334,532 research outputs found

    Theoretical and Practical Complexity of Unified Modeling Language: Delphi Study and Metrics Analyses

    Get PDF
    Systems have become increasingly complex, and as a result development methods have become more complex as well. The unified modeling language (UML) has been criticized for the often cited and sometimes over- whelming complexity it presents to its users, and those seeking to learn to use it. Using Rossi and Brinkkemper’s (1996) complexity metrics, Siau and Cao (2001) completed a complexity analysis of UML and 36 other modeling techniques, finding that UML is indeed more complex than other techniques. Siau, Erickson and Lee (2002) proposed that Rossi and Brinkkemper’s metrics present the theoretical maximum complexity, known as theoretical complexity. This is different from a practice-based complexity, known as practical complexity, that more accurately reflects the complexity of the language in practice. This research develops a subset of UML (a kernel) composed of the most commonly used constructs, that can be equated with the complexity that practitioners actually face when using the modeling language. A Delphi study is conducted using UML experts in identifying a use-based UML kernel. Metric analyses are then computed and analyzed

    Dealing with Complexity in Information Systems Modeling: Development and Empirical Validation of a Method for Representing Large Data Models

    Get PDF
    One of the most serious practical and theoretical limitations of the entity-relationship (E-R) model is its inability to cope with complexity. Once E-R models exceed a certain threshold of size, they become difficult to understand, document and maintain. This paper describes the development and empirical validation of a method for representing large E-R models called leveled data modeling (LDM). A combination of research methods were used to validate the method. Action research was first used to test and refine the method in a real-world setting. Eight action research studies were conducted in eight different organizations. Once the method had become stable, two laboratory experiments were conducted to evaluate its effectiveness compared to the standard E-R model and methods previously proposed in the literature. Finally, a field experiment was conducted using experienced practitioners to evaluate the likelihood of the method being accepted in practice. The resulting method defines a general approach for managing complexity which could be applied to any information systems modeling technique. The research findings thus have general implications for developing more effective IS design techniques. Another contribution of the paper is that it illustrates a systematic, multi- method approach to empirically validating an IS design method

    Multiscale Granger causality

    Get PDF
    In the study of complex physical and biological systems represented by multivariate stochastic processes, an issue of great relevance is the description of the system dynamics spanning multiple temporal scales. While methods to assess the dynamic complexity of individual processes at different time scales are well-established, multiscale analysis of directed interactions has never been formalized theoretically, and empirical evaluations are complicated by practical issues such as filtering and downsampling. Here we extend the very popular measure of Granger causality (GC), a prominent tool for assessing directed lagged interactions between joint processes, to quantify information transfer across multiple time scales. We show that the multiscale processing of a vector autoregressive (AR) process introduces a moving average (MA) component, and describe how to represent the resulting ARMA process using state space (SS) models and to combine the SS model parameters for computing exact GC values at arbitrarily large time scales. We exploit the theoretical formulation to identify peculiar features of multiscale GC in basic AR processes, and demonstrate with numerical simulations the much larger estimation accuracy of the SS approach compared with pure AR modeling of filtered and downsampled data. The improved computational reliability is exploited to disclose meaningful multiscale patterns of information transfer between global temperature and carbon dioxide concentration time series, both in paleoclimate and in recent years

    Design optimisation of air-fed full pressurised suits

    Get PDF
    This article is a post-print version of the published article which may be accessed at the link below.The JET machine and associated facilities require significant maintenance and enhancement installation activities in support of the experimental exploitation programme. A proportion of these activities are within radiological and respiratory hazardous environments. As such, breathing air-fed one-piece pressurised suits provide workers with protection from the inhalation of both airborne tritium and beryllium dust. The design of these suits has essentially developed empirically. There is a practical necessity to improve the design to optimise worker performance, protection and thermal comfort. This paper details the complexity of modeling the three-dimensional thermofluid domain between the inner surface of the suit and under garments that includes mass as well as heat transfer, suiting geometry, human metabolism and respiration and effects of limb movements. The methods used include computational fluid dynamics (CFD), theoretical adaptations of mixed-phase turbulent flow, profile scanning of a suit and actuating life size mannequin and data processing of the images and experimental validation trials. The achievements of the current programme and collaborations are presented in the paper and future endeavors are discussed.The author gratefully acknowledges the loan of the articulated mannequin from the Defence Science and Technology Laboratories. This work was funded jointly by EPSRC and by the European Communities under the contract of Association between EURATOM and UKAEA. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This work was carried out within the framework of EFDA

    Verification of Branching-Time and Alternating-Time Properties for Exogenous Coordination Models

    Get PDF
    Information and communication systems enter an increasing number of areas of daily lives. Our reliance and dependence on the functioning of such systems is rapidly growing together with the costs and the impact of system failures. At the same time the complexity of hardware and software systems extends to new limits as modern hardware architectures become more and more parallel, dynamic and heterogenous. These trends demand for a closer integration of formal methods and system engineering to show the correctness of complex systems within the design phase of large projects. The goal of this thesis is to introduce a formal holistic approach for modeling, analysis and synthesis of parallel systems that potentially addresses complex system behavior at any layer of the hardware/software stack. Due to the complexity of modern hardware and software systems, we aim to have a hierarchical modeling framework that allows to specify the behavior of a parallel system at various levels of abstraction and that facilitates designing complex systems in an iterative refinement procedure, in which more detailed behavior is added successively to the system description. In this context, the major challenge is to provide modeling formalisms that are expressive enough to address all of the above issues and are at the same time amenable to the application of formal methods for proving that the system behavior conforms to its specification. In particular, we are interested in specification formalisms that allow to apply formal verification techniques such that the underlying model checking problems are still decidable within reasonable time and space bounds. The presented work relies on an exogenous modeling approach that allows a clear separation of coordination and computation and provides an operational semantic model where formal methods such as model checking are well suited and applicable. The channel-based exogenous coordination language Reo is used as modeling formalism as it supports hierarchical modeling in an iterative top-down refinement procedure. It facilitates reusability, exchangeability, and heterogeneity of components and forms the basis to apply formal verification methods. At the same time Reo has a clear formal semantics based on automata, which serve as foundation to apply formal methods such as model checking. In this thesis new modeling languages are presented that allow specifying complex systems in terms of Reo and automata models which yield the basis for a holistic approach on modeling, verification and synthesis of parallel systems. The second main contribution of this thesis are tailored branching-time and alternating time temporal logics as well as corresponding model checking algorithms. The thesis includes results on the theoretical complexity of the underlying model checking problems as well as practical results. For the latter the presented approach has been implemented in the symbolic verification tool set Vereofy. The implementation within Vereofy and evaluation of the branching-time and alternating-time model checker is the third main contribution of this thesis

    Trans-statistical behavior of a multiparticle system in an ontology of properties

    Get PDF
    In the last years, the surprising bosonic behavior that a many-fermion system may acquire has raised interest because of theoretical and practical reasons. This trans-statistical behavior is usually considered to be the result of approximation modeling methods generally employed by physicists when faced with complexity. In this paper, we take a tensor product structure and an ontology of properties approach and provide two versions (standard and algebraic) of a toy model in order to argue that trans-statistical behavior allows for a realistic interpretation.Fil: Pasqualini, MatĂ­as Daniel. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario; ArgentinaFil: Fortin, Sebastian Ezequiel. Universidad de Buenos Aires. Facultad de FilosofĂ­a y Letras. Instituto de FilosofĂ­a "Dr. Alejandro Korn"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de FĂ­sica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentin
    • …
    corecore