378,167 research outputs found

    Modelling of a roof runoff harvesting system: The use of rainwater for toilet flushing

    Get PDF
    The water balance of a four-people family rainwater harvesting system was calculated in a case study. The experimental water saving efficiency (WSE) was calculated as 87 %. A simple computer model was implemented to simulate the behaviour of the rainwater harvesting system. In general, the rainwater collector volumes predicted by the daily model had shown a good correlation with the experimental values. The difference between the experimental and the predicted values for the stored volume can be explained by the lack of maintenance of the system that can affect its performance. On the basis of a long-term simulation of 20-year rainfall data, the following parameters were calculated: rainfall, water demand, mains water, rainwater used, over-flow and WSE. The collection of rainwater from roofs, its storage and subsequent use for toilet flushing can save 42 m3 of potable water per year for the studied system. The model was also used to find the optimal size of the tank for the single-family household: a storage capacity of approximately 5 m3 was found to be appropriate. The storage capacity and tank size were distinguished. The importance to take into account the dead volume of the tank for the sizing was indeed highlighted

    Computability and analysis: the legacy of Alan Turing

    Full text link
    We discuss the legacy of Alan Turing and his impact on computability and analysis.Comment: 49 page

    Quadtrees as an Abstract Domain

    Get PDF
    Quadtrees have proved popular in computer graphics and spatial databases as a way of representing regions in two dimensional space. This hierarchical data-structure is flexible enough to support non-convex and even disconnected regions, therefore it is natural to ask whether this datastructure can form the basis of an abstract domain. This paper explores this question and suggests that quadtrees offer a new approach to weakly relational domains whilst their hierarchical structure naturally lends itself to representation with boolean functions

    Computers and Liquid State Statistical Mechanics

    Full text link
    The advent of electronic computers has revolutionised the application of statistical mechanics to the liquid state. Computers have permitted, for example, the calculation of the phase diagram of water and ice and the folding of proteins. The behaviour of alkanes adsorbed in zeolites, the formation of liquid crystal phases and the process of nucleation. Computer simulations provide, on one hand, new insights into the physical processes in action, and on the other, quantitative results of greater and greater precision. Insights into physical processes facilitate the reductionist agenda of physics, whilst large scale simulations bring out emergent features that are inherent (although far from obvious) in complex systems consisting of many bodies. It is safe to say that computer simulations are now an indispensable tool for both the theorist and the experimentalist, and in the future their usefulness will only increase. This chapter presents a selective review of some of the incredible advances in condensed matter physics that could only have been achieved with the use of computers.Comment: 22 pages, 2 figures. Chapter for a boo
    • …
    corecore