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Abstract

Systems have become increasingly complex, and as a result development methods have become more complex
as well.  The unified modeling language (UML) has been criticized for the often cited and sometimes over-
whelming complexity it presents to its users, and those seeking to learn to use it.  Using Rossi and
Brinkkemper’s (1996) complexity metrics, Siau and Cao (2001) completed a complexity analysis of UML and
36 other modeling techniques, finding that UML is indeed more complex than other techniques.  Siau, Erickson
and Lee (2002) proposed that Rossi and Brinkkemper’s metrics present the theoretical maximum complexity,
known as theoretical complexity. This is different from a practice-based complexity, known as practical
complexity, that more accurately reflects the complexity of the language in practice. This research develops
a subset of UML (a kernel) composed of the most commonly used constructs, that can be equated with the
complexity that practitioners actually face when using the modeling language.  A Delphi study is conducted
using UML experts in identifying a use-based UML kernel.  Metric analyses are then computed and analyzed.

Keywords:  UML, complexity, complexity metrics, Delphi study, modeling method metrics

Introduction

Humans generally have cognitive problems processing information that is overly complex (Anderson and Lebiere 1998; Miller
1956).  This problem surfaces often as people build information systems, which tend to be growing increasingly complex.
Constructing models of systems is an approach that developers have devised to help manage the task of processing some of the
cognitively complex tasks involved in systems development.

The unified modeling language (UML) has become increasingly important to systems development efforts in the past five years,
and is a tool that agile systems developers have come to depend on as crucial to their efforts.  However, UML has also been
criticized for its complexity, inconsistent semantics, and ambiguous constructs (Dobing and Parsons 2000; Dori 2002; Duddy
2002; Kobryn 2002; Zendler et al. 2001).

In terms of complexity, a set of complexity indices for UML in aggregate, and the nine diagramming techniques individually, was
compiled recently by Siau and Cao (2001).  In their study, the set of metrics is based on inclusion of all possible constructs in
UML, it thus provides an indication of the theoretical (or maximum) complexity of the modeling methods, which we term
theoretical complexity.

mailto:johnerickson@unomaha.edu
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In reality, however, it can reasonably be supposed that not all of the constructs are used all of the time when building systems.
This phenomenon is known in software development as the (heuristic) 80/20 rule, in which the “rule” supposes that 80 percent
of systems are developed using 20 percent of the (programming) language.  Kobryn (2002) proposed that the situation might be
analogous to and applicable to UML as well.  Therefore, theoretical complexity may not be a good indicator of the complexity
of UML in practice.  Besides, comparing various modeling methods based on theoretical complexity may not be a fair and
accurate measure.  Those modeling methods that include many “nice-to-have” but nonessential constructs will be unnecessarily
penalized in the evaluation process.  Since the reason for measuring complexity is mainly to understand the learnability and
applicability of modeling methods in practice, it may be necessary to define a new complexity measure, practical complexity,
which more accurately reflects the complexity of modeling methods in practice.

This research aims to differentiate theoretical and practical complexity, specifically as it relates to UML modeling techniques.
The research is conducted from the assumption that practical complexity exists, and that it can also be distinguished or
differentiated from theoretical complexity (Siau et al. 2002).  In addition, our conjecture is that UML’s practical complexity is
measurable, and is less than the existing metrics and results developed and used by others (Rossi and Brinkkemper 1996; Siau
and Cao 2001).  Thus, in addition to theoretical complexity, a set of metrics for estimating practical complexity can be developed
based on the most commonly used constructs rather than all constructs.  The goal of the research is to build on the results of Siau
et al. (2002) by defining and estimating the practical complexity of UML.

The research involves investigating the adequacy of theoretical complexity, as defined by Rossi and Brinkkemper (1996),
measured using diagramming techniques by Siau and Cao, and applied to real diagrams (Siau et al. 2002).  Those research efforts
highlight the need for examining a more “practical” measure of complexity.  This research begins with the ideas of Rossi and
Brinkkemper, Siau and Cao, and Siau et al., and attempts to develop practical complexity measures.  A series of three question-
naires were sent to roughly 40 expert object-oriented (OO) development practitioners in a Delphi-type study, asking them to reach
a consensus and determine the UML constructs that are most important to them, and that they most commonly use.  The aim was
to identify the core UML constructs that are used to construct 80 percent of the systems developed (i.e., the kernel of UML).  This
research proposes a means to begin studying and exploring the nature of the relationship between theoretical and practical
complexity.  The results will be useful in developing a set of complexity metrics that are different, more realistic, and, hopefully,
that provide valuable information to developers who will soon be moving to UML release 2.0.

Programmers and developers spend years honing their craft, so why would it be important for others to be able to comprehend
UML?  After all, end users and other groups instrumental in developing systems are paying for that expertise.  However, the
models, diagrams, and drawings of new systems are often used as the focal point for communicating information about the new
system to users.  Therefore, identifying and measuring practical complexity is critical, even essential, if anyone other than experts
realistically expects to quickly learn and use UML or any relatively complex systems development tool.

Literature Review

Software Complexity

Complexity appears to play a large and ever increasing role in the systems development process as well, since the hardware and
software underlying systems have been becoming more complex at almost a geometric rate, with a doubling of capacity, and we
argue complexity, every 12 to 18 months, a phenomenon known as Moore’s Law.  However, most complexity studies fall under
the umbrella of software complexity, and complexity from a strictly cognitive psychological perspective, and as such tend not
to focus on the complexity of the underlying software development methodologies (Albrecht 1979; Albrecht and Gaffney 1983;
Brooks 1987; Fenton and Pfleeger 1997; Halstead 1977; Pfleeger and McGowan 1990; Sommerville 2001; Weyuker 1988).

Software complexity has typically been assessed using such measures as McCabe’s cyclomatic number, Haltstead’s software
science model, and Oviedo’s data flow complexity model (Fenton and Pfleeger 1997).  In 1988, Weyuker proposed a number of
evaluations for software complexity measures.  She ended by proposing that none of the complexity measures in existence at the
time adequately captured what is meant by complexity, and called for more research on the subject.  This research examines
complexity in several forms, structural complexity as defined in the next section, being one.

Past MIS research has typically skirted complexity.  Kim et al.’s (2000) study of diagrams and cognitive diagrammatic reasoning
enforced interpretation time limits on the subjects in their experiment, and thus used time as a constraint, but did not really address
complexity specifically.  Mcleod and Roeleveld (2002) referred to the relationship between interpretation time and complexity
by contending that a person’s “ability to learn a concept quickly…depends heavily on the complexity of the model” (p. 7).  That
implies that there is a relationship between interpretation time and complexity, but again does not explore complexity.  Vessey
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and Conger (1994) used time as a measure of interpretation, and Zendler et al. (2001) also used time necessary to structure an
application as a construct.  However, neither group considered complexity of interpretation directly as part of their research.

Siau and Cao’s (2001) research applied Rossi and Brinkkemper’s (1996) complexity metrics to the unified modeling language
(UML).  Their reasoning for using the particular metric set is that they contend that the metrics are among the most compre-
hensive, and that Rossi and Brinkkemper’s approach has “been used to evaluate the ease-of-use of OO techniques” (Siau and Cao
2001, p. 33).  Siau and Cao also compared UML’s complexity with 36 OO techniques from 14 methods, as well as each of the
14 methods in aggregate.

One of Siau and Cao’s (2001) noteworthy findings is that UML is far more complex (from 2 to 11 times more complex) in
aggregate than any of the other 13 methods.  The relative overall complexity highlights one of the issues regarding UML, with
the result that it can appear overwhelming to those new to UML.  Additionally, when human cognitive limitations to short-term
memory are added to this mix, UML can appear even more difficult to master.  This is a critical point because use case and class
diagrams, for example, are typically the starting point for system modeling efforts.  Since those diagramming techniques are
relatively more complex than some of the others, that means that the more complex diagrams or models of the language are what
end-users or students just learning the basics of the language interact with first, essentially doubling their cognitive load; they must
understand the constructs used in the diagrams while simultaneously understanding their intended meaning in terms of the system
under development.

Cognitive Complexity

Ericsson and Kintsch (1995) proposed an extension to working memory (short-term memory), which they call long-term working
memory (LTWM).  According to Ericsson and Kintsch, LTWM is a part of long-term memory (LTM) that acts almost like short-
term working memory (STWM).  In this model, domain experts can very quickly recall information relevant to their area of
expertise.  The relevant information recall is a bit slower than STWM recall speeds, but appears to be significantly faster than
LTM recall speeds.  Of course, LTWM only “works” for experts in their domain areas, or possibly others, such as experienced
users, who have high automaticity for certain tasks.  LTWM would help to explain why it is difficult for those learning a modeling
language; they do not have the automaticity in short-term or LTWM that more experienced users have.  This also helps explain
why end users, even users highly familiar with existing systems processes, may still have problems communicating with the
developers via the relatively unfamiliar UML diagrams.

LTWM is an important concept to consider when thinking about human cognitive limitations regarding information processing,
and especially as related to task complexity.  What the idea of LTWM conveys is that automaticity can greatly extend the short-
term memory limitations of domain experts.  LTWM addresses the problem of the information processing bottleneck, and suggests
that as people learn even very complex materials, that they can somewhat overcome some of their own cognitive limitations.  This
also implies that a person can more easily learn a very complex methodology such as UML by assimilating a small or relatively
small part of the overall methodology, such as the most commonly used components, by using LTWM.

The atomic components of thought (ACT) theory developed by Anderson and Lebiere (1998) attempts to divide cognition into
its component parts.  ACT breaks knowledge into two parts, declarative knowledge and procedural knowledge.  Declarative
knowledge is similar to that knowledge captured in an encyclopedia or dictionary—it is a list of what we know. Procedural
knowledge, on the other hand, is knowledge about how things work.  Procedural knowledge depends on declarative knowledge
as a starting point, but uses that knowledge to help solve problems (Anderson and Lebiere 1998).  Declarative knowledge is
produced in chunks, and is constrained by our cognitive limits (Miller 1956).  Procedural knowledge is used to create production
rules that describe productions, or specific steps we use to solve common problems (Anderson and Lebiere 1998).  In short, ACT
tells us that the more complex a problem is, the longer it will take us to process the problem, and come up with a solution.
However, ACT also travels a similar path to that of Ericsson and Kintsch in that it helps to explain how humans overcome
cognitive limitations when dealing with unfamiliar and often complex cognitive loads.

Theory, Model, and Research Question

Complexity

Comprehension relates generally to the ways in which humans make sense of or understand the various stimuli they are
continually presented with in the world.   According to the ACT theory, humans organize their comprehension into large-scale
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Structural Complexity Cognitive Complexity
affects

Structural Complexity Cognitive Complexity
affects

Figure 1.  Structural and Cognitive Complexity
(Adapted from Briand et al. 1999)

productions, based on declarative and procedural knowledge.  Moreover, in the course of processing productions, a bottleneck
develops between what information is waiting in a queue for processing and what is currently being processed.  Thus, if one
comprehension task is simpler relative to another comprehension task, it will consume fewer resources (processing time, long-term
production activation and retrieval, and short-term memory), and thus take less overall time to process.

Complexity can take many forms.  For the purposes of this research, complexity will be approached from two separate but closely
related perspectives:  cognitive complexity as related to human perception, and structural complexity as related to the structural
properties of the diagramming techniques found in modeling approaches such as UML diagrams.  In this context, cognitive
complexity can be defined as the mental burden people face as they work with systems development constructs.

Further, in addition to the theoretical basis of cognitive complexity detailed previously, the research proposes to adopt the ideas
on the definition of structural complexity as proposed by Briand et al. (1999), in which the physical (structural) complexity of
diagrams affects the cognitive complexity faced by the humans using the diagrams as aids to understand and/or develop systems
(see Figure 1).

Since cognitive complexity, as defined for this research, is difficult and arguably even impossible to measure, structural
complexity will be used to explain cognitive complexity.  Structural complexity can be defined as a function of the number of
distinct elements (or constructs) that constitute a given diagramming technique.  Rossi and Brinkkemper (1996) formulated 17
distinct definitions relating to the structural complexity of each diagramming technique.  Using all available constructs (the
metamodel component), these definitions form an estimate of the total structural complexity of the diagramming technique, which
this research terms theoretical complexity.

Structural complexity is a part of the structural characteristics of the information or modeling system, and for this research refers
to the elements or constructs that comprise a given diagramming technique.  These constructs would include meta-construct types
such as objects (classes and interfaces), properties (class names, attributes, methods, and roles), and relationships and associations
(aggregations, generalizations, specializations).

The Rossi and Brinkkemper metrics serve as the operational definition (as well as a measure) of the structural complexity of
diagrams, which can be equated with theoretical complexity.  The current research proposes to define practical complexity as a
subset of the Rossi and Brinkkemper metrics, based on the practitioner identification, and artifact-based validation of the UNL
kernel.  Siau et al. (2002) provided some evidence indicating that the theoretical metrics (total structural complexity) do not
adequately capture the complexity practitioners face when using UML class and use case diagrams.  This result motivates the
research question:

Can we differentiate theoretical complexity from practical complexity and illustrate a way of determining
the practical complexity of UML based on practitioner usage patterns?

The research objectives for this study are (1) to determine the most commonly used constructs in the UML diagrams, and propose
that they represent a UML kernel, and (2) to analyze the results using the Rossi and Brinkkemper metrics to determine a practical-
oriented assessment of the complexity of UML.  The intent of identifying one possible UML kernel is not to say “let’s simply
dispense with the non-kernel items,” but rather to focus on how practitioners are using UML.  An analogy would be a language
kernel.  Language kernels are commonly identified by compiling (word) usage frequencies, based on peoples’ actual usage of the
language).  The resulting kernel is not then used to remove all non-kernel words, but rather to develop understanding of how
people learn and subsequently use the language.

The original metrics developed by Rossi and Brinkkemper in 1996 minimized the flaws and weaknesses that characterized other
work on method measurement.  Specifically, much early work in the area did not provide an adequate theoretical basis for the
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metrics, in addition to being loosely and inaccurately derived from software metrics as discussed previously.  Rossi and
Brinkkemper provided a new approach to measuring models by using computer-aided method engineering combined with a
metamodeling approach.  They developed their metrics from a strictly mathematical foundation, and defined each metric so that
it was directly assessable from the model that encompassed it.

As previously noted, the literature generally agrees that UML is extremely complex.  Moreover, it is growing even more complex
since UML 2.0 includes four additional diagrams and extension specifications for specific application have been published, or
are under development now.  Therefore, an assessment of complexity and practitioner usage patterns can provide guidance to
method engineers (those who create modeling languages such as UML), practitioners, and educators.

Research Methodology and Framework

Delphi Studies

The research proposes to investigate practical complexity, and the formulation of a UML kernel by means of a Delphi study.
Delphi studies attempt to form a reliable consensus of a group of experts in a specialized area (Ludwig 1997).  The approach is
a process that focuses on collecting information from the expert group though a series of questionnaires, and providing feedback
to the group between questionnaires.  A Delphi study is ideal for this research as identifying a kernel of UML requires a group
of UML experts who have substantial UML experience.  Since UML became an Object Management Group (OMG) standard only
in 1999, there are only a handful of true UML experts worldwide.  This group of UML experts is geographically dispersed, which
is another reason a Delphi study is well-suited for this scenario.  In this Delphi study, questionnaires are designed to allow the
collection of expert opinions on the subject, irrespective of geographical location, and then to facilitate the refinement or focus
of the subsequent versions to narrow in on a consensus.

In our research, the Delphi study comprised three questionnaires.  The three Delphi questionnaires included separate “sheets,”
one provided to rank the nine UML diagrams and one provided to rank the constructs of each diagram.  The results of the previous
questionnaire (after round 1) were provided as a mean of the group response.  In addition to rating the diagrams or constructs,
the questionnaires asked respondents whether the diagrams or constructs should be included in the kernel.  Three rounds were
used because past research into the effectiveness of Delphi studies indicates that at least three rounds are necessary for a relatively
complete Delphi, but that the benefits gained from additional rounds have sometimes been found to be marginal if more than three
rounds are used (Turoff and Linstone 2002).

Subjects

A total of 44 subjects agreed to participate in the study, and were sent questionnaire 1.  Of these, 29 returned useable surveys;
a presentation of their demographic information follows.  The average development experience of the 29 respondents was 9.5
years, and the average UML development experience was 4.5 years.  The UML experts were identified from Working Group 8.1
(Design and Evaluation of Information Systems) of the International Federation for Information Processing, and from object-
oriented practitioners and researchers, among other similar sources.  In addition, since UML had been a standard for only about
5 years at the beginning of this study, the average UML development experience of 4.5 years shows that these subjects were truly
experts in UML.  The average time at current position was 6.9 years, average age was 37.4 years, and wioth 23 males and 6
females responding.  Nearly half (14) of the respondents worked outside of the United Sates (Canada, 3; Argentina, 1; Spain, 2;
Norway, 3; Netherlands, 1; France, 2; Germany, 1; and Finland 1).

Delphi Study and Metric Analysis Results

UML Diagram Results

Based on respondent ratings, the final orders of importance and kernel indications are as indicated in Tables 1 through 10.  The
top 4 diagrams in terms of mean rating scores were selected by the respondents to be included in the kernel, at respective
consensus levels of 100 percent, 90.9 percent, 95.5 percent, and 100 percent.  The next highest rated diagram in terms of
importance attained only a 31 percent consensus level, indicating the respondents clearly distinguished between important and
less important diagrams, and kernel and non-kernel diagrams.  Note:  the means are the arithmetic mean of the subject. 
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Table 1.  UML Diagram Results

Construct Mean
Standard
Deviation

% “Yes”
for Kernel

Class 1.00 0.00 100.0%
Use Case 1.61 0.79 90.9%
Sequence 1.73 0.70 95.5%
Statechart 1.81 0.51 100.0%
Component 2.31 0.70 31.8%
Activity 2.41 0.55 27.3%
Collaboration 2.57 0.87 22.7%
Deployment 2.69 0.75 9.1%
Object 3.00 0.86 9.1%

Table 2.  Class Diagram Results

Construct Mean
Standard
Deviation

% “Yes”
for Kernel

Association 1.00 0.00 100.0%
Class 1.00 0.00 100.0%
Generalization 1.09 0.29 100.0%
Single
inheritance

1.14 0.36 100.0%

Aggregation 1.45 0.74 95.5%
Composition 1.45 0.60 100.0%
Interface 1.67 0.80 90.9%
Constraint 1.76 0.77 90.9%
Package 1.86 0.57 90.9%
Note 1.95 0.50 86.4%
Dependency-
realization

2.07 0.46 18.2%

Stereotype 2.23 0.75 45.5%
Object 2.38 0.67 22.7%
Dependency-
usage

2.47 0.80 13.6%

Multiple
inheritance

2.47 0.96 13.6%

Instantiate 2.50 0.76 9.1%
Subsystem 2.58 0.90 13.6%
Qualified
association

2.71 0.92 18.2%

Tagged value 2.89 0.57 9.1%

Table 3.  Use Case Diagram Results

Construct Mean
Standard
Deviation

% “Yes”
for Kernel

Actor 1.09 0.29 95.5%
Use case 1.09 0.29 95.5%
Uses 1.76 0.94 95.5%
Note 1.79 0.51 90.9%
Association 1.80 1.01 90.9%
Include 1.95 0.97 95.5%
Extend 2.14 1.04 86.4%
Package 2.42 0.61 18.2%
Generalization 2.43 0.93 31.8%
Stereotype 2.47 0.90 27.3%
Dependency 2.53 0.96 13.6%
Constraint 2.55 1.05 13.6%
Subsystem 2.75 0.86 9.1%
Tagged value 3.13 0.72 9.1%

Table 4.   Sequence Diagram Results

Construct Mean
Standard
Deviation

% “Yes”
for Kernel

Object 1.05 0.21 100.0%
Message 1.14 0.35 100.0%
Lifeline 1.24 0.44 95.5%
Actor 1.32 0.57 100.0%
Note 1.90 0.44 50.0%
Focus of control 1.95 0.71 77.3%
Constraint 2.29 0.78 27.3%
Stereotype 2.42 0.90 22.7%
Tagged value 2.75 0.77 13.6%
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Table 5.   Statechart Diagram Results

Construct Mean
Standard
Deviation

% “Yes” for
Kernel

Event 1.00 0.00 100.0%
State 1.00 0.00 100.0%
Final state 1.15 0.37 95.0%
Initial state 1.15 0.37 95.0%
Transition 1.15 0.37 100.0%
Sub-state 1.40 0.60 95.0%
Action state 1.95 1.10 80.0%
Activity state 2.00 1.11 75.0%
Note 2.16 0.50 30.0%
Fork 2.21 0.98 15.0%
Join 2.26 0.93 15.0%
Branch 2.35 0.93 15.0%
Constraint 2.60 0.99 20.0%
Stereotype 2.75 1.13 15.0%
Object 2.82 1.07 10.0%
Tagged value 3.07 0.83 10.0%

Table 6.  Component Diagram Results

Construct Mean
Standard
Deviation

% “Yes” for
Kernel

Interface 1.00 0.00 100.0%
Package 1.33 0.65 100.0%
Deployment
component

1.42 0.67 100.0%

Dependency 1.50 0.67 91.7%
Stereotype 1.50 0.67 100.0%
Subsystem 1.58 0.67 100.0%
Work product
component

1.64 0.67 100.0%

Execution
component

1.73 1.01 100.0%

Realization 1.75 0.75 91.7%
Note 2.25 0.62 33.3%
Association 2.67 1.50 16.7%
Composition 2.67 1.44 8.3%
Constraint 2.67 0.98 0.0%
Dependency-
usage

2.82 1.08 0.0%

Aggregation 3.08 1.31 0.0%
Generalization
single
inheritance

3.17 1.19 0.0%

Tagged value 3.20 0.79 0.0%
Generalization
multiple
inheritance

3.42 1.08 0.0%

Table 7.   Activity Diagram Results

Construct Mean
Standard
Deviation

% “Yes”
for Kernel

Activity state 1.00 0.00 100.0%
Transition 1.00 0.00 100.0%
Fork 1.07 0.27 100.0%
Join 1.14 0.36 100.0%
Branch 1.21 0.43 100.0%
Action state 1.43 1.16 92.9%
Initial state 1.43 0.85 92.9%
Stop state 1.43 0.85 92.9%
Object 1.50 0.65 100.0%
Object flow 1.79 0.70 100.0%
Swimlane 1.83 0.39 92.9%
Note 2.21 0.58 14.3%
Constraint 2.57 0.65 14.3%
Stereotype 2.62 0.96 28.6%
Tagged value 2.82 0.60 14.3%

Table 8.  Deployment Diagram Results

Construct Mean
Standard
Deviation

% “Yes”
for Kernel

Device 1.25 0.71 100.0%
Processor 1.38 0.74 100.0%
Distribution unit 1.63 0.74 90.0%
Stereotype 1.89 0.78 100.0%
Note 2.33 0.71 20.0%
Constraint 2.67 1.12 0.0%
Association 3.00 1.22 0.0%
Dependency-
realization

3.00 1.22 0.0%

Tagged value 3.13 0.64 0.0%
Dependency-
usage

3.22 1.09 0.0%

Aggregation 3.33 1.22 0.0%
Composition 3.56 1.13 0.0%

Table 9  Collaboration Diagram Results

Construct Mean
Standard
Deviation

% “Yes” for
Kernel

Object 1.00 0.00 100.0%
Link 1.33 0.49 94.7%
Actor 1.44 0.98 94.7%
Note 2.22 0.73 31.6%
Stereotype 2.24 0.75 36.8%
Constraint 2.50 0.71 15.8%
Tagged value 2.77 0.60 10.5%
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Table 10.  Object Diagram Results

Construct Mean
Standard
Deviation

% “Yes”
for Kernel

Object 1.24 0.56 100.0%
Link 1.44 0.63 94.4%
Note 2.60 0.91 27.8%
Stereotype 2.64 1.08 16.7%
Constraint 2.67 1.05 11.1%
Tagged value 3.09 0.83 5.6%

Metrical Analyses

The kernel resulting from the Delphi study is analyzed in this section using the Rossi and Brinkkemper (1996) metrics.  Through
participation in the Delphi study, the subjects have identified one possible UML kernel.  It appears that there is a relatively clear
break between the important constructs and the less important constructs.  The important constructs, whether the break occurs
at more or less than 20 percent of the constructs, have been identified as a kernel of UML.

The kernel is analyzed using two different selection criteria, and the Siau and Cao (2001) results are provided as a comparative
basis.  For the first analysis, the constructs rated (roughly) between 1.0 and 2.0 by the respondents are used to compile a first
estimate of complexity, while for the second analysis those constructs rated at between 1.0 and 2.3 are used to compile the
secondary complexity estimate.  The rating of 2.3 was chosen because 0.3 represents one-half of the average standard deviation
of the ratings for the top four ranked diagrams.

Technique Level Metrics

This section presents the complexity analyses results for the constructs of the individual UML diagrams.  Three analyses were
performed on the Delphi results.  The first presents the complexity estimates for all nine UML diagrams and all constructs on the
basis of the respondent-identified kernels for each diagram.  The second, identified as Kernel A, analyzes only the four
respondent-identified kernel diagrams, while the third, identified as Kernel B, analyzes the four  kernel diagrams plus one
additional diagram (the additional 0.50 standard deviation, as discussed previously).

As can be seen from Figure 2, the counts of object, property, and relationship types all decrease or remain equal from the original
Siau and Cao results to Kernel B to Kernel A results.  It would not have been possible for any of the counts to have increased as
a result of this study.  However, the same is not the case for a number of the average results.  It is possible for the averages to
increase, decrease, or remain equal from analysis to analysis.  The reason that this is possible is that the averages are just that—
averages.  For example, for class diagrams, the average number of properties per object type increased because the respondents
excluded a higher proportion of the object types that were related to specific property types from the kernel, therefore increasing
the ratio (average).  This also affects some of the technique level metrical results similarly.

Aggregate Technique Metrics

This section presents the aggregate metrics for the nine UML diagrams in terms of division of work, average complexity, and total
complexity.  For division of work, it appears that all of the diagrams, except collaboration diagram, decreased, as would be
expected from a decrease in the number of constructs.  It appears that the reason for the increase in division of work for the
collaboration diagram can be attributed to the fact that the respondents excluded a higher proportion of property types from the
kernel, thereby increasing the ratio (average).  The total conceptual complexity remains constant or decreases for all diagrams,
indicating an expected result.  Figure 3 presents the results.
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Legend (for all metrical analyses tables and figures):
Siau and Cao = all diagrams and all constructs in all diagrams
UML Kernel A = all kernel diagrams, and kernel constructs for each diagram (kernel inclusion at mean rating score of

approximately 2.0 or less)
UML Kernel B = all kernel diagrams, and kernel constructs for each diagram (kernel inclusion at mean rating score of

approximately 2.3 or less, roughly 0.5 standard deviation higher than the respondent identified
kernels)

Figure 2.  Technique (Diagram) Level Metrical Results

Figure 3.  Aggregate Technique (Diagram) Metrical Results



Erickson & Siau/Theoretical & Practical Complexity of UML

192 2004 — Twenty-Fifth International Conference on Information Systems

Table 11.  Method (Overall UML) Metrics
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6

57 44 41

Method Level Metrics

Table 11 shows the effect of the Delphi kernel selection on UML as a whole.  The first line indicates the overall complexity of
UML when all of the diagrams and constructs are included in the analysis; the second line includes only the Kernel B diagrams
(class, use case, sequence, statechart, and component) and their respective (kernel) constructs to calculate the overall complexity;
and the third line includes only the Kernel A diagrams (class, use case, sequence, and statechart) and their respective (kernel)
constructs for the overall complexity calculations.  

Discussion

In general, it appears that the research resulted in a relatively clear identification of one possible UML kernel by the subject
experts, as evidenced by the mean rating scores and measure of central tendency.  The UML kernel identified consists of the class,
use case, sequence, and statechart diagrams, with an agreement or consensus level of 90 percent or greater.  By contrast only 31
percent of the respondents felt that the next highest diagram, component, should be included in the kernel.  What this appears to
indicate is that practitioners tend to use UML to model more heavily in the analysis and design stages of the system development
process, and less for testing and implementation.  From the perspective of these results, it remains unclear as to what role UML
plays in the coding stage.

The results, however, do highlight what UML actually looks like to practitioners, and that has some definite implications for others
who may need to use the language.  If practitioners are truly doing what they indicated they were doing in the study, then it
appears that users should begin their UML learning with class and use case diagrams.  Not coincidentally, that is precisely where
the creators of UML also recommend that developers begin the systems creation process.  

Naturally, that begs the question, “What’s new in the findings?”  The point here is that newcomers to UML, and most end-users
would fall into that category, likely have no plans to become expert at the language, but rather a more plausible goal for such
people regarding UML would be to learn to understand the constructs and diagrams that are most pertinent to them.  Even UML
experts may not be familiar with those constructs that are hardly ever used in practice.  In this research, we identified the most
important and useful constructs and diagrams in UML.  These comprise a kernel of UML and UML users need to be familiar with
these core sets of constructs and diagrams.  The kernel of UML is also the place where new UML users should start to learn about
UML.
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Complexity

From a complexity perspective, if we include just the first four diagrams in the kernel along with just their kernel constructs, and
assume that it represents the most commonly used diagrams in UML, then the Briand et al. (1999) structural complexity and
related cognitive complexity that users experience should be more manageable than if the users were commonly using all of the
diagrams, and all of their related constructs to model systems.

The change in overall complexity from 106.03 (Siau and Cao 2001) to 40.62 (Kernel A) represents a nearly 61.7 percent decrease
in the measurement.  Since all of the diagrams and constructs associated with the non-kernel items essentially disappear, that
represents a notable reduction in complexity.  There are 116 constructs identified with the nine primary UML diagrams, and 58
of those are included in the top 4 importance rated diagrams.  Of those 58 constructs, 31 were identified by respondents as kernel
items, and would make up the UML kernel.  This results in 26.7 percent of the total number of UML constructs and these
constructs comprise the respondent-identified UML kernel.  Even if the analysis is conducted on all constructs of the kernel
diagrams, the reduction in overall complexity is still more than 29 percent.

The research objectives (1) to identify a kernel of UML and (2) to use that identified kernel to propose a more practical assessment
of UML’s complexity appear to have been met.  The Delphi participants did identify a kernel of UML based on a group of UML
experts, and that kernel has been used to provide an alternative assessment of the complexity of UML.

Conclusions, Contribution, and Future Research

UML can be used in all stages of the systems development process, but it appears, based on the results of this research, that many
developers use it primarily in the early stages of the process, or during systems analysis and design.  UML is also criticized for
its size and complexity, and while it is true that UML is very large, and arguably complex, at least much more so than almost all
other development methods, this research provides an alternative means of looking at UML.  So, what we are really trying to say
to new UML users, and those teaching UML to others, whether on the job or in the classroom is, “Start here.”  In other words,
new UML users can learn the kernel of the language first and there may not be a need to learn those constructs that are hardly
ever used in practice.

While Rossi and Brinkkemper’s (1996) metrics , along with Siau and Cao’s (2001) metrical analysis of UML and other methods,
provide an estimate of the theoretical (total) complexity of modeling methods, Siau et al. (2002) provided at least some evidence
that theoretical complexity does not adequately capture or measure the complexity that people actually face when using UML.
This research has attempted to address the measurement of practical complexity by means of the Delphi study conducted herein.

The results appear to support the conjecture that a kernel of UML exists, and the implications for researchers, practitioners, and
educators alike should be of interest.  The participant-identified UML kernel was identified, and that would mean that, from a user
perspective, UML is not as complex and difficult as some researchers have indicated, simply because many of the expert users
indicated that they had rarely, if ever, used some of the less important diagrams and constructs.  This could render UML more
attractive as a modeling tool for agile (lighter) system developers since agile approaches and systems appear poised to be an
important wave of the future.  For method engineers, the results of this study could be used to change the way modeling languages
(methods) are created, because if some of the less-used diagrams are indeed not useful, then a valid question is why are such
models constructed?  Critics of UML hint that UML is simply the result of negotiation among the original UML proponents and
their separate methods rather than a scientifically based development effort.  For existing practitioners operating in a more
traditional environment, these results should provide validation of their own development efforts.  For educators, the results should
be useful in course development, or in a broad sense, what to teach and when, if a particular systems analysis and design course
uses UML as an integral part of the classroom experience.  In other words, educators could spend the majority of their classroom
time concentrating on the kernel diagrams and constructs, now that a practical-based kernel has been identified.

Pending the imminent release of UML 2.0, it can only be expected for the next version to be larger than ever.  However, since
it has been demonstrated that one size does not fit all, it should be expected that a kernel would be useful for establishing the base
constructs of the language, and providing guidelines for extending UML into multiple application or system areas.  While it
appears that a language kernel has been identified for UML 2.0, it is not yet available to the general public.  This research can
be extended in one direction by comparing the OMG/UML defined kernel and that identified by this research.

The results provide a possible future direction for researchers studying complexity in development methodologies, since
theoretical or total complexity would become a less prominent factor (although still extremely important in determining limits)
in dealing with human cognitive limitations involving systems development.  A continuation of research involving UML
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extensions to specific application domains also appears necessary at this point.  Another area of research would involve trying
to measure the success of projects developed using UML.
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