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Abstract
In the last years, the surprising bosonic behavior that a many-fermion system may 
acquire has raised interest because of theoretical and practical reasons. This trans-
statistical behavior is usually considered to be the result of approximation mode-
ling methods generally employed by physicists when faced with complexity. In this 
paper, we take a tensor product structure and an ontology of properties approach and 
provide two versions (standard and algebraic) of a toy model in order to argue that 
trans-statistical behavior allows for a realistic interpretation.

Keywords Composite bosons · Non-individual bundle · Ontology of properties · 
Tensor product structure

1 Introduction

1.1  Indistinguishability and Statistics

In classical mechanics, a composite system of two or more identical particles rear-
ranged because of a permutation between them is statistically considered a different 
microstate. This fact leads to Maxwell–Boltzmann statistics. In quantum mechanics 
(QM), an analogous permutation does not yield a statistically different possibility. 
For this reason, it is said that quantum identical particles are indistinguishable. That 
means that any permutation between them cannot yield any observable consequence. 
The indistinguishability postulate (IP) of QM may be formulated as follows (see [1]:
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IP: If the vector ��⟩ represents the state of a composite system whose components 
are indistinguishable particles, then the expectation value of any observable repre-
sented by an operator O must be the same for ��⟩ and for any permutation �� ′⟩

In order to satisfy IP, a restriction to states is usually introduced in QM: the sym-
metrization postulate (SP). IP is satisfied by symmetric ���S⟩ or antisymmetric ���A⟩ 
states with respect to permutation operator P . Both of them are eigenvectors of P 
with eigenvalues (1) and (−1)

So, a formulation for SP may be (see [2]
SP: Any system of many identical particles is represented by either a totally sym-

metric quantum state (bosons) or a totally antisymmetric quantum state (fermions), 
where symmetry and antisymmetry are defined in terms of permutations P.

In order to obtain a symmetric ���S⟩ or antisymmetric state ���A⟩ from a generic 
state ��⟩ , symmetrizer S and antisymmetrizer A operators should be applied to it

It must be noted that fermions (half-integer spin) and bosons (integer spin) may 
have very different behaviors. A many-fermion system is represented by an antisym-
metric state, and, therefore, as the Pauli Exclusion Principle states, it is not possible 
to find two fermions in the same state. This gives rise to the Fermi–Dirac statistics 
for fermions. On the contrary, in accordance with Bose–Einstein statistics, two dif-
ferent bosons can be in the same state.

1.2  Trans‑statistical Behavior

Taking into account SP and Pauli Principle, it is quite clear that fermions must 
behave according to Fermi–Dirac statistics. However, under certain circumstances, 
physicists found surprising bosonic behavior in many-fermion systems. That is the 
well-documented phenomenon of composite bosons or simply co-bosons. In this 
paper, we refer to it more generally as trans-statistical behavior of identical quan-
tum particles. On the one hand, the issue has raised theoretical interest among many 
researchers. Law [3] proposed a model based on creation and annihilation operators 
and found that the degree of entanglement between constituent fermions in a multi-
particle system determines how close it behaves as a system of composite bosons. 
As a result, interactions are not strictly needed for this particular phenomenon to 
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arise. If there were interactions, they apparently only reinforce correlations which 
are the determinant factor for bosonic behavior. Chudzicki et al. [4] and Tichy et al. 
[5] obtained a generalization of Law’s approach. On the other hand, the issue is also 
relevant for practical reasons since it has connections with several applications such 
as quantum information processing [6], Bose–Einstein condensates [7, 8], excitons 
[9] and Cooper pairs in superconductors [10]. Recently, some of these studies have 
been applied to describe both fermionic and bosonic behavior of confined Wigner 
molecules [11].

1.3  A Non‑realistic Approximation

It is a usual assumption that trans-statistical behavior is a phenomenon that should 
not be interpreted realistically, but simply as a result of approximation methods fre-
quently employed in experimental physics. Most phenomena are so complex that 
they just cannot be modeled in a realistic manner. In turn, it is necessary to work 
with models that only provide an approximate description of the object under scru-
tiny. Physicists are well aware that, in these circumstances, approximate models may 
predict behavior that cannot be expected from a physical real object. For the sake of 
clarity, it is not really expected that a real pendulum will exhibit perpetual motion. 
That is only predicted for an approximate model. Analogously, it is not believed 
that a many-fermion system really behaves as a system of bosons. Trans-statistical 
behavior of identical particles—it is believed—is only a suitable description for the 
observed phenomenon that arises from approximate models of many-fermion sys-
tems under specific conditions, in which entanglement is apparently a key factor. 
This usual assumption is generally reinforced by the fact that creation and annihi-
lation operators-based models do not allow exact but only approximated bosonic 
behavior. According to this picture, composite bosons could not be quantum systems 
in an ordinary sense.

1.4  A TPS Approach

In this work, we will leave aside, for a moment, the models and interpretations that 
appear in the works cited. We will take the ideas that appear in these works as inspi-
ration to ask ourselves whether or not it is possible to build a realistic interpretation 
in which a strong ontological status is assigned to the bosonic behavior of fermions. 
So, we set aside temporarily the issue of entanglement and tackle trans-statistical 
behavior from a different and complementary perspective focused on the tensor 
product structure (TPS) approach (see [12]. As it is well-known, a TPS is a particu-
lar way (among many) to factorize the Hilbert space into subspaces or, from an alge-
braic approach, decompose the algebra of observables into subalgebras in order to 
split a system into subsystems. We benefit from studies that defend the idea that the 
notion of separability between subsystems is not absolute but relative to a particular 
partition [13]. In this work, we explore the possibility that the relativity of separa-
bility extends to the notions of fermionic and bosonic when applied to composite 
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systems of identical particles. Such relativity of separability leads also to the ques-
tion of which of the many mathematically possible TPSs should be endowed with 
physical and ontological significance. The very idea of what a system is has also 
been put into discussion [14]. If it were indeed the case that the fermionic and bos-
onic character of a composite system of identical particles is TPS-relative, then the 
question of what is the corresponding ontological picture is at issue.

1.5  A Realistic Interpretation

We are proposing a toy model in which different TPSs correspond respectively to a 
fermionic or bosonic composite system. We aim to show that composite bosons are 
on an equal ontological footing with elementary fermions or elementary bosons, in 
a way that favors a realistic interpretation of trans-statistical behavior. It is important 
to emphasize that we are not intending to create an approximate model to capture 
such systems empirically, as usually performed by experimental physicists. We just 
play mathematically with QM formalism to create a toy model. Before proceeding, 
it is also necessary to make clear in what sense we are talking about reality. We 
are not referring to it as a noumenon in a naïve manner. Our concept of reality is 
a relative one. It is reality as it is constituted by the theory, in our case QM. It is a 
categorical-conceptual framework endowed with ontological significance (see [15]. 
In simple terms, we talk of reality as if QM were true.

1.6  Towards an Ontological Lesson

If trans-statistical behavior could be realistically interpreted, we would learn a les-
son about QM ontology from this phenomenon. A topic of debate in QM ontology 
is what ontological concept is adequate to refer to a quantum system. There are tra-
ditional ontologies, which are favored by the familiar particle-picture in physics, in 
that properties are attributes of individuals. The ontology of individuals and proper-
ties suggests that fermion-pairs should retain their identity when merged into a com-
posite and only in a merely descriptive manner could be or behave as bosons. There 
are also ontologies based exclusively on properties (see [16]). From this perspective, 
a system is just a non-individual bundle of properties. If a system is a bundle, there 
is no need that it preserves its identity when it enters in a composite. This ontology 
of non-individual bundles would allow us to claim that the fermionic or bosonic 
character of a multiparticle system does not depend upon identity conditions pre-
viously possessed by elementary quantum systems. This move would also make it 
possible to construe trans-statistical behavior in a realistic manner.

1.7  Content of the Next Sections

In Sect. 2, the first version of our toy model will be proposed. In this first version, 
we work with a standard Hilbert space formalism. States will have logical priority 
over observables. Consequently, systems will be identified from their vector state 
and standard indistinguishability (IP), and the symmetrization (SP) postulates will 
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be employed. In this version, we settle two specific TPSs that allow us to apply the 
notions of fermionic or bosonic relatively with respect to each of them. On the one 
hand, alpha-partition corresponds to the fermionic character of the compound sys-
tem. On the other, beta-partition corresponds with its bosonic character.

In Sect. 3, the basic lines of an ontology of properties for QM will be exposed. 
This ontology was originally suggested by the algebraic formalism of QM, which 
grants priority to observables over states. So, the second version of our toy model 
will be proposed, in which the two partitions settled in Sect. 2 are reconsidered 
from the algebraic approach. The main idea is to show that the set of observables 
allows us to define the composite system as fermionic or bosonic, without vary-
ing its state.

Also, it will be concluded that if we make complementary use of a model 
based on TPS (such as the toy example that we propose) and a model based on 
creation and annihilation operators (such as Law’s), the trans-statistical behavior 
may allow a realistic interpretation that assumes and at the same time strengthens 
a non-individual bundle ontological picture.

2  The Toy Model in Hilbert Space

In this section, we present a toy model in which it is possible to treat fermion-pairs 
as composite bosons. Although we deal with only four fermions in this model, it 
could be easily generalized to any even number of fermions. Our interest is to argue 
in favor of the relativity of the fermionic or bosonic nature of a system composed of 
elementary fermions with respect to a previously chosen partition. The striking fea-
ture of this model is that an alternative symmetrization or antisymmetrization of the 
system state is not required. The different decompositions are performed in this sec-
tion in terms of different tensor product structures of the Hilbert space of the system.

2.1  Fermion‑Like Decomposition (Alpha‑TPS)

The toy model is a system composed of 4 elementary systems of the following type.
The component systems: Let us consider a spin ½ quantum system S represented 

in its own Hilbert space H . Its Hamiltonian Ĥ has eigenstates �n⟩ with energy En , 
that is Ĥ�n⟩ = En�n⟩ . Then, each state ��⟩ ∈ H can be written as ��⟩ = ∑

n

cn�n⟩.
The composite system: Now we will consider a quantum system 

U = S1 ∪ S2 ∪ S3 ∪ S4 with an associated Hamiltonian ĤU = Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4 
whose eigenstates �N⟩ = ��n1⟩⊗ ��n2⟩⊗ ��n3⟩⊗ ��n4⟩ generate the Hil-
bert space HU = H1 ⊗ H2 ⊗ H3 ⊗ H4 . Then, Ĥ�N⟩ = EN�N⟩ where 
EN = En1

+ En2
+ En3

+ En4
 , and each state ��⟩ ∈ HU can be written as
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Since they are fermions (spin ½), the wave function is antisymmetric under 
the exchange of the labels of any pair of particles. So, permutation operators 
P1↔2,P1↔3,P1↔4,P2↔3,P2↔4 and P3↔4 are defined as

This condition imposes a restriction on the possible states. Then, the only possi-
ble coefficients cN (or cn1,n2,n3,n4 ) are those such that

Because of the very way it is constructed, the Hilbert space of the composite sys-
tem can be trivially factorized into four equivalent subspaces. This is the alpha ten-
sor product structure  (TPSA) that had to be considered. In summary, U is a compos-
ite system of fermions whose wave function is antisymmetric with respect to  TPSA.

2.2  Boson‑Like Decomposition (Beta‑TPS)

The decomposition of the state �N⟩ = ��n1⟩⊗ ��n2⟩⊗ ��n3⟩⊗ ��n4⟩ is not the only one 
that can be done on the complete system U . For example, it can be described as a 
system composed of components systems of the following type.

The component systems: Let us consider the system Si = S1 ∪ S2 represented in its 
own Hilbert space Hi = H1 ⊗ H2 . Its Hamiltonian Ĥi = Ĥ1 + Ĥ2 has eigenstates 
��mi⟩ = ��n1⟩⊗ ��n2⟩ with energy Emi

= En1
+ En2

 , that is Ĥ��mi⟩ = Emi

��mi⟩ . Then, each 
state ||�i

⟩
∈ Hi can be written as ���i

�
=
∑
mi

cmi

��mi⟩ . Let us also consider another sys-

tem Sii = S3 ∪ S4 represented in its own Hilbert space Hii = H3 ⊗ H4 . Its Hamilto-
nian Ĥii = Ĥ3 + Ĥ4 has eigenstates ��mii⟩ = ��n3⟩⊗ ��n4⟩ with energy Emii

= En3
+ En4

 , 
that is Ĥ��mii⟩ = Emii

��mii⟩ . Then, each state ||�ii
⟩
∈ Hii can be written as 

���ii
�
=
∑
mii

cmii

��mii⟩.

If we consider these components, the toy model is a composed system of two 
subsystems, since the Hilbert space that defines system U can be factorized into two 
subspaces. This is beta tensor product structure  (TPSB).

The composite system: Now the same system U can be described as 
U = Si ∪ Sii with an associated Hamiltonian ĤU = Ĥi + Ĥii , whose eigenstates 
�N⟩ = ��mi⟩⊗ ��mii⟩ generate the Hilbert space HU = Hi ⊗ Hii . Then, Ĥ�N⟩ = EN�N⟩ 
where EN = Emi

+ Emii
 , and each state ��⟩ ∈ HU can be written as

(5)�𝜓⟩ =
�

N

cN�N⟩ =
�

n1,n2,n3,n4

cn1,n2,n3,n4
��n1⟩⊗ ��n2⟩⊗ ��n3⟩⊗ ��n4⟩

(6)

P1↔2�N⟩ = ��n2⟩⊗ ��n1⟩⊗ ��n3⟩⊗ ��n4⟩, P1↔3�N⟩ = ��n3⟩⊗ ��n2⟩⊗ ��n1⟩⊗ ��n4⟩
P1↔4�N⟩ = ��n4⟩⊗ ��n2⟩⊗ ��n3⟩⊗ ��n1⟩, P2↔3�N⟩ = ��n1⟩⊗ ��n3⟩⊗ ��n2⟩⊗ ��n4⟩
P2↔4�N⟩ = ��n1⟩⊗ ��n4⟩⊗ ��n3⟩⊗ ��n2⟩, P3↔4�N⟩ = ��n1⟩⊗ ��n2⟩⊗ ��n4⟩⊗ ��n3⟩

(7)
P1↔2��⟩ = P1↔3��⟩ = P1↔4��⟩ = P2↔3��⟩ = P2↔4��⟩ = P3↔4��⟩ = −��⟩

(8)�𝜓⟩ =
�

N

cN�N⟩ =
�

mi,mii

cmi,mii

��mi⟩⊗ ��mii⟩
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To study its fermionic or bosonic nature, it is necessary to define new permuta-
tion operators. This is because, for example, the labels 1 and 2 from the old operator 
P1↔2 , no longer refer to subsystems that are present in this partition. To be able to 
permute the new particles it is necessary to define the operator

This is the only permutation operator that exists in this partition. Since the parti-
cles Si and Sii are linked with the particles S1 , S2 , S3 , and S4 in a direct way, it is easy 
to see that there is a relation between the permutation operators

So, the relation between permutation operators from both TPS is

It should be noted that so far we have not changed the state, we have only written 
it in a new way. Therefore, the coefficients cN have the same restrictions as before. 
Then, it is possible to compute how Pi↔ii operates on the state ��⟩

In summary, under this decomposition  (TPSB) U is a composite system of bosons 
whose wave function is symmetric.

2.3  The Relativity of Fermionic and Bosonic Character

Having arrived at this result, it is important to note that the fact that a set of fermi-
ons happens to form a new non-fundamental particle with bosonic behavior is not 
new. Indeed, it has long been known that a group of protons and neutrons, all spin 
1/2, can join together to form an atomic nucleus. For example, two protons together 
with two neutrons join together through nuclear forces to form a nucleus of Helium 
4. These atomic nuclei are bosons that exhibit empirically testable bosonic behavior 
such as superfluidity [17]. In this case, the strong nuclear force holds the particles 
of the nucleus together so tightly that it is possible to think that the nucleus is a new 
entity. However, in the toy model presented in this work, the particles do not inter-
act with each other and this argument is not valid. There are also other more recent 
examples such as atomic Bose–Einstein condensates [7, 18], excitons [19, 18], and 
Cooper pairs in superconductors [10]. Nevertheless, the mathematical treatment of 
all these models includes important approximations that obscure the ontological 
question about this type of physical systems. Then, in the case of bosons composed 
of non-interacting fermions, the question arises that a group of bosons should be 
able to share the same quantum state (i. e. should be able to have empirically test-
able bosonic behavior) but the fermions that compose them cannot, due to the Pauli 
exclusion principle.

(9)Pi↔ii�N⟩ = Pi↔ii
��mi⟩⊗ ��mii⟩ = ��mii⟩⊗ ��mi⟩

(10)Pi↔ii�N⟩ = ��mii⟩⊗ ��mi⟩ = ��n3⟩⊗ ��n4⟩⊗ ��n1⟩⊗ ��n2⟩ = P1↔3P2↔4�N⟩

(11)Pi↔ii = P1↔3P2↔4

(12)Pi↔ii��⟩ = P1↔3P2↔4��⟩ = −P1↔3��⟩ = ��⟩
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That question finds an answer in the models of trans-statistical behavior based on 
the definition of creation and annihilation operators mentioned above (e. g. [4, 3, 5]. 
In those models, quantum entanglement allows fermion-pairs to approximately over-
come Pauli Principle, at least to a certain degree. Exact bosonic behavior is not pos-
sible for fermion-pairs, just an approximate one. That issue led many to think that 
trans-statistical behavior could not be realistically construed and should be reduced 
to underlying fermionic behavior.

In our toy model the situation is different, the same state which is antisym-
metric under  TPSA is exactly symmetric under  TPSB. That is, the state 
��⟩ is totally antisymmetric with respect to the permutation operators 
P1↔2,P1↔3,P1↔4,P2↔3,P2↔4 y P2↔3 in the  TPSA perspective but also totally sym-
metric with respect to the permutation operator Pi↔ii in the  TPSB perspective. This 
mathematical fact together with SP allows us to claim that, according to our model, 
fermion-pairs are, although composite, exact bosons. The relativity of fermionic and 
bosonic nature with respect to partition is suggested by this model. In the next sec-
tion, we deal with the ontological consequences of this claim. However, our model 
does not guarantee that the fermion-pairs or composite bosons actually exhibit a full 
bosonic behavior when we try to make this system interact with others and change 
its state. This is because our model has the characteristic that the system is in a 
very particular state, which is the eigenstate of the Hamiltonian. This is understood 
as a restriction because if the state or its Hamiltonian were different, it would not 
be possible to draw the same conclusions. Since this is a constrained system, it is 
not possible for the  TPSB bosons to form a Bose–Einstein condensate, because their 
constraints and dynamics do not allow it.

So, we have the following scenario. On the one hand, if we account for the phe-
nomenon that we are studying by means of creation and annihilation operators-
based models, we obtain only approximated bosonic behavior. On the other hand, 
if we employ a model built in a TPS framework like the one we have previously 
proposed, we obtain fermion-pairs that have a perfect bosonic nature but do not nec-
essarily exhibit a full bosonic behavior. One way out of this dilemma is to make use 
of both models in a complementary manner. Models such as those of [4, 3, 5] on 
their own would not allow a full-realistic interpretation of trans-statistical phenom-
ena, provided that it is assumed as usual that fermionic or bosonic notions are not 
relative but that they correspond univocally to a single partition that entails elemen-
tary systems. Since for these models bosonic behavior is only approximated, com-
posite bosons and their behavior could not be as real as the underlying elementary 
fermions with their Fermi–Dirac statistics, which are not approximated. Contrarily, 
from a TPS perspective we are able to consider that a system of fermion-pairs is 
truly bosonic since from this perspective fermionic and bosonic notions are relative. 
If we assume a TPS perspective together with an appropriate ontology, it would be 
possible to argue that bosonic behavior as accounted for by creation and annihilation 
operators-based models (albeit approximated) is the real behavior of particles (albeit 
composite) that really have bosonic nature.

But not so fast. An ontology of individuals allows at best an emergentist con-
ception of inter-theory relation [20] in which composite bosons and, correspond-
ingly, their bosonic behavior, although real, still depend on underlying elementary 
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fermions with their corresponding statistical behavior (to illustrate how emergence 
can be applied to a similar concrete case, it is possible to see the emergence of phon-
ons in the paper by [21]). According to this ontological approach, fermion-like TPS 
is fundamental with respect to boson-like TPS. That is, TPSs are not on an equal 
ontological footing. The toy model built in a TPS framework that we proposed is 
perhaps a suitable tool to argue in favor of the relativity of the fermionic and bos-
onic notions. But surely that tool and its corresponding argument are much more 
empowered if we assume an ontology of properties. The reason is quite simple. 
If we assume that physical systems are individuals, we have a TPS that splits the 
total system into individuals while others do not. In our model,  TPSA splits the total 
system into individuals, but not so  TPSB. In fact, the states of the subsystems in 
 TPSB can be written as tensor products of subsystems states of  TPSA, but not other-
wise. As it will be suggested in the next section, if we employ algebraic formalism 
together with an ontology of properties, there are no clear means to draw a distinc-
tion between a fundamental TPS and emergent TPSs.

3  Trans‑statistical Behavior in an Ontology of Properties

3.1  Classical and Quantum Particles as Individual Objects

From a philosophical perspective, an individual is an object that possesses an iden-
tity that makes it distinguishable from other objects and that is able to retain its 
identity over time. It is also believed to be the bearer of a set of properties, such as 
location in space and time. The individuality of such an object may be regarded to 
be granted by something over and above the properties that it possesses, such as a 
substance. Alternatively, Leibniz Identity Principle (PII) establishes that individual 
identity depends only on the properties possessed by the object. Identification of the 
individual object over time is made possible by its spatiotemporal trajectory. The 
ontological category of individual fits properly when referring to classical particles. 
But it runs into trouble when applied to quantum particles. Quantum indistinguish-
ability is known to prevent particles of the same kind to be re-identified once a per-
mutation is performed between them. Moreover, contextuality prevents quantum 
particles to possess well-defined properties. As a consequence, the omnimode deter-
mination principle that is expected to be satisfied by any individual object is violated 
by particles in the quantum domain. They do not even have well-defined spatiotem-
poral trajectories, which would have allowed identifying them over time and keeping 
track the of particles being permuted.

These features led some of the founding fathers of QM (Born and Heisenberg) 
to radically discard the category of individual to refer to quantum particles. They 
are simply not individuals. This idea was reflected in early discussions (see [22]. 
This constitutes the so-called Received View concerning this matter, which even-
tually entailed the development of non-standard formal systems to represent non-
individual objects [23]. Recently, a variety of authors criticized the Received View 
claiming that the category of individual may hold if we drop PII or at least some of 
its strongest forms. In order to make this view consistent with quantum statistics, 
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van Fraassen [24] argued that it is not necessary to admit equiprobability for each 
possible configuration as usually assumed in statistical mechanics. Alternatively, 
French [25] proposed that states that are neither symmetric nor antisymmetric are 
ontologically possible but physically inaccessible. From this perspective, quantum 
particles are considered individual objects that are contingently in states that make 
them indistinguishable. Muller and Saunders [26] explored the possibility of weakly 
discerning between quantum identical particles in relational terms.

3.2  An ontology of Properties for Quantum Systems

In the context of modal interpretations of QM, some authors proposed a new quan-
tum ontology of properties without individuals (see [16, 27, 28]. The choice for this 
ontology is strongly suggested by the aforementioned quantum features (contextu-
ality and indistinguishability). Our guiding hypothesis is that also trans-statistical 
behavior best matches with a non-individual ontology.

3.2.1  Ontology of Properties and Algebraic Formalism

Usual presentations of QM employ Hilbert space formalism and the Schrodinger 
picture. It is mathematically built from a set of vectors, which in turn represent pos-
sible physical states of the system. System observables are represented by operators 
that act on already defined state vectors. The logical priority of system states over 
observables that characterizes Hilbert space formalism favors an ontology of indi-
viduals and properties (unless the Heisenberg picture is applied to it). Systems are 
individuals identified by their state space and observables are properties that inhere 
in them (see [29], pp. 234–235).

As it is known, it is also possible to employ an algebraic formalism in QM 
where the set of physical observables is represented by an algebra of operators. The 
system’s state is represented by a functional that acts upon those already defined 
operators, in order to compute expected values. In this case, the logical priority of 
observables over states suggests an ontology of properties, where there may be no 
individuals. Systems are defined exclusively by their algebra of observables. The 
state functional is simply a device that codifies quantum probabilities (see [29], p. 
48).

3.2.2  Ontology of Properties: Semantic Correspondences

To put it more formally, an ontology of properties without individuals is defined by 
the following semantic correspondences (see [2]:

• The algebra of self-adjoint operators represents the set of physical observables 
that define a quantum system, which in turn correspond to the set of instances of 
universal type-properties in the ontological domain.

• Eigenvalues of self-adjoint operators represent possible physical values, which in 
turn corresponds to possible case-properties belonging to each type-property.
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• Probability functions represent physical probability distributions for each physi-
cal observable, which in turn corresponds to ontological propensities of each 
possible case-property

• Functionals over the algebra of observables represent physical states. This last 
item has no ontological counterpart since physical states are just devices that 
assign a probability distribution for each observable.

It is important to notice that we do not talk about physical outcomes but about 
physical values because the ontology of properties was first developed in the context 
of modal interpretations of QM. In this family of interpretations, the observables 
may have determined values regardless of a measurement context. A preferred con-
text is defined a priori and each modal interpretation postulates a particular actual-
ization rule. Nonetheless, the ontology of properties is equally suitable for the stand-
ard interpretation or for others not belonging to the modal family.

3.2.3  Quantum Systems as Non‑individual Bundles of Possible Properties

The ontology of properties yields a picture of quantum systems in which they are 
just bundles of possible case-properties without any individual identity. The famil-
iar particle-picture assumed in physical practice is generally discarded and could be 
retained only under peculiar circumstances. It is important to stress that it is not the 
traditional bundle of properties where all the properties can adopt actual values of 
actual properties, designed in metaphysics to account for classical individual objects 
without the notion of substance. In the quantum case, the Kochen-Specker theorem 
(1967) proves the impossibility of ascribing precise values to all observables of a 
quantum system simultaneously, while preserving the functional relations between 
commuting observables. If it is assumed, as it is usual both in the classical and in 
the quantum domain, that the observables are categorical determinable properties 
and the values of the observables are categorical (non-dispositional and non-proba-
bilistic) determinate properties, then the Kochen-Specker theorem is an obstacle to a 
traditional bundle theory. In fact, the theorem states that not all the determinable cat-
egorical properties are determinate and, as a consequence, the individual cannot be 
conceived as the bundle of the categorical determinate properties corresponding to 
all its categorical determinable properties. Even more important is to emphasize that 
bundles of possible case-properties are no longer object of PII. It is not a matter that 
PII is false. It simply does not applies to them. Bundles of possible case-properties 
do not retain any identity each time they merge into a composite bundle or split into 
them. These features of the ontology of properties make it adequate to overcome 
the difficulties that quantum contextuality and quantum indistinguishability impose 
upon the design of a QM ontology. As it will be soon formally stated, this ontology 
also fits properly with the relativity of the notions of fermionic and bosonic when 
applied to systems composed of an even number of fermions and thus allows a real-
istic interpretation of trans-statistical behavior, in which it is observed that a set of 
fermions loses its identity and becomes a set of bosons that acquire testable bosonic 
behavior under certain circumstances. It is quite obvious that an ontology based on 
individuals would have serious difficulties construing this phenomenon in a realistic 
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manner. The ontology of properties certainly does. Of course, a basic assumption 
that is previously needed to choose for this ontology is to endow modality with an 
ontological meaning.

3.2.4  Ontology of Properties and Indistinguishability

An additional result of the ontology of properties for QM is a re-statement of the 
traditional indistinguishability postulate (IP, see Eq.  (1) in Sect. 1) that makes the 
symmetrization postulate (SP see Eq.  3 in Sect.  1) a natural consequence of the 
ontology. When two or more indistinguishable bundles are combined, it is natural 
to expect that the instances of universal type-properties belonging to the composite 
bundles do not distinguish between those component bundles. More simply, when 
two indistinguishable bundles merge into a single whole, which component bundle 
is taken first and which second does not matter at all. Mathematically, the restric-
tion that yields the observed statistics is no longer imposed over states (as in SP) 
but directly over observables.  IPobs is formulated as (see [30], and [2] for a complete 
justification)

Then, the observables that obey this condition will be symmetric, that is 
Osym = P†OsymP and form the space Osym (see [2] for details). In contrast with 
standard IP,  IPobs is ontologically motivated, since a bundle is symmetric if its con-
stituents are identical. Let us consider two bundles h1 and h2 defined by different 
instances of the same algebra of observables O1 = O2 such that h1 ≜ h2 . That means 
that these bundles are represented in the physical domain by systems or “parti-
cles” of the same kind and must be considered indistinguishable. Of course, differ-
ent indices in this case do not mean physical distinguishability. These two bundles 
merge into a composite bundle hU such that hU = h1 ∗ h2 . Consequently, the alge-
bra OU = O1 ∨O2 = O2 ∨O1 defines bundle hU . Now the restriction over observ-
ables OU ∈ OU established in  IPobs (Eq.  (13)) must be carried out. This requires 
that observables OU =

∑
ij kij

�
O1i ⊗ O2j

�
 are such that O1i ⊗ O2j = O2i ⊗ O1j . This 

means that observables OU belonging to bundle hU are symmetric with respect to 
permutation of bundles h1 and h2(see [2].

The restriction imposed by (Eq. (13)) includes both the case of fermions and bos-
ons. This is because the permutation operator appears twice, then both in the case 
that the state ( ���S⟩ ) is eigenstate of P with eigenvalue 1

and in the case that it is −1 ( ���A⟩)

the eigenvalue appears squared. To account for bosons or fermions separately, 
it is necessary to further restrict the space of observables. Usually, to obtain the 

(13)O� = P†OP ∶ ⟨��O���⟩ = ⟨��O��⟩

(14)⟨�S
��Osym

���S⟩ = ⟨�S
��P†OsymP

���S⟩ = (1)2⟨�S
��Osym

���S⟩ = ⟨�S
��Osym

���S⟩

(15)
⟨�A

��Osym
���A⟩ = ⟨�A

��P†OsymP
���A⟩ = (−1)2⟨�A

��Osym
���A⟩ = ⟨�A

��Osym
���A⟩
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symmetric/antisymmetric state ���S⟩/���A⟩ from a generic state ��⟩ , it is necessary to 
apply the operator S/A respectively ���S⟩ = S��⟩/���A⟩ = A��⟩ , then the expectation 
value of an observable O is

It is easy to see that observables of the type OS = S†OS form the subspace 
OS ⊂ Osym and observables of the type OA = A†OA form the subspace OA ⊂ Osym . 
Therefore, the same empirical reason that imposes the restriction to symmetric-bos-
onic states ���S⟩ or antisymmetric-fermionic states ���A⟩ in the usual presentations, 
from the present perspective imposes the restriction to bosonic observables OS ∈ OS 
or fermionic observables OA ∈ OA.

3.3  Algebraic Version of the Toy Model

3.3.1  Definition of the Total System Based on Its Observable Space

Let us consider an aggregate hU of indistinguishable bundles h1 ≜ h2 ≜ h3 ≜ h4 such 
that hU = h1 ∗ h2 ∗ h3 ∗ h4 . This aggregate of bundles hU , which is itself a new bun-
dle, is in the physical domain a composite system U of indistinguishable subsys-
tems S1 = S2 = S3 = S4 each of them with spin ½ such that U = S1 ∪ S2 ∪ S3 ∪ S4 . 
We are adopting here an ontology of properties suggested by the algebraic approach 
of QM, so subsystems S1 = S2 = S3 = S4 are not defined in Hilbert space but by the 
algebras of observables O1 = O2 = O3 = O4 , where each algebra represents each 
subsystem’s type-properties. System U is defined in terms of an algebra OU such 
that OU = O1 ∨O2 ∨O3 ∨O4 , which is the minimal algebra generated by the sub-
systems algebras.

Since these subsystems are indistinguishable and consequently the bundle hU 
is symmetrical with respect to any permutation of component bundles, the opera-
tors representing observables OU ∈ OU are symmetric in accordance with  IPobs 
(Eq. (13))

where P� represents each element of the set 
{
P�

}
 of all possible permutation 

operators relative to alpha-partition  (TPSA) of system U . In addition, the observa-
bles OU are symmetric with respect to the only admissible permutation relative to 
beta-partition  (TPSB), since P� = Pi↔ii is equivalent to one of the elements of the 
set 

{
P�

}
 , i. e. the product of the permutation operators P1↔3P2↔4 (see Eq. 11). Con-

sequently, if observables OU satisfy condition O�
U
= P†

�
OUP� = OU (Eq. (18)), they 

also satisfy

(16)⟨O⟩��S⟩ = ⟨�S�O���S⟩ = ⟨��S†OS��⟩ = ⟨��OS��⟩ = ⟨OS⟩��⟩

(17)⟨O⟩��A⟩ = ⟨�A
��O���A⟩ = ⟨��A†OA��⟩ = ⟨��OA��⟩ = ⟨OA⟩��⟩

(18)O�
U
= P†

�
OUP� = OU
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This means that every observable OU belonging to OU is permutation invariant 
with respect to both partitions

But this is not the whole story, since OU includes both fermionic and bosonic 
observables (see Eq. (14) and (15)). It is necessary to introduce specifically the fer-
mionic character of the  TPSA subsystems.

3.3.2  Fermionic Subalgebra of Observables

In Sect.  2, because of the value of spin ½ of the component systems in  TPSA, 
we demanded that the state of the system U were antisymmetric with respect to 
permutation operators P1↔2,P1↔3,P1↔4,P2↔3,P2↔4 and P3↔4 (Eq. 7). However, in 
this section, we are adopting an ontology of properties. The system state will be 
considered just a device that assigns a probability at each possible event. It plays 
no role in identifying the system. The fermionic character that our bundle may 
assume ought to be defined exclusively in terms of its properties. So, the fermi-
onic character of our bundle will be obtained by imposing a further restriction 
on its observables. Consider the antisymmetrizer projector corresponding to the 
 TPSA

Notice that the projector A is alpha-indexed in correspondence with the permu-
tations that define it. The operator P� (also alpha-indexed) represents each possi-
ble permutation (including the identity I) belonging to  TPSA, N! = 24 is the quan-
tity of those permutations and (±) depends on the parity of P� : (+) if it is even or 
(−) if it is odd. Usually in QM, the antisymmetrizer projector is applied to a 
generic state AA��⟩ = ����AA

�
 . Instead, we are applying it to our observables

That operation allows us to define a fermionic subalgebra OF ⊂ OU such that

which is the algebra with respect to which any generic state ��⟩ will behave as 
antisymmetric

(19)O�
U
= P

†

�
OUP� = OU

(20)∀OU ∈ OU ,OU = P†OUP

(21)AA =
1√
N!

��

i=1

±P�

(22)A
†

A
OUAA = O�

U

(23)∀O
F
∈ O

F
,O

F
= A

†

A
O

U
AA

(24)⟨��OF��⟩ = ⟨��A†

A
OUAA��⟩ =

�
�AA

���OU
����AA

�
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3.3.3  Bosonic Subalgebra of Observables

In Sect.  2, we found that the same coefficients cN that make the system state 
antisymmetric with respect to the set 

{
P�

}
 of permutations, turn it symmetric 

with respect to operator Pi↔ii . That is

Then, every antisymmetric state in the  TPSA |||�AA

⟩
 is a symmetric state |||�SB

⟩
 in 

the  TPSB

However, the inverse relationship is not valid

This is easy to see in a trivial example. Let us consider the state

If we apply the operator  we obtain the same state 

But if we apply, for example P1↔2��⟩ , we do not obtain the same state with 
changed sign

This means that to build the bosonic subalgebra of this model we cannot sim-
ply apply the canonical symmetrizer operator to a generic state in  TPSB. If we 
define this operator in the standard way, S̃B =

1

2
(I + Pi↔ii) , the space of observa-

bles of the form OU = S̃
†

B
OUS̃B is larger than OF . Then, we will build the bosonic 

subspace in this model by means of a symmetrizer operator defined as

(25)P�

|||�AA

⟩
= −

|||�AA

⟩
⇒ Pi↔ii

|||�AA

⟩
=
|||�AA

⟩

(26)∀
����AA

�
∕
����AA

�
= AA��⟩ → ����AA

�
=
����SB

�

(27)Pi↔ii
|||�AA

⟩
=
|||�AA

⟩
⇏ P�

|||�AA

⟩
= −

|||�AA

⟩

(28)

�𝜓⟩ = 1√
2

���n1⟩⊗ ��n2⟩⊗ ��n3⟩⊗ ��n4⟩ + ��n3⟩⊗ ��n4⟩⊗ ��n1⟩⊗ ��n2⟩
�

�𝜓⟩ = 1√
2

���mi⟩⊗ ��mii⟩ + ��mii⟩⊗ ��mi⟩
�

(29)

Pi↔ii�𝜓⟩ = 1√
2

���mii⟩⊗ ��mi⟩ + ��mi⟩⊗ ��mii⟩
�
= �𝜓⟩

Pi↔ii�𝜓⟩ = 1√
2

���n3⟩⊗ ��n4⟩⊗ ��n1⟩⊗ ��n2⟩ + ��n1⟩⊗ ��n2⟩⊗ ��n3⟩⊗ ��n4⟩
�
= �𝜓⟩

(30)

P1↔2�𝜓⟩ = 1√
2

���n2⟩⊗ ��n1⟩⊗ ��n3⟩⊗ ��n4⟩ + ��n4⟩⊗ ��n3⟩⊗ ��n1⟩⊗ ��n2⟩
�
≠ −�𝜓⟩

(31)SB = AA
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Oddly enough, this operator is a legitimate symmetrizer for the  TPSB because 
all antisymmetric states in the  TPSA are symmetric in the  TPSB. The fact of adopt-
ing this symmetrizer and not the canonical operator means that we are restrict-
ing the bosonic space. We will not take into account all possible bosonic states, 
but some of them. This restriction is what prevents these bosons from forming a 
Bose–Einstein condensate. Then, we can apply it to our observables

That operation allows us to define a bosonic subalgebra OB ⊂ OU such that

The observables generated with the operator SB are “less” than those generated by 
S̃B ; however it generates all that is necessary to describe this model. Then, OB is the 
algebra with respect to which any generic state ��⟩ will behave as symmetric

Since there is a direct relation between SB and AA , we have

Then, the same observables can be interpreted as fermionic observables from the 
 TPSA and as bosonic observables from the  TPSB. This fact invites us to change the 
notation with which we call the algebra of observables, instead of OF we will use OF

A
 

and instead of OB we will use OB

B
 . In this way, we can say that both algebras are the 

same, that is

The difference in the notation is that, if O is considered from different partitions 
the system has fermionic or bosonic behavior.

4  Conclusions

In the Hilbert space version of our toy model, we found that the system state was 
totally antisymmetric with respect to  TPSA and totally symmetric with respect to 
 TPSB. That result made it possible to consider that the fermionic or bosonic nature 
of a composite system of fermion-pairs is TPS-relative. That is.

Fermionic character of U relative to partition S1 ∪ S2 ∪ S3 ∪ S4 (see 
Subsection 2.1.1).

Bosonic character of U relative to partition Si ∪ Sii = U(see Subsection 2.1.2).
The algebraic version of the model makes that point much clearer since such rela-

tivity allows to build both a relative fermionic subalgebra and a relative bosonic sub-
algebra that can be equated to define the same composite system. Namely.

(32)S
†

B
OUSB = O�

U

(33)∀O
B
∈ O

B
,O

B
= S

†

B
O

U
SB

(34)⟨��OB��⟩ = ⟨��S†
B
OUSB��⟩ = ⟨�S

��OU
���S⟩

(35)⟨��OF��⟩ = ⟨��A†

A
OUAA��⟩ = ⟨��S†

B
OUSB��⟩ = ⟨��OB��⟩

(36)O
F

A
= O

B

B
= O
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System U defined by the algebra OF

A
= O

B

B
= O (see Eq. 36).

Nevertheless, this relativity of fermionic and bosonic conditions cries out for a 
proper ontology. One option is the one that arises from the traditional ontology of 
individuals that allows an emergent status of composite bosons and their behav-
ior. In this scheme, a hierarchy of levels is maintained in which the fundamental 
particles are found at the basal level and the emerging particles are found at a 
higher level. However, there is another choice, to adopt an ontology of properties. 
The choice for an ontology of properties is motivated by a number of ontological 
challenges posed by quantum mechanics which are not studied in this work: quan-
tum indistinguishability, quantum contextuality, and quantum non-locality obtain 
a simpler ontological interpretation by means of such ontology. The aim of this 
paper was to show that by adopting this ontology, a full-realistic interpretation of 
trans-statistical phenomenon is achievable, and, in turn, that such interpretation 
strengthens the choice for an ontology of properties already motivated to account 
for the quantum features mentioned above.

As a first point, we proposed that the ontology of properties fits properly with 
the aforementioned relativity of fermionic and bosonic notions. If an even num-
ber of identical bundles of properties with half-integer spin merge into a com-
posite system, the fermionic or bosonic nature of the whole system can only be 
defined with respect to a previously specified partition. From an ontology of 
properties perspective, since quantum systems are not individuals, they generally 
do not retain identity conditions or keep singular reference when entering in a 
composite. As a consequence, the fermionic or bosonic character of the compos-
ite system is not attached anymore to identity conditions belonging to subsystems 
considered in their singularity. This is equivalent to saying that there is no a fun-
damental partition or TPS that gives rise to subsystems with identity conditions 
with respect to which the properties of the whole system can be defined in an 
absolute sense. From our toy model, we learned that composite bosons are exact 
bosons. If additionally, we interpret this model from an ontology of properties 
perspective, composite bosons are true bosons just as much as elementary bosons.

As a second point, we suggested that it is possible to complement our toy 
model built in a TPS-framework with the models based on creation and anni-
hilation operators in order to realistically account for trans-statistical behavior. 
From the former, we learned that composite bosons are exact bosons and may be 
interpreted as real bosons when assuming the ontology of properties. Thanks to 
the latter we capture the empirical difference between statistical behavior of com-
posite bosons and that of elementary bosons. The former alone would not let us 
account for full bosonic behavior. The latter alone would not allow us to consider 
composite bosons as real bosons, since bosonic behavior is approximated and we 
do not have, from within these models, other means to judge about the bosonic 
nature of a system than its statistical behavior. If they complement each other, it 
may be possible to interpret that fermion-pairs are exact composite bosons with 
real bosonic behavior. But a full account of this suggestion depends on a further 
assessment of the interplay between our model and those of [4, 3, 5], which is left 
for future work.
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