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Abstract

Systems have become increasingly complex, and as a result devel opment methods have become more compl ex
aswell. The unified modeling language (UML) has been criticized for the often cited and sometimes over-
whelming complexity it presents to its users, and those seeking to learn to use it. Using Rossi and
Brinkkemper’s (1996) complexity metrics, Sau and Cao (2001) completed a complexity analysis of UML and
36 other modeling techniques, finding that UML isindeed more complex than other techniques. Sau, Erickson
and Lee (2002) proposed that Rossi and Brinkkemper’ s metrics present the theoretical maximum complexity,
known as theoretical complexity. This is different from a practice-based complexity, known as practical
complexity, that more accurately reflects the complexity of the language in practice. This research develops
a subset of UML (a kernel) composed of the most commonly used constructs, that can be equated with the
complexity that practitioners actually face when using the modeling language. A Delphi study is conducted
using UML expertsin identifying a use-based UML kernel. Metric analyses are then computed and analyzed.

Keywords: UML, complexity, complexity metrics, Delphi study, modeling method metrics

I ntroduction

Humans generally have cognitive problems processing information that is overly complex (Anderson and Lebiere 1998; Miller
1956). This problem surfaces often as people build information systems, which tend to be growing increasingly complex.
Constructing models of systemsis an approach that devel opers have devised to help manage the task of processing some of the
cognitively complex tasksinvolved in systems devel opment.

The unified modeling language (UML) has become increasingly important to systems development effortsin the past five years,
and is atool that agile systems developers have come to depend on as crucial to their efforts. However, UML has aso been
criticized for its complexity, inconsistent semantics, and ambiguous constructs (Dobing and Parsons 2000; Dori 2002; Duddy
2002; Kobryn 2002; Zendler et al. 2001).

Intermsof complexity, aset of complexity indicesfor UML in aggregate, and the nine diagramming techniquesindividually, was
compiled recently by Siau and Cao (2001). In their study, the set of metricsis based on inclusion of all possible constructsin
UML, it thus provides an indication of the theoretical (or maximum) complexity of the modeling methods, which we term
theoretical complexity.
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In reality, however, it can reasonably be supposed that not all of the constructs are used al of the time when building systems.
This phenomenon is known in software development as the (heuristic) 80/20 rule, in which the “rule”’ supposes that 80 percent
of systems are developed using 20 percent of the (programming) language. Kobryn (2002) proposed that the situation might be
analogous to and applicableto UML aswell. Therefore, theoretical complexity may not be a good indicator of the complexity
of UML in practice. Besides, comparing various modeling methods based on theoretical complexity may not be a fair and
accurate measure. Those modeling methods that include many “ nice-to-have” but nonessential constructswill be unnecessarily
penalized in the evaluation process. Since the reason for measuring complexity is mainly to understand the learnability and
applicability of modeling methods in practice, it may be necessary to define a new complexity measure, practical complexity,
which more accurately reflects the complexity of modeling methods in practice.

Thisresearch aims to differentiate theoretical and practical complexity, specificaly asit relates to UML modeling techniques.
The research is conducted from the assumption that practical complexity exists, and that it can also be distinguished or
differentiated from theoretical complexity (Siau et al. 2002). In addition, our conjecture isthat UML’s practical complexity is
measurable, and is less than the existing metrics and results devel oped and used by others (Rossi and Brinkkemper 1996; Siau
and Cao 2001). Thus, in addition to theoretical complexity, aset of metricsfor estimating practical complexity can be devel oped
based on the most commonly used constructs rather than all constructs. The goal of the researchisto build on the results of Siau
et a. (2002) by defining and estimating the practical complexity of UML.

The research involves investigating the adequacy of theoretical complexity, as defined by Rossi and Brinkkemper (1996),
measured using diagramming techniques by Siau and Cao, and applied to real diagrams (Siau et al. 2002). Those research efforts
highlight the need for examining a more “practical” measure of complexity. This research begins with the ideas of Rossi and
Brinkkemper, Siau and Cao, and Siau et al., and attempts to develop practical complexity measures. A series of three question-
naireswere sent to roughly 40 expert object-oriented (OO) devel opment practitionersin a Del phi-type study, asking themtoreach
aconsensus and determine the UML constructsthat are most important to them, and that they most commonly use. Theaimwas
toidentify the core UML constructsthat are used to construct 80 percent of the systems devel oped (i.e., thekernel of UML). This
research proposes a means to begin studying and exploring the nature of the relationship between theoretical and practical
complexity. Theresultswill beuseful in devel oping aset of complexity metricsthat are different, morerealistic, and, hopefully,
that provide valuable information to developers who will soon be moving to UML release 2.0.

Programmers and devel opers spend years honing their craft, so why would it be important for others to be able to comprehend
UML? After al, end users and other groups instrumental in developing systems are paying for that expertise. However, the
models, diagrams, and drawings of new systems are often used as the focal point for communicating information about the new
systemtousers. Therefore, identifying and measuring practical complexity iscritical, even essential, if anyone other than experts
realistically expectsto quickly learn and use UML or any relatively complex systems devel opment tool.

Literature Review
Software Complexity

Complexity appearsto play alarge and ever increasing role in the systems devel opment process as well, since the hardware and
software underlying systems have been becoming more complex at almost ageometric rate, with adoubling of capacity, and we
argue complexity, every 12 to 18 months, aphenomenon known as Moore'sLaw. However, most complexity studiesfall under
the umbrella of software complexity, and complexity from a strictly cognitive psychological perspective, and as such tend not
to focus on the complexity of the underlying software devel opment methodol ogies (Albrecht 1979; Albrecht and Gaffney 1983;
Brooks 1987; Fenton and Pfleeger 1997; Halstead 1977; Pfleeger and McGowan 1990; Sommerville 2001; Weyuker 1988).

Software complexity has typicaly been assessed using such measures as McCabe' s cyclomatic number, Haltstead' s software
science model, and Oviedo’ s data flow complexity model (Fenton and Pfleeger 1997). In 1988, Weyuker proposed a number of
evaluationsfor software complexity measures. She ended by proposing that none of the complexity measuresin existence at the
time adequately captured what is meant by complexity, and called for more research on the subject. This research examines
complexity in several forms, structural complexity as defined in the next section, being one.

Past MISresearch hastypically skirted complexity. Kimet al.’s(2000) study of diagramsand cognitive diagrammatic reasoning
enforced interpretation timelimitson the subjectsin their experiment, and thusused timeasaconstraint, but did not really address
complexity specifically. Mcleod and Roeleveld (2002) referred to the relationship between interpretation time and complexity
by contending that a person’s“ ability to learn aconcept quickly...depends heavily on the complexity of the model” (p. 7). That
implies that there is arelationship between interpretation time and complexity, but again does not explore complexity. Vessey

184 2004 — Twenty-Fifth International Conference on Information Systems



Erickson & Sau/Theoretical & Practical Complexity of UML

and Conger (1994) used time as a measure of interpretation, and Zendler et al. (2001) also used time necessary to structure an
application as a construct. However, neither group considered complexity of interpretation directly as part of their research.

Siau and Cao’s (2001) research applied Rossi and Brinkkemper’s (1996) complexity metrics to the unified modeling language
(UML). Their reasoning for using the particular metric set is that they contend that the metrics are among the most compre-
hensive, and that Rossi and Brinkkemper’ s approach has* been used to eval uate the ease-of -use of OO techniques’ (Siau and Cao
2001, p. 33). Siau and Cao also compared UML’s complexity with 36 OO techniques from 14 methods, as well as each of the
14 methods in aggregate.

One of Siau and Cao’s (2001) noteworthy findings is that UML is far more complex (from 2 to 11 times more complex) in
aggregate than any of the other 13 methods. The relative overall complexity highlights one of the issues regarding UML, with
the result that it can appear overwhelming to those new to UML. Additionally, when human cognitive limitations to short-term
memory are added to thismix, UML can appear even more difficult to master. Thisisacritical point because use case and class
diagrams, for example, are typically the starting point for system modeling efforts. Since those diagramming techniques are
relatively more complex than some of the others, that means that the more complex diagrams or model s of the language are what
end-usersor studentsjust learning the basi csof thelanguageinteract withfirst, essentially doubling their cognitiveload; they must
understand the constructsused in the diagramswhile simultaneously understanding their intended meaning interms of the system
under development.

Cognitive Complexity

Ericsson and Kintsch (1995) proposed an extension to working memory (short-term memory), which they call long-term working
memory (LTWM). According to Ericsson and Kintsch, LTWM isapart of long-term memory (LTM) that acts almost like short-
term working memory (STWM). In this model, domain experts can very quickly recall information relevant to their area of
expertise. The relevant information recall is a bit slower than STWM recall speeds, but appears to be significantly faster than
LTM recall speeds. Of course, LTWM only “works” for expertsin their domain areas, or possibly others, such as experienced
users, who have high automaticity for certaintasks. LTWM would help to explain why it isdifficult for thoselearning amodeling
language; they do not have the automaticity in short-term or LTWM that more experienced users have. Thisalso helpsexplain
why end users, even users highly familiar with existing systems processes, may still have problems communicating with the
developers viathe relatively unfamiliar UML diagrams.

LTWM isan important concept to consider when thinking about human cognitive limitations regarding information processing,
and especialy asrelated to task complexity. What theideaof LTWM conveysisthat automaticity can greatly extend the short-
termmemory limitationsof domain experts. LTWM addressesthe problem of theinformation processing bottleneck, and suggests
that as peoplelearn even very complex materials, that they can somewhat overcome some of their own cognitivelimitations. This
also impliesthat a person can more easily learn avery complex methodology such as UML by assimilating asmall or relatively
small part of the overall methodology, such as the most commonly used components, by using LTWM.

The atomic components of thought (ACT) theory developed by Anderson and Lebiere (1998) attempts to divide cognition into
its component parts. ACT breaks knowledge into two parts, declarative knowledge and procedural knowledge. Declarative
knowledge is similar to that knowledge captured in an encyclopedia or dictionary—it is a list of what we know. Procedural
knowledge, on the other hand, is knowledge about how things work. Procedural knowledge depends on declarative knowledge
as a starting point, but uses that knowledge to help solve problems (Anderson and Lebiere 1998). Declarative knowledge is
produced in chunks, and is constrained by our cognitive limits (Miller 1956). Procedural knowledgeisused to create production
rulesthat describe productions, or specific stepswe use to solve common problems (Anderson and Lebiere 1998). In short, ACT
tells us that the more complex a problem is, the longer it will take us to process the problem, and come up with a solution.
However, ACT aso travels a similar path to that of Ericsson and Kintsch in that it helps to explain how humans overcome
cognitive limitations when dealing with unfamiliar and often complex cognitive loads.

Theory, Model, and Resear ch Question
Complexity

Comprehension relates generally to the ways in which humans make sense of or understand the various stimuli they are
continually presented with in theworld. According to the ACT theory, humans organize their comprehension into large-scale
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Sructural Complexity p{ Cognitive Complexity
afects

Figurel. Structural and Cognitive Complexity
(Adapted from Briand et al. 1999)

productions, based on declarative and procedural knowledge. Moreover, in the course of processing productions, a bottleneck
develops between what information is waiting in a queue for processing and what is currently being processed. Thus, if one
comprehensiontask issimpler relativeto another comprehensiontask, it will consumefewer resources (processing time, long-term
production activation and retrieval, and short-term memory), and thus take less overall time to process.

Complexity cantake many forms. For the purposes of thisresearch, complexity will be approached from two separate but closely
related perspectives. cognitive complexity asrelated to human perception, and structural complexity asrelated to the structural
properties of the diagramming techniques found in modeling approaches such as UML diagrams. In this context, cognitive
complexity can be defined as the mental burden people face as they work with systems development constructs.

Further, in addition to the theoretical basis of cognitive complexity detailed previously, the research proposesto adopt the ideas
on the definition of structural complexity as proposed by Briand et al. (1999), in which the physical (structural) complexity of
diagrams affects the cognitive compl exity faced by the humans using the diagrams as aids to understand and/or develop systems
(seeFigure 1).

Since cognitive complexity, as defined for this research, is difficult and arguably even impossible to measure, structural
complexity will be used to explain cognitive complexity. Structural complexity can be defined as a function of the number of
distinct elements (or constructs) that constitute a given diagramming technique. Rossi and Brinkkemper (1996) formulated 17
distinct definitions relating to the structural complexity of each diagramming technique. Using all available constructs (the
metamodel component), these definitionsform an estimate of thetotal structural complexity of the diagramming technique, which
this research terms theoretical complexity.

Structural complexity isapart of the structural characteristics of the information or modeling system, and for thisresearch refers
tothe elementsor constructsthat comprise agiven diagramming technique. These constructswouldinclude meta-construct types
such asobjects(classesand interfaces), properties(classnames, attributes, methods, and roles), and rel ationshi psand associations
(aggregations, generalizations, specializations).

The Rossi and Brinkkemper metrics serve as the operational definition (as well as a measure) of the structural complexity of
diagrams, which can be equated with theoretical complexity. The current research proposes to define practical complexity asa
subset of the Rossi and Brinkkemper metrics, based on the practitioner identification, and artifact-based validation of the UNL
kernel. Siau et al. (2002) provided some evidence indicating that the theoretical metrics (total structural complexity) do not
adequately capture the complexity practitioners face when using UML class and use case diagrams. This result motivates the
research question:

Canwedifferentiatetheor etical complexity from practical complexity andillustrateaway of deter mining
the practical complexity of UML based on practitioner usage patterns?

Theresearch objectivesfor thisstudy are (1) to determinethe most commonly used constructsin the UML diagrams, and propose
that they represent aUML kernel, and (2) to analyze theresultsusing the Rossi and Brinkkemper metricsto determine apractical -
oriented assessment of the complexity of UML. The intent of identifying one possible UML kernel is not to say “let’s simply
dispense with the non-kernel items,” but rather to focus on how practitioners are using UML. An analogy would be alanguage
kernel. Language kernelsare commonly identified by compiling (word) usage frequencies, based on peoples’ actual usage of the
language). The resulting kernel is not then used to remove al non-kernel words, but rather to develop understanding of how
people learn and subsequently use the language.

Theorigina metrics devel oped by Rossi and Brinkkemper in 1996 minimized the flaws and weaknesses that characterized other
work on method measurement. Specifically, much early work in the area did not provide an adequate theoretical basis for the
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metrics, in addition to being loosely and inaccurately derived from software metrics as discussed previously. Rossi and
Brinkkemper provided a new approach to measuring models by using computer-aided method engineering combined with a
metamodeling approach. They developed their metrics from astrictly mathematical foundation, and defined each metric so that
it was directly assessable from the model that encompassed it.

Asprevioudly noted, theliterature generally agreesthat UML isextremely complex. Moreover, it isgrowing even more complex
since UML 2.0 includes four additional diagrams and extension specifications for specific application have been published, or
are under development now. Therefore, an assessment of complexity and practitioner usage patterns can provide guidance to
method engineers (those who create modeling languages such as UML), practitioners, and educators.

Resear ch M ethodology and Framework
Delphi Studies

The research proposes to investigate practical complexity, and the formulation of a UML kernel by means of a Delphi study.
Delphi studies attempt to form areliable consensus of a group of expertsin aspecialized area (Ludwig 1997). The approachis
aprocessthat focuses on collecting information from the expert group though a series of questionnaires, and providing feedback
to the group between questionnaires. A Delphi study isideal for this research asidentifying akernel of UML requires a group
of UML expertswho have substantial UML experience. Since UML became an Object Management Group (OMG) standard only
in 1999, there are only ahandful of true UML expertsworldwide. Thisgroup of UML expertsisgeographically dispersed, which
is another reason a Delphi study is well-suited for this scenario. In this Delphi study, questionnaires are designed to allow the
collection of expert opinions on the subject, irrespective of geographical location, and then to facilitate the refinement or focus
of the subsequent versions to narrow in on a consensus.

In our research, the Delphi study comprised three questionnaires. The three Delphi questionnaires included separate “ sheets,”
one provided to rank thenine UML diagramsand one provided to rank the constructs of each diagram. Theresultsof theprevious
questionnaire (after round 1) were provided as a mean of the group response. In addition to rating the diagrams or constructs,
the questionnaires asked respondents whether the diagrams or constructs should be included in the kernel. Three rounds were
used because past research into the effectiveness of Delphi studiesindicatesthat at |east threerounds are necessary for arelatively
complete Del phi, but that the benefits gained from additional rounds have sometimes been found to be marginal if morethan three
rounds are used (Turoff and Linstone 2002).

Subjects

A total of 44 subjects agreed to participate in the study, and were sent questionnaire 1. Of these, 29 returned useable surveys,
a presentation of their demographic information follows. The average development experience of the 29 respondents was 9.5
years, and the average UML development experience was4.5 years. The UML expertswereidentified from Working Group 8.1
(Design and Evaluation of Information Systems) of the International Federation for Information Processing, and from object-
oriented practitioners and researchers, among other similar sources. Inaddition, since UML had been a standard for only about
5yearsat the beginning of thisstudy, the average UML development experience of 4.5 years showsthat these subjectsweretruly
expertsin UML. The average time at current position was 6.9 years, average age was 37.4 years, and wioth 23 males and 6
femalesresponding. Nearly half (14) of the respondents worked outside of the United Sates (Canada, 3; Argentina, 1; Spain, 2;
Norway, 3; Netherlands, 1; France, 2; Germany, 1; and Finland 1).

Delphi Study and Metric Analysis Results

UML Diagram Results

Based on respondent ratings, the final orders of importance and kernel indications are asindicated in Tables 1 through 10. The
top 4 diagrams in terms of mean rating scores were selected by the respondents to be included in the kernel, at respective
consensus levels of 100 percent, 90.9 percent, 95.5 percent, and 100 percent. The next highest rated diagram in terms of
importance attained only a 31 percent consensus level, indicating the respondents clearly distinguished between important and
less important diagrams, and kernel and non-kernel diagrams. Note: the means are the arithmetic mean of the subject.
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Tablel. UML Diagram Results

Table 3. Use Case Diagram Results

Standard % “Yes' Standard % “Yes’
Construct Mean Deviation for Kernd Construct Mean | Deviation | for Kernel
Class 1.00 0.00 100.0% Actor 1.09 0.29 95.5%
Use Case 1.61 0.79 90.9% Use case 1.09 0.29 95.5%
Sequence 1.73 0.70 95.5% Uses 1.76 0.94 95.5%
Statechart 1.81 0.51 100.0% Note 1.79 0.51 90.9%
Component 231 0.70 31.8% Association 1.80 1.01 90.9%
Activity 241 0.55 27.3% Include 1.95 0.97 95.5%
Collaboration 2.57 0.87 22.7% Extend 2.14 1.04 86.4%
Deployment 2.69 0.75 9.1% Package 242 0.61 18.2%
Object 3.00 0.86 9.1% Generalization 243 0.93 31.8%
Ster eotype 247 0.90 27.3%
Dependency 2.53 0.96 13.6%
Table2. Class Diagram Results Constraint 255 1.05 13.6%
Subsystem 2.75 0.86 9.1%
Standard % “Yes’
Construct Mean Deviation | for Kernel Tagged value 313 0.72 9.1%
Association 1.00 0.00 100.0%
Class 1.00 0.00 100.0% Table4. Sequence Diagram Results
Generalization 1.09 0.29 100.0%
Single 1.14 0.36 100.0% Standard % “Yes
inheritance Construct Mean | Deviation | for Kerne
Aggregation 145 0.74 95.5% Obj ect 1.05 0.21 100.0%
Composition 1.45 0.60 100.0% M essage 1.14 0.35 100.0%
Interface 1.67 0.80 90.9% Lifdine 1.24 0.44 95.5%
Constraint 1.76 0.77 90.9% Actor 1.32 057 100.0%
Package 1.86 0.57 90.9% Note 1.90 0.44 50.0%
Note 1.95 0.50 86.4% Focus of control 1.95 0.71 77.3%
Dependency- 207 0.46 18.2% Constraint 2.29 0.78 27.3%
realization Ster eotype 242 0.90 22.7%
Ster eotype 2.23 0.75 45.5% Tagged value 2.75 0.77 13.6%
Object 2.38 0.67 22.7%
Dependency- 2.47 0.80 13.6%
usage
Multiple 2.47 0.96 13.6%
inheritance
Instantiate 2.50 0.76 9.1%
Subsystem 2.58 0.90 13.6%
Qualified 271 0.92 18.2%
association
Tagged value 2.89 0.57 9.1%
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Table7. Activity Diagram Results

Standard | % “Yes’ for Standard | % “Yes”
Construct Mean | Deviation Kernel Construct Mean | Deviation | for Kernel
Event 1.00 0.00 100.0% Activity state 1.00 0.00 100.0%
State 1.00 0.00 100.0% Transition 1.00 0.00 100.0%
Final state 1.15 0.37 95.0% Fork 1.07 0.27 100.0%
Initial state 1.15 0.37 95.0% Join 1.14 0.36 100.0%
Transition 1.15 0.37 100.0% Branch 1.21 0.43 100.0%
Sub-state 1.40 0.60 95.0% Action state 1.43 1.16 92.9%
Action state 1.95 1.10 80.0% Initial state 1.43 0.85 92.9%
Activity state 2.00 111 75.0% Stop state 1.43 0.85 92.9%
Note 2.16 0.50 30.0% Object 1.50 0.65 100.0%
Fork 221 0.98 15.0% Object flow 1.79 0.70 100.0%
Join 2.26 0.93 15.0% Swimlane 1.83 0.39 92.9%
Branch 2.35 0.93 15.0% Note 221 0.58 14.3%
Constraint 2.60 0.99 20.0% Constraint 2.57 0.65 14.3%
Stereotype 2.75 113 15.0% Ster eotype 2.62 0.96 28.6%
Object 2.82 1.07 10.0% Tagged value 2.82 0.60 14.3%
Tagged value 3.07 0.83 10.0%
Table 8. Deployment Diagram Results
Table 6. Component Diagram Results
Standard % “Yes'
Standard | % “Yes' for Construct Mean | Deviation | for Kernel
Construct Mean | Deviation Kerne Device 1.25 0.71 100.0%
I nterface 1.00 0.00 100.0% Pr ocessor 138 0.74 100.0%
Package 1.33 0.65 100.0% Distribution unit 1.63 0.74 90.0%
Deployment 142 0.67 100.0% SEEOLDe LLss) L it JO0LE
component Note 2.33 0.71 20.0%
Dependency 1.50 0.67 91.7% COﬂSt_I' ai_nt 2.67 112 0.0%
Stereotype 1.50 0.67 100.0% Association 3.00 122 0.0%
Subsystem 158 0.67 100.0% Pe;piezna‘fg‘ncy' .00 1.22 0.0%
ng{')‘of\g‘t’“d 164 | 067 100.0% Tagged value 313 | 064 00%
Execution 173 101 100.0% Eépge:dency' 322 109 0.0%
component Aggr egation 333 122 0.0%
Realization 1.75 0.75 91.7% Composition 356 113 0.0%
Note 2.25 0.62 33.3%
Association 2.67 1.50 16.7%
Composition 2.67 144 8.3% Table9 Collaboration Diagram Results
Constraint 2.67 0.98 0.0%
Dependency- 2.82 1.08 0.0% Standard | % “Yes’ for
usage Construct Mean | Deviation Kernel
Aggregation 3.08 1.31 0.0% Obj ect 1.00 0.00 100.0%
Generalization 3.17 1.19 0.0% Link 133 0.49 94.7%
single Actor 144 0.98 94.7%
inheritance Note 2.22 0.73 31.6%
Tagged value 3.20 0.79 0.0% Ster eotype 2.24 0.75 36.8%
Generalization 342 1.08 0.0% Constraint 250 0.71 15.8%
multiple Tagged value 2.77 0.60 10.5%
inheritance
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Table 10. Object Diagram Results

Standard % “Yes’
Construct Mean | Deviation | for Kernel

Object 1.24 0.56 100.0%
Link 1.44 0.63 94.4%
Note 2.60 0.91 27.8%
Ster eotype 2.64 1.08 16.7%
Constraint 2.67 1.05 11.1%
Tagged value 3.09 0.83 5.6%

Metrical Analyses

Thekernel resulting from the Delphi study isanalyzed in this section using the Rossi and Brinkkemper (1996) metrics. Through
participation in the Delphi study, the subjects have identified one possible UML kernel. It appearsthat thereisarelatively clear
break between the important constructs and the less important constructs. The important constructs, whether the break occurs
at more or less than 20 percent of the constructs, have been identified as akernel of UML.

Thekernel is analyzed using two different selection criteria, and the Siau and Cao (2001) results are provided as a comparative
basis. For the first analysis, the constructs rated (roughly) between 1.0 and 2.0 by the respondents are used to compile a first
estimate of complexity, while for the second analysis those constructs rated at between 1.0 and 2.3 are used to compile the
secondary complexity estimate. The rating of 2.3 was chosen because 0.3 represents one-half of the average standard deviation
of the ratings for the top four ranked diagrams.

Technique Level Metrics

This section presents the complexity analyses results for the constructs of the individual UML diagrams. Three analyses were
performed on the Del phi results. Thefirst presentsthe complexity estimatesfor all nine UML diagramsand all constructs onthe
basis of the respondent-identified kernels for each diagram. The second, identified as Kernel A, analyzes only the four
respondent-identified kernel diagrams, while the third, identified as Kernel B, analyzes the four kernel diagrams plus one
additional diagram (the additional 0.50 standard deviation, as discussed previously).

Ascan be seen from Figure 2, the counts of object, property, and relationship types all decrease or remain equal fromthe original
Siau and Cao resultsto Kernel B to Kernel A results. It would not have been possible for any of the countsto have increased as
aresult of this study. However, the same is not the case for a number of the average results. It is possible for the averages to
increase, decrease, or remain equal from analysisto analysis. Thereason that thisis possibleisthat the averages are just that—
averages. For example, for class diagrams, the average number of properties per object type increased because the respondents
excluded ahigher proportion of the object typesthat were related to specific property typesfrom the kernel, therefore increasing
theratio (average). This aso affects some of the technique level metrical results similarly.

Aggregate Technique Metrics

Thissection presentsthe aggregate metricsfor the nine UML diagramsin termsof division of work, average complexity, and total
complexity. For division of work, it appears that all of the diagrams, except collaboration diagram, decreased, as would be
expected from a decrease in the number of constructs. It appears that the reason for the increase in division of work for the
collaboration diagram can be attributed to the fact that the respondents excluded a higher proportion of property types from the
kernel, thereby increasing the ratio (average). The total conceptual complexity remains constant or decreases for al diagrams,
indicating an expected result. Figure 3 presents the results.
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Independent Metrics
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Legend (for all metncal analysestables and figures):
SiauandCao = dl diagramsand all constructsin al diagrams

UML Kernel A = all kernel diagrams, and kernel constructs for each diagram (kernel inclusion at mean rating score of
approximately 2.0 or less)
UML Kernel B =  all kernel diagrams, and kernel constructs for each diagram (kernel inclusion at mean rating score of

approximately 2.3 or less, roughly 0.5 standard deviation higher than the respondent identified
kernels)

Figure 2. Technique (Diagram) Level Metrical Results
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Figure 3. Aggregate Technique (Diagram) Metrical Results
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Table11. Method (Overall UML) Metrics
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Method Level Metrics

Table 11 shows the effect of the Delphi kernel selection on UML asawhole. Thefirst line indicates the overall complexity of
UML when al of the diagrams and constructs are included in the analysis; the second line includes only the Kernel B diagrams
(class, use case, segquence, statechart, and component) and their respective (kernel) constructsto calcul ate the overall complexity;
and the third line includes only the Kernel A diagrams (class, use case, sequence, and statechart) and their respective (kernel)

constructs for the overall complexity calculations.

Discussion

In general, it appears that the research resulted in a relatively clear identification of one possible UML kernel by the subject
experts, asevidenced by the mean rating scoresand measure of central tendency. The UML kernel identified consistsof theclass,
use case, sequence, and statechart diagrams, with an agreement or consensus level of 90 percent or greater. By contrast only 31
percent of the respondentsfelt that the next highest diagram, component, should be included in the kernel. What this appearsto
indicateisthat practitionerstend to use UML to model more heavily in the analysis and design stages of the system devel opment
process, and less for testing and implementation. From the perspective of these results, it remains unclear asto what role UML

playsin the coding stage.

Theresults, however, do highlight what UML actually looksliketo practitioners, and that has somedefiniteimplicationsfor others
who may need to use the language. If practitioners are truly doing what they indicated they were doing in the study, then it
appearsthat users should begin their UML learning with class and use case diagrams. Not coincidentally, that is precisely where
the creators of UML also recommend that devel opers begin the systems creation process.

Naturally, that begs the question, “What’s new in the findings?” The point hereisthat newcomersto UML, and most end-users
would fall into that category, likely have no plans to become expert at the language, but rather a more plausible goal for such
peopleregarding UML would beto learn to understand the constructs and diagrams that are most pertinent to them. Even UML
experts may not be familiar with those constructs that are hardly ever used in practice. In thisresearch, we identified the most
important and useful constructsand diagramsin UML. These compriseakernel of UML and UML users need to be familiar with
these core setsof constructsand diagrams. Thekernel of UML isalso the place where new UML users should start to learn about

UML.
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Complexity

From acomplexity perspective, if weincludejust the first four diagramsin the kernel along with just their kernel constructs, and
assume that it represents the most commonly used diagrams in UML, then the Briand et al. (1999) structural complexity and
related cognitive complexity that users experience should be more manageable than if the users were commonly using all of the
diagrams, and all of their related constructs to model systems.

Thechangeinoverall complexity from 106.03 (Siau and Cao 2001) to 40.62 (Kernel A) representsanearly 61.7 percent decrease
in the measurement. Since all of the diagrams and constructs associated with the non-kernel items essentially disappear, that
represents a notabl e reduction in complexity. There are 116 constructs identified with the nine primary UML diagrams, and 58
of those areincluded in the top 4 importance rated diagrams. Of those 58 constructs, 31 wereidentified by respondents as kernel
items, and would make up the UML kernel. This results in 26.7 percent of the total number of UML constructs and these
constructs comprise the respondent-identified UML kernel. Even if the analysis is conducted on all constructs of the kernel
diagrams, the reduction in overall complexity is still more than 29 percent.

Theresearch objectives(1) toidentify akernel of UML and (2) to usethat identified kernel to propose amore practi cal assessment
of UML’scomplexity appear to have been met. The Delphi participants did identify akernel of UML based on agroup of UML
experts, and that kernel has been used to provide an alternative assessment of the complexity of UML.

Conclusions, Contribution, and Future Research

UML can beused in all stages of the systems devel opment process, but it appears, based on the results of thisresearch, that many
developers useit primarily in the early stages of the process, or during systems analysis and design. UML isalso criticized for
its size and complexity, and whileit istruethat UML isvery large, and arguably complex, at |east much more so than almost all
other development methods, this research provides an alternative means of looking at UML. So, what we arereally trying to say
to new UML users, and those teaching UML to others, whether on the job or in the classroom is, “ Start here.” 1n other words,
new UML users can learn the kernel of the language first and there may not be a need to learn those constructs that are hardly
ever used in practice.

While Rossi and Brinkkemper’ s (1996) metrics, along with Siau and Cao’s (2001) metrical analysisof UML and other methods,
provide an estimate of the theoretical (total) complexity of modeling methods, Siau et a. (2002) provided at |east some evidence
that theoretical complexity does not adequately capture or measure the complexity that people actually face when using UML.
Thisresearch has attempted to address the measurement of practical complexity by means of the Delphi study conducted herein.

The results appear to support the conjecture that akernel of UML exists, and the implications for researchers, practitioners, and
educatorsalike should be of interest. The participant-identified UML kernel wasidentified, and that would mean that, from auser
perspective, UML is not as complex and difficult as some researchers have indicated, simply because many of the expert users
indicated that they had rarely, if ever, used some of the less important diagrams and constructs. This could render UML more
attractive as a modeling tool for agile (lighter) system developers since agile approaches and systems appear poised to be an
important wave of thefuture. For method engineers, the results of thisstudy could be used to change the way modeling languages
(methods) are created, because if some of the less-used diagrams are indeed not useful, then a valid question is why are such
models constructed? Critics of UML hint that UML issimply the result of negotiation among the original UML proponents and
their separate methods rather than a scientifically based development effort. For existing practitioners operating in a more
traditional environment, theseresultsshould providevalidation of their own devel opment efforts. For educators, theresultsshould
be useful in course devel opment, or in abroad sense, what to teach and when, if aparticular systems analysis and design course
usesUML asanintegral part of the classroom experience. In other words, educators could spend the mgjority of their classroom
time concentrating on the kernel diagrams and constructs, now that a practical-based kernel has been identified.

Pending the imminent release of UML 2.0, it can only be expected for the next version to be larger than ever. However, since
it has been demonstrated that one size does not fit all, it should be expected that akernel would be useful for establishing the base
constructs of the language, and providing guidelines for extending UML into multiple application or system areas. While it
appears that alanguage kernel has been identified for UML 2.0, it is not yet available to the general public. This research can
be extended in one direction by comparing the OMG/UML defined kernel and that identified by this research.

The results provide a possible future direction for researchers studying complexity in development methodologies, since

theoretical or total complexity would become aless prominent factor (although still extremely important in determining limits)
in dealing with human cogpnitive limitations involving systems development. A continuation of research involving UML

2004 — Twenty-Fifth International Conference on Information Systems 193



Erickson & Sau/Theoretical & Practical Complexity of UML

extensions to specific application domains also appears necessary at this point. Another area of research would involve trying
to measure the success of projects developed using UML.
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