), our method,
compared to the linear reconstruction and the total variation
method, is able to achieve nearly perfect reconstruction.

0 50 100 150 200 250

-25

25

75

125
original piecewise smooth signal x(t)

0 50

-50

50

150

250
approx

0 50

-50

50

150

250
detail 2

0 50 100

-50

50

150

250
detail 1

(a) the original high-resolution piecewise smooth signal and its wavelet
decomposition
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125
linear reconstruction: SNR=22.7dB
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(b) the linear reconstruction (22.7dB) and its wavelet decomposition

0 50 100 150 200 250

-25

25

75

125
TV reconstruction: SNR=25.3dB
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(c) TV reconstruction (25.3dB) and its wavelet decomposition
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our reconstruction: SNR=49dB
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(d) our reconstruction (49.0dB) and its wavelet decomposition

Fig. 15. Our method is able to accurately recover a piecewise smooth signal
from its approximation coefficients.

Then we also test our algorithm in the case where the
high-resolution signal is not exactly in our model but is a
scan-line of an image (see Fig. 2). The result of comparisons
between our reconstruction, the linear reconstruction, and the
total variation method in Table I shows that our model is
an accurate representation of the scan-lines such that our
proposed method is still efficient in this case. The result also
proves the universality of our method in the sense that it works
robustly with different downsampling kernels.

TABLE I
RECOVERING THE HIGH-RESOLUTION IMAGE SCAN-LINE FROM ITS

APPROXIMATION COEFFICIENTS OF DIFFERENT WAVELET DECOMPOSITION
WITH DIFFERENT METHODS.

scaling function linear reconstr. TV reconstr. our reconstr.
linear spline 21.7 dB 23.1 dB 24.2 dB
cubic spline 22.2 dB 23.1 dB 24.4 dB
bior4.4 23.9 dB 23.0 dB 25.0 dB
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B. Image Upsampling

1) Upsampling of artificially downsampled images: In this
part, we test upsampling of low-resolution images obtained
by downsampling the original ones by a factor 4 using the 2-
level 2-D wavelet decomposition with biorthogonal 4.4 filter,
and those obtained by downsampling with a linear spline. We
compare our basic upsampling method in Sec. IV-A and our
improved method in Sec. IV-B with the linear reconstruction
method and some of the state-of-the-art algorithms, we show
the upsampling results of two different downsampling kernels
in terms of PSNR and SSIM (structural similarity index [31])
in Table II and Table III respectively. Visual comparisons on
’Zebra’ (downsampling kernel of bior4.4) and ’Comic’ (down-
sampling kernel of linear spline) are shown in Fig. 16 and
Fig. 17 respectively. Note that for self-learning method [17],
we use a third-party implementation [32] and we cannot
guarantee the implementation duplicates the original results.
For other methods we ensure the comparison is fair because we
modified the blurring kernel in the source codes to the specific
kernel we use (bior4.4/linear spline), and for dictionary-based
methods of [15], [16], the dictionary was re-trained with the
same kernel used in upsampling process.

Our proposed method is universal in the sense that it works
with different blurring kernels. The results demonstrate that
our proposed basic (fast) method, with no learning involved,
outperforms other reconstruction-based algorithms, e.g. total
variation [6], contourlet [7] and even one of the dictionary
learning methods [15]. The improved method – FRESH is
robust and outperforms state-of-the-art methods in different
categories. Moreover, our method leads to visually pleasant
edges.

TABLE II
COMPARISONS OF UPSAMPLING RESULTS (FACTOR 4) GIVEN BY

DIFFERENT METHODS IN TERMS OF PSNR. SAMPLING KERNEL: BIOR4.4.

PSNR
(dB) &
SSIM [31]

linear TV
[6]

con-
tourleta
[7]

sparse
coding
[15]

A+
[16]

self-
learn
[17]

our
basic
method

FRESH

Peppers 29.91 30.98 30.19 31.03 31.73 31.31 31.13 31.85
0.823 0.835 0.824 0.837 0.846 0.837 0.836 0.845

Lena 29.49 29.97 29.82 30.17 30.64 29.99 30.16 30.55
0.835 0.837 0.839 0.844 0.853 0.843 0.841 0.849

Cameraman 28.35 28.85 28.59 29.21 29.63 29.04 29.16 29.82
0.872 0.883 0.872 0.885 0.892 0.886 0.886 0.894

Butterfly 21.50 23.76 21.66 22.37 23.19 24.41 23.40 24.24
0.744 0.853 0.736 0.796 0.836 0.859 0.833 0.864

Bird 29.37 29.99 29.75 30.23 30.94 30.04 30.29 31.04
0.877 0.887 0.881 0.893 0.905 0.888 0.891 0.904

Comic 20.83 21.10 – 21.07 21.29 21.00 21.13 21.32
0.621 0.647 – 0.636 0.654 0.654 0.642 0.659

Zebra 23.61 24.34 – 24.38 24.71 24.44 24.50 25.11
0.711 0.721 – 0.726 0.731 0.732 0.726 0.737

Woman 25.91 26.71 – 26.66 27.34 27.36 26.91 27.72
0.842 0.857 – 0.861 0.876 0.872 0.859 0.879

Average 26.12 26.96 – 26.89 27.43 27.20 27.09 27.71
0.791 0.815 – 0.810 0.824 0.821 0.814 0.829

a contourlet interpolation software does not support upsampling of non-
square images.

TABLE III
COMPARISONS OF UPSAMPLING RESULTS (FACTOR 4) GIVEN BY

DIFFERENT METHODS IN TERMS OF PSNR. SAMPLING KERNEL: LINEAR
SPLINE.

PSNR
(dB) &
SSIM [31]

linear TV
[6]

con-
tourleta
[7]

sparse
coding
[15]

A+
[16]

self-
learn
[17]

our
basic
method

FRESH

Peppers 29.95 31.09 30.25 30.77 31.63 31.49 31.28 31.95
0.821 0.835 0.824 0.831 0.844 0.836 0.836 0.845

Lena 29.53 30.02 29.90 29.84 30.58 30.13 30.28 30.66
0.834 0.838 0.84 0.835 0.850 0.837 0.842 0.850

Cameraman 28.40 28.89 28.66 28.88 29.54 29.27 29.34 30.05
0.870 0.884 0.871 0.877 0.890 0.881 0.888 0.896

Butterfly 21.55 23.91 21.72 22.08 23.03 24.22 23.52 24.61
0.737 0.856 0.736 0.782 0.830 0.860 0.835 0.870

Bird 29.42 30.05 29.82 29.86 30.73 30.23 30.43 31.26
0.876 0.887 0.881 0.883 0.901 0.888 0.892 0.906

Comic 20.85 21.15 – 20.92 21.27 21.09 21.22 21.41
0.619 0.648 – 0.616 0.647 0.632 0.644 0.662

Zebra 23.67 24.41 – 24.13 24.61 24.65 24.61 25.30
0.711 0.722 – 0.709 0.728 0.728 0.728 0.741

Woman 25.95 26.78 – 26.36 27.22 27.23 27.04 27.86
0.838 0.858 – 0.851 0.872 0.867 0.861 0.881

Average 26.17 27.04 – 26.60 27.33 27.29 27.22 27.89
0.788 0.816 – 0.798 0.820 0.816 0.816 0.831

a contourlet interpolation software does not support upsampling of non-
square images.

2) Upsampling of images taken with a camera: Finally, we
show that the proposed algorithm is also able to upsample the
images taken with a real camera, where the blurring due to
lens is not exactly a scaling function as assumed previously but
can still be modelled as a spline. We demonstrate in Fig. 18
that the algorithm achieves visually good performance for
upsampling factor of 4. In the following result, the original
photographs are taken with Canon 400D, and its point spread
function is modelled by the fifth order spline. The upsampling
is performed only on the luminance component of the input
image and the chrominance component are simply upscaled
by bicubic interpolation.

C. Computation complexity and discussions
Upsampling an image of size N ×N to 2KN × 2KN with

the basic algorithm proposed in Sec. IV-A requires number
of line upsampling operations in the order of 2KN and also
2KN × 2KN block selecting operations.

Unlike the basic algorithm, the improved algorithm pro-
posed in Sec. IV-B requires upsampling one level per time
(factor 2 each time) and involves searching for similar blocks,
which is computational more expensive.

Table IV shows the execution time (averaged over 5 test
images) of the C++ implementations of the basic method and
FRESH on a Mac mini with 2.6GHz Intel Core i7 CPU and
16GB RAM.

TABLE IV
COMPUTATION COST FOR UPSAMPLING AN IMAGE USING THE BASIC

METHOD AND FRESH ON A MAC MINI WITH 2.6GHZ INTEL CORE I7
CPU AND 16GB RAM.

time (seconds) upsample 64×64
images by 2

upsample 64×64
images by 4

basic algorithm 0.45 2.68
FRESH 1.65 8.95
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Since we are using a wavelet scheme to handle the upsam-
pling, the scale factor can only be powers of 2. Moreover, the
point spread function of the camera needs to be fairly close
to the scaling function of a wavelet transform. The wavelet
scheme may seem to limit the classes of acquisition filters we
are able to handle, nevertheless we want to emphasize that the
point spread function of cameras in general can be accurately
modelled by splines which are valid scaling functions and
numerical results on images taken with real cameras confirm
the universality of our approach.

(a) the original image
(b) linear reconstruction
PSNR=23.61dB, SSIM=0.711

(c) total variation [6]
PSNR=24.34dB, SSIM=0.721

(d) sparse coding [15]
PSNR=24.38dB, SSIM=0.726

(e) A+ [16]
PSNR=24.71dB, SSIM=0.731

(f) self-learning [17]
PSNR=24.44dB, SSIM=0.732

(g) our basic algorithm
PSNR=24.50dB, SSIM=0.726

(h) our improved algorithm
PSNR=25.11dB, SSIM=0.737

Fig. 16. Upsampling results (factor 4) of Zebra by different methods. The
downsampling kernel is bior4.4.

VI. CONCLUSIONS

In this paper, we have proposed a scheme for upsampling
piecewise smooth signals and its extension to images by
modelling images as lines of piecewise smooth signals. We
show that the method proposed improves classical linear re-
construction results by making use of an additional non-linear

(a) the original image
(b) linear reconstruction
PSNR=20.85dB, SSIM=0.619

(c) total variation [6]
PSNR=21.15dB, SSIM=0.648

(d) sparse coding [15]
PSNR=20.92dB, SSIM=0.616

(e) A+ [16]
PSNR=21.27dB, SSIM=0.647

(f) self-learning [17]
PSNR=21.09dB, SSIM=0.632

(g) our basic algorithm
PSNR=21.22dB, SSIM=0.644

(h) our improved algorithm
PSNR=21.41dB, SSIM=0.662

Fig. 17. Upsampling results (factor 4) of Comic by different methods. The
downsampling kernel is linear spline.
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(a) (b) (c)

(d) (e) (f)

Fig. 18. Upsampling results (factor 4) of images taken with Canon 400D. Our upsampling results are sharper than the bicubic interpolation results. (a)(d)
original images. (b)(e) bicubic interpolation. (c)(f) our upsampling results.

reconstruction method based on FRI theory. The method is
further improved by using a self-learning approach which also
makes use of FRI. The resulting algorithm outperforms state-
of-the-art methods and does not require the use of external
datasets.

APPENDIX A
THE RELATIONSHIP BETWEEN SAMPLING PIECEWISE

POLYNOMIAL AND STREAMS OF DIRACS

Consider a function ϕ(t/T ) with Fourier transform T ϕ̂(ωT )
and the difference ϕ(t/T )−ϕ(t/T−1). The Fourier transform
of ϕ(t/T )− ϕ(t/T − 1) is

ϕ(t/T )− ϕ(t/T − 1)⇐⇒T ϕ̂(ωT )(1− e−jωT )

=jωT ϕ̂(ωT ) · T 1− e−jωT

jωT

=jωT ϕ̂(ωT ) · T β̂0(ωT ).

(18)

Therefore

ϕ(t/T )− ϕ(t/T − 1) =
d

dt
[ϕ(t/T ) ∗ β0(t/T )], (19)

where β0 is called B-spline of order 0 and its Fourier transform
is 1−e−jω

jω . Let zn denote the finite difference yn+1 − yn. It
follows that

zn = yn+1 − yn = 〈x(t), ϕ(t/T − n− 1)− ϕ(t/T − n)〉

= 〈x(t),− d

dt
[ϕ(t/T − n) ∗ β0(t/T − n)]〉

= 〈dx(t)
dt

, [ϕ(t/T − n) ∗ β0(t/T − n)]〉.
(20)

Using a similar derivation it is also possible to prove that
the R-th finite difference of the samples taken with ϕ(t) is
equivalent to the set of samples obtained by sampling p(R)(t)
with the new kernel ϕ(t) ∗ βR−1(t), where βR−1(t) is the
B-spline of degree R − 1 and this new kernel still meets
the Strang-Fix conditions. Therefore we are able to use the
result of sampling stream of differentiated Diracs for sampling
piecewise polynomials.
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APPENDIX B
PRONY’S METHOD FOR RECOVERING A STREAM OF

DIFFERENTIATED DIRACS

The weighted sum of the samples z(R)
n : τm =

∑
n cm,nz

(R)
n

can be written in a power sum form:

τm =
∑
n

cm,nz
(R)
n = 〈pR(t),

∑
n

cm,nϕ̃eq(t/T − n)〉

=

∫ ∞
−∞

p(R)(t) ejωmt/T dt

=

∫ ∞
−∞

K−1∑
k=0

R−1∑
r=0

ak,rδ
(r)(t− tk) ejωmt/T dt

=

K−1∑
k=0

R−1∑
r=0

âk,r(m
′)rum

′

k ,
m = 0, 1, . . . ,M and
m′ = m− (M + 1)/2,

(21)
where âk,r = (−λ/T )rak,r and uk = eλtk/T .

The locations tk’s of the differentiated Diracs can be
retrieved from τm using Prony’s method (annihilating filter
method). The key is to note that given a filter {hm}KRm=0 whose
z-transform is:

H(z) =

KR∑
m=0

hmz
−m =

K−1∏
k=0

(1− ukz−1)R, (22)

then this filter can annihilate the sequence τm. That is, hm ∗
τm = 0. The KR unknown coefficients of hm can be found
by writing hm ∗ τm = 0 in matrix/vector form using at least
2KR consecutive τm. From the roots of the annihilating filter
we obtain the locations tk exactly. Then the exact amplitudes
can be found by solving, for example, the first KR equations
in (21).
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