10 research outputs found

    An O(1) Solution to the Prefix Sum Problem on a Specialized Memory Architecture

    Get PDF
    In this paper we study the Prefix Sum problem introduced by Fredman. We show that it is possible to perform both update and retrieval in O(1) time simultaneously under a memory model in which individual bits may be shared by several words. We also show that two variants (generalizations) of the problem can be solved optimally in Θ(lgN)\Theta(\lg N) time under the comparison based model of computation.Comment: 12 page

    Baby-Step Giant-Step Algorithms for the Symmetric Group

    Full text link
    We study discrete logarithms in the setting of group actions. Suppose that GG is a group that acts on a set SS. When r,sSr,s \in S, a solution gGg \in G to rg=sr^g = s can be thought of as a kind of logarithm. In this paper, we study the case where G=SnG = S_n, and develop analogs to the Shanks baby-step / giant-step procedure for ordinary discrete logarithms. Specifically, we compute two sets A,BSnA, B \subseteq S_n such that every permutation of SnS_n can be written as a product abab of elements aAa \in A and bBb \in B. Our deterministic procedure is optimal up to constant factors, in the sense that AA and BB can be computed in optimal asymptotic complexity, and A|A| and B|B| are a small constant from n!\sqrt{n!} in size. We also analyze randomized "collision" algorithms for the same problem

    When is a function a fold or an unfold?

    Get PDF
    We give a necessary and sufficient condition for when a set-theoretic function can be written using the recursion operator fold, and a dual condition for the recursion operator unfold. The conditions are simple, practically useful, and generic in the underlying datatype

    When is a function a fold or an unfold?

    Get PDF
    We give a necessary and sufficient condition for when a set-theoretic function can be written using the recursion operator fold, and a dual condition for the recursion operator unfold. The conditions are simple, practically useful, and generic in the underlying datatype

    Baire categories on small complexity classes and meager–comeager laws

    Get PDF
    We introduce two resource-bounded Baire category notions on small complexity classes such as P, QUASIPOLY, SUBEXP and PSPACE and on probabilistic classes such as BPP, which differ on how the corresponding finite extension strategies are computed. We give an alternative characterization of small sets via resource-bounded Banach-Mazur games. As an application of the first notion, we show that for almost every language A (i.e. all except a meager class) computable in subexponential time, PA = BPPA. We also show that almost all languages in PSPACE do not have small nonuniform complexity. We then switch to the second Baire category notion (called locally-computable), and show that the class SPARSE is meager in P. We show that in contrast to the resource-bounded measure case, meager–comeager laws can be obtained for many standard complexity classes, relative to locally-computable Baire category on BPP and PSPACE. Another topic where locally-computable Baire categories differ from resource-bounded measure is regarding weak-completeness: we show that there is no weak-completeness notion in P based on locally-computable Baire categories, i.e. every P-weakly-complete set is complete for P. We also prove that the class of complete sets for P under Turing-logspace reductions is meager in P, if P is not equal to DSPACE (log n), and that the same holds unconditionally for QUASIPOLY. Finally we observe that locally-computable Baire categories are incomparable with all existing resource-bounded measure notions on small complexity classes, which might explain why those two settings seem to differ so fundamentally

    Behavioural differential equations : a coinductive calculus of streams, automata, and power series

    Get PDF
    Streams, (automata and) languages, and formal power series are viewed coalgebraically. In summary, this amounts to supplying these sets with a deterministic automaton structure, which has the universal property of being final. Finality then forms the basis for both definitions and proofs by coinduction, the coalgebraic counterpart of induction

    Combinatorial tools for computational group theory

    Full text link
    corecore