389,161 research outputs found

    Computability and analysis: the legacy of Alan Turing

    Full text link
    We discuss the legacy of Alan Turing and his impact on computability and analysis.Comment: 49 page

    Decision Problems For Turing Machines

    Get PDF
    We answer two questions posed by Castro and Cucker, giving the exact complexities of two decision problems about cardinalities of omega-languages of Turing machines. Firstly, it is D2(Σ11)D_2(\Sigma_1^1)-complete to determine whether the omega-language of a given Turing machine is countably infinite, where D2(Σ11)D_2(\Sigma_1^1) is the class of 2-differences of Σ11\Sigma_1^1-sets. Secondly, it is Σ11\Sigma_1^1-complete to determine whether the omega-language of a given Turing machine is uncountable.Comment: To appear in Information Processing Letter

    Finding ECM-friendly curves through a study of Galois properties

    Get PDF
    In this paper we prove some divisibility properties of the cardinality of elliptic curves modulo primes. These proofs explain the good behavior of certain parameters when using Montgomery or Edwards curves in the setting of the elliptic curve method (ECM) for integer factorization. The ideas of the proofs help us to find new families of elliptic curves with good division properties which increase the success probability of ECM

    Computers and Liquid State Statistical Mechanics

    Full text link
    The advent of electronic computers has revolutionised the application of statistical mechanics to the liquid state. Computers have permitted, for example, the calculation of the phase diagram of water and ice and the folding of proteins. The behaviour of alkanes adsorbed in zeolites, the formation of liquid crystal phases and the process of nucleation. Computer simulations provide, on one hand, new insights into the physical processes in action, and on the other, quantitative results of greater and greater precision. Insights into physical processes facilitate the reductionist agenda of physics, whilst large scale simulations bring out emergent features that are inherent (although far from obvious) in complex systems consisting of many bodies. It is safe to say that computer simulations are now an indispensable tool for both the theorist and the experimentalist, and in the future their usefulness will only increase. This chapter presents a selective review of some of the incredible advances in condensed matter physics that could only have been achieved with the use of computers.Comment: 22 pages, 2 figures. Chapter for a boo

    Revisiting the Rice Theorem of Cellular Automata

    Full text link
    A cellular automaton is a parallel synchronous computing model, which consists in a juxtaposition of finite automata whose state evolves according to that of their neighbors. It induces a dynamical system on the set of configurations, i.e. the infinite sequences of cell states. The limit set of the cellular automaton is the set of configurations which can be reached arbitrarily late in the evolution. In this paper, we prove that all properties of limit sets of cellular automata with binary-state cells are undecidable, except surjectivity. This is a refinement of the classical "Rice Theorem" that Kari proved on cellular automata with arbitrary state sets.Comment: 12 pages conference STACS'1

    Using field theory to construct hybrid particle-continuum simulation schemes with adaptive resolution for soft matter systems

    Full text link
    We develop a multiscale hybrid scheme for simulations of soft condensed matter systems, which allows one to treat the system at the particle level in selected regions of space, and at the continuum level elsewhere. It is derived systematically from an underlying particle-based model by field theoretic methods. Particles in different representation regions can switch representations on the fly, controlled by a spatially varying tuning function. As a test case, the hybrid scheme is applied to simulate colloid-polymer composites with high resolution regions close to the colloids. The hybrid simulations are significantly faster than reference simulations of a pure particle-based model, and the results are in good agreement.Comment: 8 pages, 3 figure
    • …
    corecore