
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Behavioural Differential Equations: A Coinductive Calculus of
Streams, Automata, and Power Series

J.J.M.M. Rutten

Software Engineering (SEN)

SEN-R0023 September 30, 2000

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301659813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report SEN-R0023
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Behavioural Di�erential Equations:

A Coinductive Calculus of

Streams, Automata, and Power Series

J.J.M.M. Rutten

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Email: janr@cwi.nl, URL: www.cwi.nl/�janr

ABSTRACT

Streams, (automata and) languages, and formal power series are viewed coalgebraically. In sum-
mary, this amounts to supplying these sets with a deterministic automaton structure, which has
the universal property of being �nal. Finality then forms the basis for both de�nitions and proofs
by coinduction, the coalgebraic counterpart of induction. Coinductive de�nitions take the shape of
what we have called behavioural di�erential equations, after Brzozowski's notion of input deriva-
tive. A calculus is developed for coinductive reasoning about all of the afore mentioned structures,
closely resembling (and at times generalising) calculus from classical analysis.

2000 Mathematics Subject Classi�cation: 68Q10, 68Q55, 68Q85
1998 ACM Computing Classi�cation System: F.1, F.3
Keywords & Phrases: Coalgebra, automaton, �nality, coinduction, stream, formal language, for-
mal power series, di�erential equation, input derivative, behaviour, semiring, max-plus algebra

1

Contents

1 Introduction 3

2 Streams and stream automata 5

3 Behavioural di�erential equations 8

4 Proofs by coinduction 14

5 Stream calculus 17

6 More stream calculus: shu�e product and shu�e inverse 20

7 Rational streams 24

8 Nondeterministic stream automata 25

9 Formal power series 29

10 Languages 33

11 An example in the max-plus semiring 38

12 Related work and discussion 40

13 Appendix: the proof of Theorem 3.2 41

14 Appendix: automata are coalgebras 43

2

\ � � � in this case, as in many others, the process gives the mini-
mal machine directly to anyone skilled in input di�erentiation.
The skill is worth acquiring � � � "

| J.H. Conway [Con71, chap. 5]

1 Introduction

The classical theories of streams (in�nite sequences), automata and languages, and formal power
series, are presented in terms of the notions of homomorphism and bisimulation, which are the
cornerstones of the theory of (universal) coalgebra. This coalgebraic perspective leads to a uni�ed
theory, in which the observation that the sets of streams, languages, and formal power series each
carry a �nal automaton structure, plays a central role. In all cases, the transitions of the �nal
automaton are determined by the notion of input derivative (and initial value). This notion, which
already occurs in work of Brzozowski [Brz64] and Conway [Con71], can be understood, in a very
precise sense, as an abstract generalisation of the analytical notion of function derivative. Finality
gives rise to both a coinduction de�nition and a coinduction proof principle, formulated in terms
of derivatives. It is exactly this use of derivatives in coinduction that makes our theory into a
calculus , again in much the same way as one has calculus in analysis. In fact, the connection is so
close that the theory of mathematical analysis can serve as an important source of inspiration.

Much emphasis will be put on coinductive de�nitions, which are formulated, as indicated above,
in terms of input derivatives. Since the latter can be understood as describing the (dynamic) be-
haviour of streams, languages, and formal power series, we have called these coinductive de�nitions
behavioural di�erential equations . To give an example, let us introduce the set of streams of real
numbers, which are functions � : f0; 1; 2; : : :g ! IR. The initial value of � is de�ned as its �rst
element �(0), and the (input or) stream derivative, denoted by �0, is de�ned by �0(n) = �(n+1),
for n � 0. (In other words, initial value and derivative equal head and tail of �, respectively.)
Viewed as a state of the �nal automaton of all streams, the behaviour of a stream � consists of
two aspects: it (shyly) allows for the observation of (only) its initial value �(0); and it can make
a transition to the new state �0, consisting of the original stream from which the �rst element has
been removed. The initial value of �0, which is �0(0) = �(1), can at its turn be observed, but note
that we had to move from � to �0 �rst in order to do so. Now a behavioural di�erential equation
de�nes a stream by specifying its initial value together with a description of its derivative, which
tells us how to continue. For instance, the sum � + � and product � � � of two streams � and
� can be de�ned by specifying their initial values and stream derivatives in terms of the initial
values and (sums and products of) the derivatives of � and � , as follows:

di�erential equation initial value name
(� + �)0 = �0 + � 0 (� + �)(0) = �(0) + �(0) sum
(� � �)0 = (�0 � �) + (�(0) � � 0) (� � �)(0) = �(0)� �(0) product

The precise interpretation of such equations will become clear later. (For one thing, the overloading
of the symbol � in the equation for the product needs to be explained.) For now, it is su�cient to
know that they indeed uniquely de�ne an operation of sum and of product on streams, a fact which
is based on the �nality of the automaton of all streams. The above de�nitions can be shown to
be equivalent to the traditional de�nitions of sum and of convolution product, which are typically
given in an `elementwise' fashion: for all n � 0,

(� + �)(n) = �(n) + �(n); (� � �)(n) =

nX
k=0

�(n� k)� �(k)

As it turns out, coinductive de�nitions by means of behavioural di�erential equations have a
number of advantages over this latter type of de�nition:

� Coinductive de�nitions seem to be `at the right level of abstraction': One behavioural dif-
ferential equation often de�nes seemingly di�erent operators at the same time. An example
is the de�nition of convolution product, which on languages will correspond to language

3

concatenation. We shall see more extreme examples of this phenomenon later (for instance,
the de�nition of the shu�e product in Section 6).

� The use of indices (such as k and n in the above de�nition of product) makes reasoning about
the operators unnecessarily complicated. In contrast, coinductive proofs present themselves
as more transparent alternatives. Section 4 contains many examples.

� Coinductive de�nitions using behavioural di�erential equations seem to be more generally
applicable. For instance, the inverse ��1 of a stream �, satisfying � � ��1 = 1, will be
de�ned, in Section 3, using a di�erential equation. It is by no means clear how an elementwise
de�nition for inverse should look like. Another example is the coinductive de�nition of an
operator ��1, which acts as an inverse for the shu�e product. This operator seems to be
new, not to be de�nable elementwise (or inductive, for that matter), and can be used to
denote `everywhere diverging' streams, as in:

(1�X)�1 = (0!; 1!; 2!; : : :)

where X is the constant stream de�ned by X = (0; 1; 0; 0; 0; : : :).

� Behavioural di�erential equations have an operational reading, from which algorithms can
be easily derived. For instance, we shall see that the di�erential equation for ��1 can be
read as an algorithm that produces the elements of this in�nite stream one by one.

� The explicit occurrence of the sum operator + in behavioural di�erential equations (such
as the one for product above) will give rise, in Section 8, to rather e�cient representations
of power series in the form of (generalised versions of) nondeterministic automata. As an
example, a very simple automaton will be constructed representing the so-called tangent
numbers, the Taylor series of the function tan(x). From this automaton, a closed (non-
recurrent) formula for this series can be derived (where no such formula is known in the
literature). Another example concerns �nite nondeterministic representations of so-called
rational streams.

The most general level at which we shall be working is that of formal power series (in many non-
commutative variables), which are functions � : A� ! k from the set of words over an alphabet A
(of variables, also called input symbols) to some semiring k (such as the reals or the Booleans). But
before dealing with formal power series in Section 9, the paper develops in all detail a coinductive
calculus for the afore mentioned streams of real numbers, which can be obtained as one particular
instance of formal power series by setting A = fXg (a singleton set containing only one formal
variable) and k = IR. Streams are for many readers probably somewhat more familiar than
power series, and form an inexhaustible source of entertaining examples (including Taylor series
of analytic functions on the reals). And because the calculus is ultimately based on the universal
property of the �nality of the automaton of all streams, its generalisation to the case of formal
power series is straightforward, requiring no serious rethinking and hardly any reformulation. The
theory is further illustrated with two more special instances: (classical deterministic automata
and) formal languages, in Section 10, including a new coinductive algorithm for deciding the
equality of regular expressions; and power series over the so-called max-plus semiring of the real
numbers (with max and plus rather than plus and times), in Section 11.

Although the development of our theory has been entirely dictated by the coalgebraic perspec-
tive, no explicit reference to coalgebraic notions and results will be made. The paper is intended to
be self-contained, without assuming any prior knowledge on coalgebra. In this way, it constitutes
a study in and, we hope, an introduction to what could be called concrete coalgebra, as opposed
to so-called universal coalgebra, which deals with properties that are common to all coalgebras at
the same time. (This mirrors the situation in algebra, where one has the concrete theories of, for
instance, groups and rings, as well as the general theory of universal algebra.) For the interested
reader, the connection with coalgebra is explicitly described in Section 14.

4

Summarising the contributions of the present paper, it takes the coalgebraic perspective to give
a uni�ed treatment of streams, languages, and formal power series. The general scheme is to specify
(the behaviour of) streams, languages, and formal power series alike, by means of behavioural
di�erential equations; to prove the equality of streams, languages, and formal power series alike,
by means of coinduction, by constructing suitable bisimulation relations; and to deduce e�cient
implementations from the de�ning equations, in terms of nondeterministic automata. Unfolding
the theory, the paper provides many illustrations of the use of coinduction along the way. (Most
examples in the literature sofar have been of a rather elementary nature; some of the examples
presented here can be considered, we hope, as a little bit less trivial.) In addition to the uni�cation
and simpli�cation of existing de�nitions and proofs, the paper also introduces a number of new
operators by coinduction, such as the operation of shu�e inverse mentioned above. Examples of
their use are given, suggesting that these new operators actually have some interest. Since for
most of them no obvious alternative de�nitions without the use of coinduction can be found, they
provide some evidence that the use of coinduction sometimes is essential.

Section 12 contains some concluding remarks and discusses related work. In summary, the
present paper reworks and extends [Rut99a], on power series, which was a generalisation of
[Rut98a], where automata and languages were treated coinductively. General references on the
coalgebraic approach are [Rut96] and [JR97]. Our notion of input derivative for power series gen-
eralises Brzozowski's original de�nition for regular expressions [Brz64, Con71]. In addition to our
own earlier work, the presentation of the calculus for streams has been in
uenced by [PE98], which
gives a coinductive treatment of analytic functions in terms of their Taylor series, and by [McI99],
which treats power series (in one variable) as lazy lists in the programming language Haskell.

2 Streams and stream automata

Some elementary coalgebra is developed for the set of streams of real numbers: the notion of
stream automaton is introduced, along with the corresponding notions of homomorphism and
bisimulation, and the set of streams is characterised as a �nal stream automaton, leading to both
a coinductive proof and a coinductive de�nition principle.

A stream automaton is a pair Q = (Q; ho; ti) consisting of a set Q of states , and a pair of
functions: an output or observation function o : Q ! IR, and a transition or next state function
t : Q ! Q. We write q+r to denote that state q 2 Q has output value r 2 IR: o(q) = r, and
q �! q0 denotes that the next state after q is q0: t(q) = q0. Often it is convenient to include in such
a transition step the information about outputs as well: q+r �! q0+r0 denotes t(q) = q0, o(q) = r,
and o(q0) = r0. The name `stream automaton' is motivated by the fact that the behaviour of a
state q in an automaton Q can be described by the in�nite sequence or stream of consecutively
observed output values, obtained by repeatedly applying the transition function:

(o(q); o(t(q)); o(t(t(q))); : : :)

The set of all streams is formally de�ned by

IR! = f� j � : f0; 1; 2; : : :g ! IR g
Streams � will be often informally denoted as � = (s0; s1; s2; : : :), where sn = �(n) is called the
n-th element of �. Streams are what we are actually interested in, and stream automata are
relevant to us only as an aid to represent (and de�ne) streams.

Example 2.1 Consider an automaton Q = (Q; ho; ti) with Q = fq0; q1; q2; q3g, output values
o(q0) = o(q2) = 0, o(q1) = 1, and o(q3) = �1, and transitions t(q0) = q1, t(q1) = q2, t(q2) = q3,
and t(q3) = q0. Output and transition functions could have also been de�ned implicitly by simply

5

drawing the following picture, which summarises all the relevant information:

(q0+0)

��

(q3+ � 1)
qq

(q1+1) 11 (q2+0)

SS

The behaviour of q0 is the stream (0; 1; 0;�1; 0; 1; 0;�1; : : :) and, in fact, the (�nite) automaton Q
can be taken as a de�nition of this (in�nite) stream. Here is another automaton, this time in�nite,
representing the same stream. Let T = ft0; t1; t2; : : :g with transitions t(ti) = ti+1, for all i � 0,
and with outputs o(t0+4k) = o(t2+4k) = 0, o(t1+4k) = 1, and o(t3+4k) = �1, for all k � 0:

(t0+0) // (t1+1) // (t2+0) // (t3+ � 1) // � � �

Clearly, any of the states t0+4k, for k � 0, represents the stream (0; 1; 0;�1; 0; 1; 0;�1; : : :). 2

Example 2.2 (Pavlovi�c and Escard�o [PE98]) More generally, here is a particularly rich source of
examples of representations of streams. Let

A = ff : IR! IR j f is analytic in 0 g
Recall that such functions are arbitrarily often di�erentiable in (a neighbourhood around) 0 and
that all the derivatives are analytic again. Therefore it is possible to turn A into a stream
automaton by de�ning the following output and transition functions: for an analytic function f
put o(f) = f(0) and t(f) = f 0, the derivative of f . The behaviour of an analytic function f in
the automaton (A; ho; ti) then consists of the stream (f(0); f 0(0); f 00(0); : : :), which we recognise
as the Taylor series of f . For instance, the transitions for the function sin(x) (together with the
corresponding output values) look like

(sin(x)+0)

��

(�cos(x)+ � 1)
pp

(cos(x)+1) 00 (�sin(x)+0)

SS

2

The set IR! of all streams can itself be turned into a stream automaton as follows. Let the initial
value of a stream � 2 IR! be de�ned by its �rst element: �(0), and let the stream derivative �0

of � be given by �0(n) = �(n + 1), for all n � 0 or, informally, (s0; s1; s2; : : :)
0 = (s1; s2; s3; : : :).

(The main reason for preferring this notation and terminology above the more standard use of
`head' and `tail' is the fact that we shall develop a calculus-like theory of streams.) Next de�ne
o : IR! ! IR by o(�) = �(0) and t : IR! ! IR! by t(�) = �0, and we obtain an automaton
(IR!; ho; ti).

We shall also use the following notation: �(n) = tn(�), for all n � 0, which is obtained by
taking n times the derivative of �; as usual, �(0) = �. (Also �00 will be used as a shorthand for
(�0)0.) With these de�nitions, the transitions of the stream � viewed as a state of the automaton
hIR!; (o; t)i are

� = �(0) // �(1) // �(2) // � � �
and it is through these transitions and their corresponding output values, that we get to know the
successive elements of the stream �, one by one:

� = (�(0)(0); �(1)(0); �(2)(0); : : :)

Thus the n-th element of � is given by �(n) = �(n)(0), which is easily proved by induction.

6

The automaton of streams has a number of universal properties, which can be nicely expressed
in terms of the notions of homomorphism and bisimulation, which are introduced next. A bisim-
ulation between stream automata (Q; hoQ; tQi) and (Q0; hoQ0 ; tQ0i) is a relation R � Q�Q0 such
that for all q in Q and q0 in Q0:

if q R q0 then

�
oQ(q) = oQ0(q0) and
tQ(q) R tQ0(q0)

(Here qRq0 denotes hq; q0i 2 R; both notations will be used.) A bisimulation between Q and itself is
called a bisimulation on Q. Unions and (relational) compositions of bisimulations are bisimulations
again. We write q � q0 whenever there exists a bisimulation R with q R q0. This relation � is
the union of all bisimulations and, therewith, the greatest bisimulation. The greatest bisimulation
on one and the same automaton, again denoted by �, is called the bisimilarity relation. It is an
equivalence relation.

Example 2.3 The states q0 and t0 in Example 2.1 are bisimilar: q0 � t0, since

fhq0; t0+4ki j k � 0g [fhq1; t1+4ki j k � 0g [fhq2; t2+4ki j k � 0g [fhq3; t3+4ki j k � 0g
can be readily seen to be a bisimulation relation between the automata Q and T . Of course, the
same relation shows that s0 � t0+4k, for any k � 0. Also q0 is bisimilar with the function sin(x)
from Example 2.2: s0 � sin(x), since

fhq0; sin(x)i; hq1; cos(x)i; hq2;�sin(x)i; hq3;�cos(x)ig
is a bisimulation between Q and A. The same relation shows that q1 � cos(x). 2

Bisimulation relations on the automaton (IR!; ho; ti) of streams are particularly simple: they only
contain pairs of identical elements.

Theorem 2.4 For all streams � and � in IR!, if � � � then � = � .

(Note that the converse trivially holds, since fh�; �i j � 2 IR!g is a bisimulation relation on
IR!.) The fact that bisimulations on IR! relate only identical streams gives rise to the following,
surprisingly powerful proof principle, called coinduction: in order to prove the equality of two
streams � and � , it is su�cient show that they are bisimilar. And since bisimilarity is the union
of all bisimulation relations, � � � can be proved by establishing the existence of a bisimulation
relation on R � IR! � IR! with h�; �i 2 R. We shall see many examples of proofs by coinduction.

Proof: Consider two streams � and � and let R � IR!� IR! be a bisimulation on the automaton
(IR!; ho; ti) containing the pair h�; �i. It follows by induction on n that h�(n); � (n)i 2 R, for
all n � 0, because R is a bisimulation. This implies, again because R is a bisimulation, that
�(n)(0) = � (n)(0), for all n � 0. This proves � = � . 2

A bisimulation relation that is actually a function is called homomorphism. Equivalently, a homo-
morphism between stream automata (Q; hoQ; tQi) and (Q0; hoQ0 ; tQ0i) is any function f : Q! Q0

such that, for all s in Q, oQ(s) = oQ0(f(s)) and f(tQ(s)) = tQ0(f(s)). The set of all streams has
the following universal property.

Theorem 2.5 The automaton (IR!; ho; ti) is �nal among the family of all stream automata. That
is, for any automaton (Q; hoQ; tQi) there exists a unique homomorphism l : Q! IR!.

The existence part of this theorem can be used as a (coinductive) de�nition principle, as will be
illustrated in many ways later on.

Proof: Let (Q; hoQ; tQi) be an automaton and let the function l : Q ! IR! assign to a state
q in Q the stream (oQ(q); oQ(tQ(q)); oQ(tQ(tQ(q))); : : :). It is straightforward to show that l
is a homomorphism from (Q; hoQ; tQi) to (IR!; ho; ti). For uniqueness, suppose f and g are ho-
momorphisms from Q to IR!. The equality of f and g follows by coinduction from the fact

7

that R = fhf(q); g(q)i j q 2 Qg is a bisimulation on IR!, which is proved next. Consider
hf(q); g(q)i 2 R. Because f and g are homomorphisms, o(f(q)) = oQ(q) = o(g(q)). Further-
more, t(f(q)) = f(tQ(q)) and t(g(q)) = g(tQ(q)). Because hf(tQ(q)); g(tQ(q))i 2 R, this shows
that R is a bisimulation. Thus f(q) � g(q), for any q in Q. Now f = g follows by the coinduction
proof principle Theorem 2.4. 2

The stream l(q) is (what we have called above) the behaviour of the state q of the automaton Q.
Taking Q = IR! in Theorem 2.5, it follows that l equals the identity function on IR!, since the
latter trivially is a homomorphism. Thus the behaviour l(�) of a stream � viewed as a state in IR!

is equal to �: l(�) = �. This yields the intriguing slogan that the states of the �nal automaton
IR! `do as they are'. More generally, the homomorphism l above is characterised by the following
property.

Proposition 2.6 Let Q be an automaton and let l : Q! IR! be the unique homomorphism from
Q to IR!. For all q and q0 in Q, q � q0 i� l(q) = l(q0).

Since the homomorphism l : Q ! IR! assigns to each state in Q its behaviour, the proposition
expresses that two states are related by a bisimulation relation i� their behaviour is the same.

Proof: Because the bisimilarity relation is itself a bisimulation relation and because l is a
homomorphism, the relation fhl(q); l(q0)i j q � q0g is easily seen to be a bisimulation relation
on IR!. The implication from left to right therefore follows by coinduction Theorem 2.4. The
converse is a consequence of the fact that fhq; q0i 2 Q j l(q) = l(q0)g can be readily shown to be a
bisimulation on Q, again using the fact that l is a homomorphism. 2

Example 2.7 The unique homomorphism from the automaton A of analytic functions (Example
2.2) to the automaton of streams assigns to each analytic function f : IR ! IR its Taylor series
(and is therefore denoted by T):

T : A ! IR!; T (f) = (f(0); f 0(0); f 00(0); : : :)

Because analytic functions f and g are entirely determined by their Taylor series, in the sense
that T (f) = T (g) implies f = g, an immediate consequence of Proposition 2.6 is the following
coinduction proof principle for analytic functions: if f � g then (T (f) = T (g) by Proposition 2.6,
and thus) f = g. As an example, this principle is used to prove the following familiar law. For
any real number a 2 IR,

sin(x+ a) = cos(a)sin(x) + sin(a)cos(x)

Recalling that sin(x + a)0 = cos(x + a) and cos(x + a)0 = �sin(x + a), this equality follows by
coinduction from the fact that the following 4-element set

fhsin(x+ a); cos(a)sin(x) + sin(a)cos(x)i; hcos(x + a); cos(a)cos(x) � sin(a)sin(x)i;

h�sin(x+ a);�cos(a)sin(x)� sin(a)cos(x)i; h�cos(x+ a);�cos(a)cos(x) � sin(a)sin(x)ig

is easily seen to be a bisimulation relation on A. 2

3 Behavioural di�erential equations

The �nality of the automaton IR! of all streams is used as a basis for the de�nition of a number of
familiar and less familiar operators on streams, including sum, product, star, and division. Such
de�nitions are called coinductive since the role of the �nality of IR! is in a precise sense dual to the
role of initiality of, for instance, the natural numbers, which underlies the principle of induction
(see [Rut96, JR97] for more detailed explanations of this fact). Coinductive de�nitions will here
be presented in terms of so-called behavioural di�erential equations.

8

Before de�ning the operators on streams we are interested in, the entire approach is illustrated
by a coinductive de�nition of the stream

� = (1; 1; 1; : : :)

Although this expression makes perfectly clear which stream it is that we want to de�ne, we do
not want to take this expression itself as a formal de�nition, because of the presence of the dots,
telling us `how to continue'. De�ning the stream above as the function � : f0; 1; 2; : : :g ! IR with
�(k) = 1, for all k � 0, is formal enough but still, there are several reasons for not being satis�ed
with this type of de�nition, either. For one thing, it suggests that we are able to oversee in one
go, as it were, all in�nitely many elements of this stream. This is easy enough in this particular
case, but we shall see many examples where this kind of global view is either very di�cult or even
impossible. Another objection to the de�nition is that the formula `�(k) = 1 (for all k � 0)' does
not do full justice to the stream's extreme regularity, consisting of the fact that removing the �rst
element of � yields a stream that is equal to � again: �0 = �. In fact, it is precisely this property
which, together with the observation that the �rst element of � equals 1, fully characterises this
stream. Therefore, our proposal for a formal de�nition of � is the following behavioural di�erential
equation:

di�erential equation initial value
�0 = � �(0) = 1

Behavioural di�erential equations de�ne streams by specifying their behaviour , that is, transitions
and output values, in terms of derivatives and initial values. Now that we have motivated the
above behavioural de�nition, it still has to be formally justi�ed: we have to show that there exists
a unique stream � in IR! which satis�es the equation above. And this is precisely where the �nality
of the automaton IR! comes in. For this particular example, things are extremely simple of course.
It su�ces to consider an automaton (S; hoS ; tSi) with only one state: S = fsg, and with transition
tS(s) = s and output value oS(s) = 1. By the �nality of the automaton (IR!; ho; ti) (Theorem
2.5), there exists a unique homomorphism l : S ! IR!. We can now de�ne � = l(s). Because l is a
homomorphism, �0 = t(�) = t(l(s)) = l(tS(s)) = l(s) = �, and �(0) = o(�) = o(l(s)) = oS(s) = 1,
indeed. Thus we have found a solution of our behavioural di�erential equation. If � is a stream
satisfying �0 = � and �(0) = 1, then � = � follows, by the coinduction proof principle Theorem
2.4, from the fact that fh�; �ig is a bisimulation relation of IR!. Which shows that � is the only
solution of the di�erential equation.

The reader will have noticed that the behavioural di�erential equation above looks very famil-
iar. When interpreted as an ordinary di�erential equation (over real-valued functions), it de�nes
the function exp(x) : IR ! IR from analysis. The fact that the Taylor series of exp(x) equals
our stream � can hardly be a coincidence and, in fact, it is not. Recalling from Example 2.7
the (unique) homomorphism T : A ! IR! that assigns to an analytic function its Taylor se-
ries, we have � = T (exp(x)). This follows from the fact that the latter is also a solution to
the behavioural di�erential equation for �, which can be easily proved using exp(0) = 1 and
exp(x)0 = exp(x), and the fact that T is a homomorphism: T (exp(x))(0) = exp(0) = 1 and
T (exp(x))0 = T (exp(x)0) = T (exp(x)). Since we saw above that the equation has a unique
solution, it follows that � = T (exp(x)).
Example 3.1 Here is another simple example, which introduces a useful convention on the in-
clusion of the reals into the set of streams. We want to view any real number r in IR as a stream
[r] = (r; 0; 0; 0; : : :). Using the formalism of behavioural di�erential equations that we have just
learned, such streams [r] can formally be de�ned by the following system of equations (one for
each real number r):

di�erential equation initial value
[r]0 = [0] [r](0) = r

We shall also need the following constant stream X = (0; 1; 0; 0; 0; : : :), which will play the role of a
formal variable for stream calculus (see, for instance, Theorem 5.2). It is de�ned by the following
equation:

9

di�erential equation initial value
X 0 = [1] X(0) = 0

Since the latter equation for X refers to the stream [1] which is de�ned by the �rst system of
equations, it will be necessary to justify all equations at the same time, again by �nality of
IR!. To this end, let (S; ho; ti) be the automaton with as states the set S = fsr j r 2 IRg [fsXg,
containing one state for X and one state for each real number r. The output values and transitions
are de�ned by o(sr) = r and o(sX) = 0, and t(sr) = s0 and t(sX) = s1. (Note how these de�nitions
precisely follow the equations above.) Now de�ne [r] = l(sr) and X = l(sX), where l : IR ! IR!

is the unique homomorphism into IR! given by �nality. It is easily checked that the streams [r]
and X are the unique solutions of the equations. 2

Convention: we shall usually simply write r for [r].

Next we turn to the de�nition of operators on streams, which will be speci�ed by a system of
mutually dependent di�erential equations.

Theorem 3.2 There are unique operators on streams satisfying the following behavioural di�er-
ential equations: For all �; � 2 IR!,

di�erential equation initial value name
(� + �)0 = �0 + � 0 (� + �)(0) = �(0) + �(0) sum
(� � �)0 = (�0 � �) + (�(0)� � 0) (� � �)(0) = �(0)� �(0) product
(��)0 = �0 � �� (��)(0) = 1 star
(��1)0 = �(�(0)�1 � �0)� ��1 (��1)(0) = �(0)�1 inverse

In the formulation of the theorem, the following is to be noted:

� The same symbols are used for the sum of streams and the sum of real numbers, and similarly
for the product. As usual, �� � will often be denoted by �� , and similarly for real numbers.
And we shall use the following standard conventions: �0 = 1 and �n+1 = � � �n, for all
n � 0, not to be confused with our notation �(n), which stands for the n-th derivative of �
(introduced in Section 2).

� In the de�nition of the product, �(0) � � 0 is a shorthand for [�(0)] � � 0, following the
convention of Example 3.1.

� We write �� as a shorthand for [�1]� �.

� In the equation for ��1, the stream � is supposed to have an invertible initial value: �(0) 6= 0.
Moreover, the expression�(�(0)�1��0) is to be read as a shorthand for [�1]�([�(0)�1]��0).

� Once we have the operation of inverse, an operation of division can be de�ned as usual by
putting � : � = � � ��1.

� The product of streams de�ned by the equation above does not correspond to the pointwise
product of functions, for which one has: (f �g)0 = f 0 �g+f �g0, but is the so-called convolution
product. Later we shall see a di�erent type of product (shu�e product, in Section 5) for
which stream derivation behaves as it does for function product.

Before presenting the proof of this theorem, which will again rely on the �nality of IR!, we �rst
want to motivate the particular shape of the above di�erential equations. This can be done best
using the following easy but important result from Section 5: for every stream � in IR!,

� = �(0) + (X � �0)

10

(Here X is the constant stream (0; 1; 0; 0; 0; : : :) introduced in Example 3.1, and �(0) is to be read
as the stream [�(0)].) This formula makes it possible to calculate with streams as so-called formal
power series (cf. Theorem 5.2). In the calculations below, we are assuming that our operators
have the usual properties of commutativity, associativity, distributivity, and the like, all of which
are formally proved in Theorem 4.1. Consider now two streams � and � and write � = �(0)+X�0

and � = �(0) +X� 0, omitting as usual the � symbol. Computing the sum of � and � ,

� + � = (�(0) +X�0) + (�(0) +X� 0)

= (�(0) + �(0)) +X(�0 + � 0)

and comparing this with �+ � = (�+ �)(0)+X(�+ �)0, we �nd the di�erential equation for sum:

di�erential equation initial value
(� + �)0 = �0 + � 0 (� + �)(0) = �(0) + �(0)

Computing the product of � and � yields

� � � = (�(0) +X�0)� (�(0) +X� 0)

= (�(0)� �(0)) + (�(0)�X� 0) + (X�0 � (�(0) +X� 0))

= (�(0)� �(0)) + (�(0)�X� 0) + (X�0 � �)

= (�(0)� �(0)) +X((�0 � �) + (�(0)� � 0))

Comparing this with � � � = (� � �)(0)�X(� � �)0 leads to the equation for product:

di�erential equation initial value
(� � �)0 = (�0 � �) + (�(0)� � 0) (� � �)(0) = �(0)� �(0)

The equation for �� can be deduced from the the following requirement, which we would like to
hold at least for all � with �(0) = 0:

�� = 1 + � + �2 + �3 + � � �
(For the well-de�nedness of such an in�nite sum, see the end of the present section.) Since in the
presence of inverse, star is a de�nable operator (cf. Theorem 4.1(13)), we shall concentrate for
the time being on the inverse operator. (Later we shall see di�erent structures without inverse,
such as the set of languages over a given alphabet, where the star operator does play a prominent
role.) The equation for inverse can be deduced from the property 1 = ��1 � � (Theorem 4.1) as
follows:

1 = ��1 � �

= (��1(0) +X(��1)0)� �

= (��1(0)� �) + (X(��1)0 � �)

= (��1(0)� (�(0) +X�0)) + (X(��1)0 � �)

= (��1(0)� �(0)) + X((��1(0)� �0) + ((��1)0 � �))

This implies 1 = ��1(0)� �(0) and 0 = (��1(0)� �0) + ((��1)0 � �), from which the di�erential
equation for inverse is derived:

di�erential equation initial value
(��1)0 = �(�(0)�1 � �0)� ��1 ��1(0) = �(0)�1

Proof of Theorem 3.2: The proof consists of the construction of what could be called a syntactic
stream automaton, whose states are given by expressions including all the possible shapes that
occur on the right side of the behavioural di�erential equations. The solutions are then given by

11

the unique homomorphism into IR!. More precisely, let the set E of expressions be given by the
following syntax:

E ::= � j E + F j E � F j E� j E�1

The set E contains for every stream � in IR! a constant symbol �. Each of the operators that
we are in the process of de�ning, is represented in E by a syntactic counterpart, denoted by the
same symbols +, �, and so on. (It were more precise to distinguish also here between semantics
and syntax, for instance by writing � for the syntactic version of product. But life is already
exacting enough as it is, without having to write all these 's. And we promise not to confuse the
reader.) The set E is next supplied with an automaton structure (E ; hoE ; tEi) by de�ning functions
oE : E ! IR and tE : E ! E . It will be convenient to write E(0) for oE(E) and E

0 for tE(E), for
any expression E in E . For the de�nition of oE and tE on the constant symbols �, the automaton
structure of IR! is used:

de�nition of tE de�nition of oE
(�)0 = �0 �(0) = �(0)

Here �0 is the stream derivative of �. Thus the constant � behaves in the automaton E pre-
cisely as the stream � behaves in the automaton IR!. (This includes IR! as a subautomaton in
E .) For composite expressions, the de�nitions of oE and tE literally follow the de�nition of the
corresponding behavioural di�erential equations:

de�nition of tE de�nition of oE
(E + F)0 = E0 + F 0 (E + F)(0) = E(0) + F (0)
(E � F)0 = (E0 � F) + (E(0)� F 0) (E � F)(0) = E(0)� F (0)
(E�)0 = E0 �E� (E�)(0) = 1
(E�1)0 = �(E(0)�1 �E0)�E�1 (E�1)(0) = E(0)�1

An important step in the present proof is the observation that the above two systems of equations
together establish a well-formed de�nition of the functions oE and tE , by induction on the structure
of the expressions. (Also note that in the de�nition of the expression (E � F)0, we should strictly
speaking have written [E(0)] instead of E(0): it is a real number interpreted as a stream, which is

included in E as a constant symbol; a similar remark applies to the de�nition of (E�1)0. Further
note that, since we prefer our functions oE and tE to be total, we put (E�1)0 = 0 and E�1(0) = 0
in the case that E(0) = 0.)

Since E now has been turned into an automaton (E ; hoE ; tEi), and because IR! is a �nal au-
tomaton, there exists, by Theorem 2.5, a unique homomorphism l : E ! IR!, which assigns to
each expression E the stream l(E) it represents. It can be used to de�ne the operators on IR!

that we are looking for, as follows:

� + � = l(� + �); � � � = l(� � �); �� = l(��); ��1 = l(��1) (1)

Next one can show that the operators that we have just de�ned satisfy the behavioural di�erential
equations, and that they are the only operators with this property. Both proofs use the coinduction
proof principle of Theorem 2.4. Since they are neither di�cult nor particularly instructive, their
details are given in an appendix (Section 13). 2

The reason why the above proof works is that it is possible to use the di�erential equations of the
theorem as a basis for the de�nition of an automaton structure on the set E of expressions, by
induction on their structure. This suggests that the proof can be adapted straightforwardly for
other, similar such systems of equations. In fact, we shall later see other de�nitions of operators
using di�erential equations, for the well-de�nedness of which we shall simply refer to (a variation
on) the proof above. An obvious question to raise here is precisely which behavioural di�erential
equations have unique solutions. This question will not be formally addressed here, but intuitively,
these will include at least all systems of equations of which the right hand sides are given by
expressions that are built from: the operators that the system is supposed to de�ne; the arguments

12

to which they are applied; and the initial values and the (�rst) derivatives of these arguments. At
the same time, the initial values of the operators should be de�ned in terms of the initial values
of their arguments. A typical example is the de�ning equation for (�� �)0, whose right hand side
uses + and �, (� and) � , as well as the derivatives �0 and � 0 and initial value �(0); and whose
initial value is de�ned as the product of the initial values of � and � . The reader is referred to
[Bar00] (and the de�nitions mentioned there) for a general treatment of coinductive de�nition
formats, which includes the above case as a particular example.

Coinductive de�nitions of streams and stream operators in terms of behavioural di�erential
equations have an obvious algorithmic reading, by viewing them as executable recipes for the
construction, step by step, of the streams they de�ne. In order to illustrate this with some easy
examples, we �rst introduce the following de�nition. A stream � is polynomial if there exist n � 0
and real numbers p0; p1; p2; : : : ; pn 2 IR such that

� = p0 + p1X + p2X
2 + � � �+ pnX

n

(Once again, note that piX
i is a shorthand for [pi]�X i.) As usual, if pn 6= 0 then n is called the

degree of �. For actual computations with polynomials, there is the following easy lemma. (Here
and below, we are using some basic properties of our operators, such as 0 + � = �, that will be
proved later in Theorem 4.1.)

Lemma 3.3 For all r 2 IR, � 2 IR!, i � 1, n � 0, and p0; p1; p2; : : : ; pn 2 IR:

1. r0 = 0

2. (X�)0 = �

3. (X i)0 = X i�1

4. (r�)0 = r�0

5. (p0 + p1X + p2X
2 + � � �+ pnX

n)0 = p1 + p2X + p3X
2 + � � �+ pnX

n�1

Proof: The �rst fact is by de�nition: r0 = [r]0 = [0] = 0. For the second, one has (X�)0 =
(X ��)0 = (1��)+ (0��0) = �. Since X i = X �X i�1, (2) implies (3). Also (r�)0 = ([r]��)0 =
([0]��) + (r[0]� �0) = (0� �) + (r� �0) = r�0. The last fact is an immediate consequence of the
previous ones. 2

It follows that � is polynomial i� there exist n � 0 and p0; p1; p2; : : : ; pn 2 IR such that � =
(p0; p1; p2; : : : ; pn; 0; 0; : : :) i� there exist n � 0 such that �(n) = 0.

Next consider the polynomials 1 + X and 2 + 7X2. By repeatedly computing derivatives,
using Lemma 3.3 and the de�ning di�erential equation of sum, we �nd the following sequence (of
transitions in the automaton IR! of streams):

(1 +X) + (2 + 7X2) // (1 + 7X) // 7 // 0
BCEDGF��

Computing for each of these terms the initial value, one obtains the stream (3; 1; 7; 0; 0; : : :), whence

(1 +X) + (2 + 7X2) = (3; 1; 7; 0; 0; : : :) = 3 +X + 7X2

Similarly, one has

(1 +X)� (2 + 7X2) // 2 + 7X + 7X2 // 7 + 7X // 7 // 0
BCEDGF��

(where the second term follows from ((1 + X) � (2 + 7X2))0 = (1 � (2 + 7X2)) + (1 � 7X) =
2 + 7X + 7X2). Computing initial values again yields the stream

(1 +X)� (2 + 7X2) = (2; 2; 7; 7; 0; 0; : : :) = 2 + 2X + 7X2 + 7X3

13

For a slightly more exciting example, consider the polynomial � = 2 + 3X + 7X2, for which we
want to compute the inverse ��1. Using the the de�ning di�erential equations for sum, product,
and inverse, the �rst three derivatives are computed:

��1 // (� 3
2 � 7

2X)��1 // (� 5
4 +

21
4 X)��1 // (578 + 35

8 X)��1 // � � �

Computing as before the respective initial values, the four �rst coe�cients of ��1 are obtained:

(2 + 3X + 7X2)�1 = (
1

2
;�3

4
;�5

8
;
57

16
; : : :) =

1

2
� 3

4
X � 5

8
X2 +

57

16
X3 + � � �

Note that here the result is no longer a polynomial stream. The equality, which will be formally
justi�ed in Theorem 5.2, uses the operator of in�nite sum, which is introduced next

Let I be a possibly in�nite index set and let f�i j i 2 Ig be a family of streams indexed by I .
Such a family is locally �nite if for every k � 0, the set

fi 2 I j �i(k) 6= 0g
is �nite. This is a su�cient condition for the existence of the indexed sum of the entire family,
which is de�ned by the following behavioural di�erential equation:

di�erential equation initial value
(
P

I �i)
0 =
P

I �
0
i (

P
I �i)(0) =

P
I �i(0)

Note that in the de�nition of the initial value, the sum symbol on the right refers to ordinary
summation of real numbers, which is �nite by the condition of local �niteness. For streams
�; � 2 IR! with �(0) = 0, the operation of stream composition �(�) (read: � after �), is de�ned as
follows:

di�erential equation initial value
�(�)0 = � 0 � �0(�) �(�)(0) = �(0)

This operator behaves as one would expect. For instance, using coinduction one easily shows that

(2 + 3X + 7X2)(�) = 2 + 3� + 7�2

In conclusion of this section, let us note that the de�nition of (sum and) product � � � could
also have been given in the following, more traditional fashion, by specifying, for all n � 0, the
value of the n-th element of � � � , in terms of the elements of � and � :

(� � �)(n) =

nX
k=0

�(n� k)� �(k)

The reader is invited to use the coinduction proof principle to prove this equality formally, possibly
after �rst having gained some experience with coinductive proofs in Section 4. There are several
reasons, however, for preferring the coinductive de�nition by means of a behavioural di�erential
equation above this type of pointwise de�nition. The most important ones have been listed in the
introduction.

4 Proofs by coinduction

Here we convince ourselves that our operators have the usual properties and, at the same time,
gain some experience in the technique of proofs by coinduction.

In order to prove the equality � = � of two streams � and � , it is su�cient according to
Theorem 2.4, to show that there exists a bisimulation relation R � IR! � IR! with h�; �i 2 R.
Such a relation R can be constructed in stages, by computing the respective derivatives of both �
and � step by step. The �rst pair to be included in R is h�; �i. Next the following step is repeated
until it does not yield any new pairs: for a pair h�; i in R, one computes h�0; 0i and adds it

14

to R if it was not yet present. When adding a pair h�; i to R, at any stage of its construction,
one should check whether �(0) = (0). If this condition is not ful�lled, the procedure aborts and
we conclude that � 6= � . If the procedure never aborts then the relation R is, by construction, a
bisimulation and � = � follows, by Theorem 2.4.

Coinduction can be used to prove the equality of `concrete' equalities, such as T (exp(x)) =
(1; 1; 1; : : :) at the beginning of Section 3. But it is also possible to use coinduction to prove laws
for streams, such as �+ � = � + �, in which the streams are universally quanti�ed. The following
theorem and its proof contains many examples.

Theorem 4.1 For all streams �, � , and � in IR!, and real numbers r 2 IR:

� + 0 = � (2)

� + � = � + � (3)

� + (� + �) = (� + �) + � (4)

� � (� + �) = (� � �) + (� � �) (5)

(� + �)� � = (� � �) + (�� �) (6)

1� � = � (7)

� � 1 = � (8)

0� � = 0 (9)

� � 0 = 0 (10)

� � (� � �) = (� � �)� � (11)

r � � = � � r (12)

�� = (1 + �(0)� �)�1 (13)

If � is such that �(0) = 0 then also

�� = 1 + � + �2 + �3 + � � � (14)

1 + ��� = �� (15)

� = (� � �) + �) � = �� � � (16)

(� + �)� = �� � (� � ��)� (17)

(� + �)� = (�� � �)� � �� (18)

Moreover, for � 2 IR! with �(0) 6= 0 and r 2 IR with r 6= 0,

��1 = �(0)�1(1� �(0)�1�)� (19)

(r � �)�1 = r�1 � ��1 (20)

� � ��1 = 1 (21)

��1 � � = 1 (22)

Proof: As usual, we shall be writing �� for � � � . We shall prove a few of the above identities,
leaving the others as exercises for the reader. For (2), note that

fh� + 0; �i j � 2 IR!g

is a bisimulation relation on IR!, because (�+0)(0) = �(0)+0 = �(0) and h(�+0)0; �0i = h�0+0; �0i,
which is an element of the relation again. The identity now follows by coinduction. Similarly, (3)
follows by coinduction from the fact that

fh� + �; � + �i j �; � 2 IR!g

is a bisimulation relation. The identity (4) is proved in the same way. In the construction of a
bisimulation relation for (5), one starts with the set

R1 = fh�(� + �); �� + ��i j �; �; � 2 IR!g

15

Computing the (elementwise) derivative of such pairs yields

h(�(� + �))0; (�� + ��)0i
= h�0(� + �) + �(0)(� 0 + �0); (�0� + �(0)� 0) + (�0�+ �(0)�0i
= h�0(� + �) + �(0)(� 0 + �0); (�0� + �0�) + (�(0)� 0 + �(0)�0)i [using (4) and (3)]

which is not in R1, even though each of the pairs

h�0(� + �); �0� + �0�i and h�(0)(� 0 + �0); �(0)� 0 + �(0)�0i

is. As described above, the way to turn R1 into a bisimulation is by simply adding all new pairs.
One moment's thought tells us that all pairs that we shall encounter while computing derivatives
of old pairs are included in the set

R2 = fh�1(�1 + �1) + � � �+ �n(�n + �n); (�1�1 + �1�1) + (�n�n + �n�n)i j �i; �i; �i 2 IR!g

which is readily veri�ed to be a bisimulation. Now (5) follows by coinduction. Using (3), (4), and
(5), it is similarly easy to show that

fh�1(�1�1) + � � �+ �n(�n�n); (�1�1)�1 + � � �+ (�n�n)�ni j �i; �i; �i 2 IR!g

is a bisimulation relation on IR! , which proves (11). For (21), we compute

(���1)(0) = �(0)��1(0) = �(0)�(0)�1 = 1

and, using some of the earlier identities,

(���1)0 = �0��1 + �(0)(��1)0

= �0��1 + �(0)(��(0)�1�0��1)

= �0��1 � �(0)�(0)�1�0��1

= �0��1 � �0��1

= 0

This shows that the set

fh���1; 1i j � 2 IR!; �(0) 6= 0g [fh0; 0ig

is a bisimulation relation on IR!, from which (21) follows. Identity (17) follows from the fact that

fh�(� + �)�; ���(���)�i j �; �; � 2 IR!; �(0) = 0 g

is a bisimulation relation, and identity (13) follows from the fact that

fh�1�� + � � �+ �n�
�; �1(1� �)�1 + � � �+ �n(1� �)�1i j � 2 IR!g

is a bisimulation relation. The reader is invited to prove the remaining cases him or herself.
Notably (16) is an entertaining exercise in coinduction, at least, if one is willing to prove it
without making use of the presence of the inverse operator. 2

Some of the above equalities are more interesting than others. Most of them are very familiar, but
not all. For instance, the de�nition of the inverse operator by means of a behavioural di�erential

16

equation, contains a description of an algorithm for its stepwise computation (closely resembling
so-called long division). From this perspective, the identity

� � ��1 = 1

with its almost trivial proof above, shows that this algorithm is correct. In fact, it was this equality
which was taken as a `speci�cation', from which the behavioural di�erential equation for inverse
was deduced.

5 Stream calculus

We have seen that it is possible to de�ne streams by means of behavioural di�erential equations,
in very much the same way as one uses di�erential equations in mathematical analysis to de�ne
functions on the reals. Some further basic `stream calculus' will be developed next, including a
formalisation of the view of streams as formal power series, which was used in the motivations
of Theorem 3.2. In Section 6, a second product operator will be de�ned, called shu�e product,
which is better behaved with respect to stream derivation, and with which many more streams
can be de�ned.

The main ingredient of stream calculus is the following theorem.

Theorem 5.1 [Fundamental Theorem of stream calculus] For all streams � 2 IR!:

� = �(0) + (X � �0)

Proof: Left multiplication with X amounts to pre�xing with 0. Informally, therefore, the equality
of the theorem simply asserts that (s0; s1; s2; : : :) = (s0; 0; 0; : : :) + (0; s1; s2; : : :). More formally,
the theorem follows by coinduction from the fact that

fh�; �(0) +X�0i j � 2 IR!g [fh�; �i j � 2 IR!g

is a bisimulation relation on IR!, which is immediate by the equality (X�)0 = � of Lemma 3.3. 2

If � is the Taylor series of an analytical function, that is, � = T (f) for a function f 2 A (recall the
homomorphism T : A ! IR! from Example 2.7), then the theorem expresses what the fundamental
theorem of analysis asserts for functions: f = f(0)+

R x
0 f

0. In order to prove this correspondence,
we apply T to the latter equation:

� = T (f)
= T (f(0) + R x0 f 0)
= T (f(0)) + T (R x0 f 0)
= T (f)(0) +XT (f 0)
= T (f)(0) +XT (f)0
= �(0) +X�0

(Here the fact is used that T (R x
0
g) = XT (g), for any g 2 A, which can be easily proved by

coinduction, since fhT (R x0 g); XT (g)i j g 2 Ag [fh�; �i j � 2 IR!g is a bisimulation on IR!.)
This correspondence thus shows that left multiplication with X can be interpreted as stream
integration. As a consequence, stream calculus is rather pleasant in that every stream is both
di�erentiable and integrable: �0 and X� are de�ned for every stream �.

Next a formal power series expansion theorem for streams is formulated. Intuitively, it is
obtained by applying Theorem 5.1 to �0 = �(1) again, and substituting the result in � = �(0)+X�0.
This yields

� = �(0) +X�(1)

= �(0) +X(�(1)(0) +X�(2))

= �(0) + �(1)(0)X +X2�(2)

17

where the latter equality holds by the distributivity law (5) and the commutativity law for scalar
multiplication (12). Continuing this way, one �nds an expansion theorem for streams.

Theorem 5.2 For all streams � 2 IR!,

� =

1X
n=0

�(n)(0)�Xn

= �(0) + �(1)(0)X + �(2)(0)X2 + �(3)(0)X3 + � � �
= �(0) + �(1)X + �(2)X2 + �(3)X3 + � � �

Note that the expression on the right denotes a stream as well, which is built from constants
(�(n)(0) and X), product, and in�nite sum. The theorem asserts that � is equal to a formal
power series (in the single formal variable X). The theorem is similar but di�erent from Taylor's
expansion theorem from analysis, since the coe�cients of Xn are �(n)(0) rather than �(n)(0)=n!.
A true Taylor expansion theorem for streams will be formulated later (Theorem 6.3) using a new
(shu�e) product operator.
Proof of Theorem 5.2: First note that the family f�(n)(0)Xn j n � 0g is locally �nite since
(Xk)0 = Xk�1, for k � 1 (Lemma 3.3), and X 0 = 1 imply that, for all k � 0,

�(n)(0)(Xn)(k)(0) 6= 0 () k = n

Next note that the set R = fh�; P1
n=0 �

(n)(0)Xni j � 2 IR!g is a bisimulation relation on IR!,
since all pairs in R have the same initial value �(0) and, moreover,

(

1X
n=0

�(n)(0)Xn)0

=

1X
n=0

(�(n)(0)Xn)0

=

1X
n=1

�(n)(0)Xn�1 [using (r�)0 = r�
0 for r 2 IR and � 2 IR!]

=

1X
n=0

�(n+1)(0)Xn

=
1X
n=0

(�0)(n)(0)Xn

and h�0; P1
n=0(�

0)(n)(0)Xni is in R. The theorem now follows by coinduction Theorem 2.4. 2

The next example shows how the fundamental theorem for streams can be used to construct
so-called closed forms for a large family of di�erential equations.

Example 5.3 Recall our �rst behavioural di�erential equation from Section 3:

di�erential equation initial value
�0 = � �(0) = 1

There we saw that this equation has a unique solution (the stream (1; 1; 1; : : :)), using the �nality
of IR!. Alternatively, a solution can be quickly computed using the fundamental stream theorem,
as follows. Substituting �(0) +X�0 = 1 +X�0 for �, we �nd

�0 = 1 +X�0

which is equivalent to �0(1�X) = 1, implying �0 = (1�X)�1. Since �0 = �, we �nd � = (1�X)�1.
This gives us a description of the solution of the di�erential equation in terms of constants and

18

operators. We shall call such a term a closed form for �. Note that in the computation above,
the fact that we already knew a solution to the equation, was not used. In other words, we have
obtained a new method for solving such equations. Because no properties of � were used, it follows
that the obtained solution is unique.

Here is another example. The following behavioural di�erential equation de�nes the constant
stream of the Fibonacci numbers (0; 1; 1; 2; 3; 5; 8; 13; : : :):

di�erential equation initial value
�00 = �0 + � �(0) = 0; �0(0) = 1

Note that the equation avoids the use of indices of the usual de�nition of the Fibonacci numbers
(Fn)n in terms of the recurrence F0 = 0, F1 = 1 and, for n � 2,

Fn = Fn�1 + Fn�2

The fact that our di�erential equation uses a second derivative need not bother us: putting � = �0,
the following system of two (mutually dependent) ordinary equations also de�nes �:

di�erential equation initial value
�0 = � �(0) = 0
� 0 = � + � �(0) = 1

Returning to the original higher-order equation, we have, according to Theorem 5.1, �0 = 1+X�00

and � = X�0 = X +X2�00. Substituting this in �00 = �0+� gives an equation with �00 as the only
unknown:

�00 = (1 +X�00) + (X +X2�00)

which is equivalent to

�00(1�X �X2) = 1 +X

yielding �00 = (1 +X)(1�X �X2)�1. Together with � = X +X2�00, we �nd

� = X(1�X �X2)�1

which gives us a closed expression for the Fibonacci numbers. The following table summarises the
above and similar such examples:

di�erential equation initial value solution closed form
�0 = 0 �(0) = r (r; 0; 0; : : :) [r]
�0 = [1] �(0) = 0 (0; 1; 0; 0; : : :) X
�0 = � �(0) = 1 (1; 1; 1; : : :) (1�X)�1

�0 = �� �(0) = 1 (1;�1; 1;�1; : : :) (1 +X)�1

�0 = X� �(0) = 1 (1; 0; 1; 0; : : :) (1�X2)�1

�0 = � + (1�X)�1 �(0) = 0 (0; 1; 2; 3; : : :) X(1�X)�2

�0 = 2� �(0) = 1 (1; 2; 4; 8; 16; : : :) (1� 2X)�1

�0 = r� �(0) = 1 (1; r; r2; r3; : : :) (1� rX)�1

�00 = �� �(0) = 0, �0(0) = 1 (0; 1; 0;�1; 0; 1; 0;�1; : : :) X(1 +X2)�1

�00 = �0 + � �(0) = 0; �0(0) = 1 (0; 1; 1; 2; 3; 5; 8; 13; : : :) X(1�X �X2)�1

In all but the �rst two cases, which are by de�nition, the closed form is obtained from the de�ning
di�erential equation using the fundamental theorem of stream calculus. 2

The closed forms of most of the above streams are well-known from elementary analysis: if
(s0; s1; s2; : : :) is a stream of real numbers such that the power series

P
snx

n has a positive radius
of convergence, then the function

S(x) =
X

snx
n

19

is called a generating function for the stream (s0; s1; s2; : : :). For instance, the function S(x) =P
xn converges for all x between �1 and 1, and thus is a generating function for the stream

(1; 1; 1; : : :). For this function, there is the following closed form

S(x) = (1� x)�1

which corresponds to the closed form (1�X)�1 that we found for the stream (1; 1; 1; : : :) above.
There are a few di�erences between classical calculus and stream calculus to be noted, however:

� The expression (1�X)�1 is not a function, but is itself a stream: (1�X)�1 = (1; 1; 1; : : :).

� A generating function in analysis generates a stream by means of classical di�erentiation,
using the following formula: S(n)(0) = n!sn. For instance, the n-th derivative of the function
S(x) = (1 � x)�1 is S(n) = n!(1 � x)�(n+1), whence S(n)(0) = n!, which implies sn = 1,
indeed. In stream calculus, streams are generated by means of stream di�erentiation: if
� = (s0; s1; s2; : : :) then sn = �(n)(0). But stream di�erentiation is rather di�erent from
analytic di�erentiation: for our closed form (1�X)�1 we have ((1�X)�1)(n) = (1�X)�1,
for any n, which implies sn = ((1�X)�1)(n)(0) = 1.

� In stream calculus, any stream � generates its elements by means of stream di�erentiation.
Convergence of the power series corresponding to � is simply not an issue. We shall later
see examples of streams for which, in analysis, no generating functions exist, but which
nevertheless have closed forms in stream calculus (cf. Example 6.6).

6 More stream calculus: shu�e product and shu�e inverse

There is somehow a `mismatch' between the computation of the stream derivative of the product
of two streams � and � :

(� � �)0 = (�0 � �) + (�(0)� � 0)

and the the familiar rule from calculus for the derivative of function product:

(f � g)0 = f 0 � g + f � g0

(where (f �g)(x) = f(x)�g(x)). Amongst other things, this mismatch is responsible for the fact that
Theorem 5.2 is only `Taylor-like' and does not correspond precisely to the usual Taylor expansion
theorem from analysis. This can be overcome using a di�erent product operator on streams, called
shu�e product , for which derivation behaves as we are used to. At the same time, the use of this
operator will further increase the expressiveness of stream calculus.

The new product operator is de�ned by means of a behavioural di�erential equation, which
simply asserts the property that we wish it to satisfy, namely, that the derivative of the product
behaves as it does in analysis:

di�erential equation initial value name
(�
 �)0 = (�0
 �) + (�
 � 0) (�
 �)(0) = �(0)� �(0) shu�e product

The name of this operator is explained by the fact that when � and � are formal languages, the
formula above de�nes the set of all possible shu�es (interleavings) of words in � and � (see Section
10).

It will be convenient to have also an operator which acts as the inverse to shu�e product.
Classical analysis is again our source of inspiration, where for the inverse of a function we have

(f�1)0 = �f 0 � (f�1 � f�1)

(with f�1(x) = f(x)�1 for x such that f(x) 6= 0). This shows us the way how to de�ne an
operation of shu�e inverse on streams � with �(0) 6= 0:

20

di�erential equation initial value name
(��1)0 = ��0
 (��1
 ��1) ��1(0) = �(0)�1 shu�e inverse

Note that the symbol ��1 is used in order to distinguish this operator from the previous inverse
operator ��1. The shu�e product can also be de�ned by the following more traditional formula:

(� � �)(n) =

nX
k=0

�
n
k

�
� �(n� k)� �(k)

For the same reasons as in the case of ordinary product, all computations involving shu�e product
will be based on its coinductive de�nition by means of a di�erential equation (cf. the remarks at
the end of Section 3). As with ��1, we have no idea how to de�ne the shu�e inverse of a stream
by means of a formula for its n-th element: `��1(n) =?'.

Remark 6.1 The relation between the (pointwise) operators on functions and the corresponding
operators on streams, can be precisely expressed using again the homomorphism T : A ! IR!

from Example 2.7. For all analytic functions f and g in A,
T (f + g) = T (f) + T (g)
T (f � g) = T (f)
 T (g)
T (f�1) = T (f)�1

In order to prove this, let R � IR! � IR! be the smallest relation such that hT (f); T (f)i 2 R,
for all f 2 A and such that if hT (f); �i 2 R and hT (g); �i 2 R then hT (f + g); � + �i 2 R,
hT (f � g); �
 �i 2 R, and hT (f�1); ��1i 2 R. Then R is a bisimulation and the equations follow
by coinduction. 2

Next a number of properties of shu�e product and inverse is proved. We shall be using the
following conventions: for all �; � 2 IR!, r 2 IR, n � 0,

�0 = 1; �n+1 = � � �n; ��n = (��1)n

�0 = 1; �n+1 = �
 �n; ��n = (��1)n

r� = r � � = r
 �

(For the latter equality, see (23) below. Whenever � is not a real number, �� will always mean
� � � and never �
 � .)

Theorem 6.2 For all �; �; � 2 IR!, r 2 IR, n � 0,

r � � = r
 � (23)

�
 (�
 �) = (�
 �)
 � (24)

�
 � = �
 � (25)

�
 (� + �) = (�
 �) + (�
 �) (26)

�
 ��1 = 1 (27)

(�n+1)0 = (n+ 1)�0
 �n (28)

Xn = n!Xn (29)

Proof: Good exercise in coinduction and induction. 2

Theorem 6.3 [Taylor's theorem for streams] For all streams � 2 IR!:

� =

1X
n=0

�(n)(0)

n!
Xn =

1X
n=0

�(n)

n!
Xn

21

Proof: The theorem is a corollary of Theorem 5.2 and equation (29) above. 2

The following formula is the basis for a good understanding of the shu�e product:

X
 (s0; s1; s2; s3; : : :) = (0; 1s0; 2s1; 3s2; 4s3; : : :)

At the same time, it explains the relevance of the following de�nition:

�(�) = X
 (�0)

since �(�) = (0s0; 1s1; 2s2; 3s3; : : :). It is used in the de�nition of the following operator on
streams:

di�erential equation initial value
�(�)0 = �(�(�)0) (�(�))(0) = �(0)

One can easily prove that for � = (s0; s1; s2; s3; : : :),

�(�) = (0!s0; 1!s1; 2!s2; 3!s3; : : :)

The operator � transforms ordinary product and inverse into shu�e product and inverse, which
will be proved using the following lemma.

Lemma 6.4 For all streams � and � in IR!,

�(� � �)0 = (�(�)0 � �) + (� ��(�)0)

Proof: The proof is a stimulating exercise in coinduction. 2

Theorem 6.5 For all r 2 IR, �; � 2 IR!,

�(r) = r

�(X) = X

�(� + �) = �(�) + �(�)

�(� � �) = �(�)
�(�)

�(��1) = �(�)�1

Proof: The �rst three equalities are straightforward. For the fourth, use Lemma 6.4 and coin-
duction. The last equality follows from the previous ones, since for all � 2 IR! with �(0) 6= 0,

�(��1)

= 1
�(��1)

= (�(�)�1
�(�))
�(��1) [equations (25) and (27)]

= �(�)�1
 (�(�)
�(��1)) [equations (24)]

= �(�)�1
�(� � ��1)

= �(�)�1
�(1) [equation (21)]

= �(�)�1
 1

= �(�)�1

This concludes the proof of the theorem. 2

Next a few examples are presented of the use of shu�e product and shu�e inverse in various
de�nitions of streams.

22

Example 6.6 Recall from Example 5.3 that (1�X)�1 = (1; 1; 1; : : :). By Theorem 6.5, one has

(1�X)�1 = �((1�X)�1) = �((1; 1; 1; : : :)) = (0!; 1!; 2!; : : :)

For this stream, there exists in traditional calculus no generating function, since the in�nite sum

1X
n=0

n!xn

diverges for all x with x 6= 0. This shows that in stream calculus, more streams can be represented.
The two di�erential equations below are another illustration of the di�erence between ordinary

and shu�e product:

di�erential equation initial value solution
�0 = X � � �(0) = 1 (1; 0; 1; 0; : : :)
� 0 = X
 � �(0) = 1 (1; 0; 1� 3; 0; 1� 3� 5; : : :)

For the former, we have a closed form � = (1�X2)�1. (What is a closed form for � , we wonder?)
Here is another example involving the operator �, in two di�erential equations de�ning streams

of fractions:

di�erential equation initial value solution
�(�)0 = �(�) �(�)(0) = 1 (1=0!; 1=1!; 1=2!; 1=3!; : : :)
�(�)0 = (1�X)�1 �(�)(0) = 0 (0; 1=1; 1=2; 1=3; : : :)

The �rst solution is obtained by �rst solving the di�erential equation, considering �(�) as the
variable. This yields �(�) = (1 �X)�1. Next the obtained equality is turned into an (in�nite)
system of equations, by unfolding the left and right sides:

(0!s0; 1!s1; 2!s2; 3!s3; : : :) = (1; 1; 1; : : :)

The second solution is found in a similar fashion.
We have seen examples of di�erential equations on functions, such as the one for the exponential

function at the beginning of Section 3, that could be also interpreted as behavioural di�erential
equations on streams. The correspondence between function multiplication and shu�e product
allows us to interpret also equations involving products. For instance, the following analytical
di�erential equation

analytical di�erential equation initial value
f 0 = 1 + f2 f(0) = 0

(where f2 = f � f) is equivalent, on the basis of the correspondence between function product and
shu�e product, with the following behavioural di�erential equation:

behavioural di�erential equation initial value
� 0 = 1 + �2 �(0) = 0

(where, recall, �2 = �
 �). The equivalence consists of the fact that an analytic function f is a
solution of the �rst equation if and only if its Taylor series T (f) is a solution of the second one.
Since we know (recall, can look up) from analysis that the tangent function tan(x) is the unique
solution of the �rst equation, it follows that the second equation uniquely de�nes the Taylor series
� of tan(x). The advantage of this translation, which allows us to reason about � directly inside
the world of stream calculus, will become apparent when we shall deal with nondeterministic
representations of streams, which is the subject of Section 8. 2

In conclusion of this part on stream calculus, two further examples of operators on streams are
de�ned. The square root of a stream � with �(0) 6= 0 is de�ned by the following di�erential
equation:

23

di�erential equation initial value name

(
p
�)0 = 1=2(

p
�)�1
 �0 (

p
�)(0) =

p
�(0) square root

Variations on this type of de�nition can be easily constructed. Proving the expected property thatp
�
p� = � is yet another exercise in, as always, coinduction. The next equation de�nes for any

stream � the so-called shu�e star �� (also called shu�e closure):

di�erential equation initial value name
(��)0 = �0
 ��
 �� (��)(0) = 1 shu�e star

The notation, name, and equation for this operator are best explained by the equalities below,
which show that shu�e star is for shu�e product what star is for ordinary product. For all � with
�(0) = 0,

�� = 1 + � + (�
 �) + (�
 �
 �) + � � �
= 1 + � + �2 + �3 + � � �
= (1� �)�1

So also shu�e star is a de�nable operator in the presence of shu�e inverse but, again, there will be
situations without the presence of shu�e inverse, where the operator of shu�e star is still useful.

7 Rational streams

The set R of rational streams is the smallest collection such that

� r 2 R, for all r 2 IR;

� X 2 R;
� and if � 2 R and � 2 R then � + � 2 R, � � � 2 R, and �� 2 R.

Expressions denoting rational streams are called regular and are generated by the following syntax:

E ::= r (2 IR) j X j E + F j EF j E�

The following proposition shows that we might just as well have taken inverse rather than star in
the de�nition above. (The reason for taking star is that we shall encounter situations where star
is present but inverse is not; for instance, on the set of languages over a given alphabet.) Let us
�rst reveal a long kept secret. For all streams � and � ,

� � � = � � � (30)

(� � �)�1 = ��1 � ��1 (31)

The �rst equality is yet another nice exercise in coinduction, and the second is an easy consequence
of the second (using identity (21)). Next recall that a stream � is polynomial if it is of the form
� = p0 + p1X + p2X

2 + � � �+ pnX
n, for n � 0 and p0; : : : ; pn 2 IR.

Proposition 7.1 A stream � is rational i� there exist polynomial streams � and � with �(0) = 1
such that

� = � � ��1

Proof: Let V be the collection of all streams of the form � � ��1 with � and � polynomial and
�(0) = 1. Any polynomial � is clearly in R and so is the inverse of a polynomial � with �(0) = 1,
because ��1 = (1 � �)�, by identity (19). Thus � � ��1 2 R, which shows V � R. Conversely,
r 2 V , for all r 2 IR, and X 2 V . If � = ���1 and � = � �1 are in V , then so are

� + � = (� + ��)� (�)�1

� � � = (��) � (�)�1

�� = �� (1 + �(0)�� �)�1

using (30), (31), and for the latter equality also (13). 2

24

8 Nondeterministic stream automata

A polynomial � = p0 + p1X + � � �+ pnX
n with pn 6= 0 generates a �nite subautomaton h�i � IR!

of size n+ 2, since

� // (p1 + p2X + � � �+ pnX
n�1) // � � � // (pn�1 + pnX) // pn // 0

BCEDGF��
However, the subautomaton generated by the inverse of a polynomial or, more generally, by a
rational stream, is usually in�nite. A simple and typical example is the subautomaton of IR!

generated by the stream (1� rX)�1 = (rX)� = (1; r; r2; r3; : : :):

(1� rX)�1 // r(1� rX)�1 // r2(1� rX)�1 // r3(1� rX)�1 // � � �

which is in�nite for all r with r 6= 0; 1;�1. In this section, a new type of automaton is introduced,
with which �nite representations for rational streams can be given. By allowing transitions with
multiplicities in IR, the above transition sequence can then be captured by a one state automaton
with one single transition (see Example 8.3 below).

An IR-nondeterministic stream automaton, or nd-automaton for short, is a pair Q = (Q; ho; ti)
consisting of a set Q of states, and a pair of functions: As before, an output function o : Q! IR;
and a transition function which is now nondeterministic: t : Q! IR(Q) with

IR(Q) = f� : Q! IR j sp (�) is �nite g
where sp (�) = fq 2 Q j �(q) 6= 0g is the support of �. The output function o assigns to each state
q in Q a real number o(q) in IR. The transition function t assigns to a state q in Q a function
t(q) 2 IR(Q). Such a function can be viewed as a kind of nondeterministic or distributed state,
and speci�es for any state q0 in Q a real number t(q)(q0) in IR. This number can be thought of as
the multiplicity with which the transition from q to q0 occurs. (Another word for t(q)(q0) would
be the weight of the transition. Our nd-automata could also be called weighted automata.) The
following notation will be used:

q r�! q0 () t(q)(q0) = r; and q r�!() o(q) = r

which will allow us to present nd-automata by pictures. In such pictures, only those arrows
will be drawn that have a non-zero label. If we put for a state q in an nd-automaton (Q; ho; ti)
sp(t(q)) = fq1; : : : ; qng and let ri = t(q)(qi), for 1 � i � n, then the following diagram contains all
the relevant information about q:

q

r1

}}||||||||
rn

!!CCCCCCCC
o(q) //

q1 � � � qn

Note that the requirement of �nite support implies that the automaton Q is �nitely branching , in
the sense that from q, there are only �nitely many (non-zero) arrows.

The behaviour of a state q 2 Q with support fq1; : : : ; qng is a stream S(q) 2 IR!, de�ned,
coinductively, by the following system of behavioural di�erential equations:

di�erential equation initial value
S(q)0 = r1S(q1) + � � �+ rnS(qn) S(q)(0) = o(q)

(where as before, ri = t(q)(qi), for 1 � i � n). The pair (Q; q) is called a representation of the
stream S(q). A stream � 2 IR! is called �nitely representable if there exists a �nite nd-automaton
Q and q 2 Q with � = S(q).

25

Example 8.1 Consider the following two state nd-automaton:

q1

1

88

EDGF1@A
// q2

EDGF1@A
// 1 //

We have the following equations for the behaviour of q1 and q2:

di�erential equation initial value
S(q1)

0 = S(q1) + S(q2) S(q1)(0) = 0
S(q2)

0 = S(q2) S(q2)(0) = 1

Calculating the solutions of these equations as we did in Section 5, we �nd:

S(q1) = X(1�X)�2 = (0; 1; 2; 3; : : :); S(q2) = (1�X)�1 = (1; 1; 1; : : :)
2

The following proposition gives a characterisation of the behaviour of a state of an nd-automaton
in terms of its transition sequences.

Proposition 8.2 For an nd-automaton Q, for all q 2 Q and k � 0,

S(q)(k) =
X

fl0l1 � � � lk�1l j q = q0
l0�! q1

l1�! � � � lk�1��! qk
l�!g

As an example, the reader may wish to check for q1 of Example 8.1 above that this proposition
implies that S(q1)(k) = k, indeed.

Proof: Using the di�erential equation for S(q) and the observation that

S(q)(k + 1) = S(q)(k+1)(0)

= (S(q)0)(k)(0)

= (r1S(q1) + � � �+ rnS(qn))
(k)(0)

= r1S(q1)
(k)(0) + � � �+ rnS(qn)

(k)(0)

= r1S(q1)(k) + � � �+ rnS(qn)(k)

the proof follows by induction on k. 2

The reverse game is also interesting: given a stream �, �nd it a representation; that is, construct
an nd-automaton Q containing a state q 2 Q with � = S(q). The following examples give a rather
general procedure for the construction of such an automaton, the essence of which is the `splitting
of derivatives'.

Example 8.3 For a typical example, consider a polynomial � = p0+p1X+� � �+pn�1X
n�1+pnX

n,
with n 6= 0. We are going to construct an nd-automaton with streams as states. The �rst state to
be included is � itself. Computing its derivative yields �0 = p1+p2X+ � � �+pn�1X

n�2+pnX
n�1.

Now that we have written �0 as a sum, we are going to `split' it into its summands, each of which
is included as a state of the automaton under construction. In principle, one then continues this
process for each of these new states but in this particular example, we are already done: we set
Q = f�; 1; X;X2; : : : ; Xn�1g, and de�ne outputs and transitions as speci�ed by the following
diagram:

�
p0 //

p1

vvnnnnnnnnnnnnnnn

p2}}||||||||

pn�1 ##GGGGGGGGG
pn

))TTTTTTTTTTTTTTTTTT

1 X
1

oo � � �
1

oo Xn�2
1

oo Xn�1
1

oo

26

The state � has transitions into each of its summands, all with the appropriate coe�cient. The
other transitions are obtained by computing derivatives again: (X i)0 = X i�1, for 1 � i � n � 1,
each of which is `unsplittable'. (One might have included also the stream 0 as an additional state,

with transitions 1 1�! 0 and 0 1�! 0, but there is no need for doing so, really.) The outputs are
obtained by computing the respective initial values: all states have output 0 but for �, whose
output is its initial value �(0), and the state 1, which has output 1. (Here and below, the output
of the constant 1 is not included in the picture.) It is now an easy exercise in coinduction to prove
that the state � 2 Q represents the stream � 2 IR!: Let R � IR! � IR! be the smallest relation
such that

1. hS(�); �i 2 R and hS(X i); X ii 2 R, for all 0 � i � n� 1;

2. if h�; �i 2 R then hr�; r�i 2 R, for all r 2 IR;

3. if h�; �i 2 R and h� 0; �0i 2 R then h� + � 0; �+ �0i 2 R.
Then R is a bisimulation relation and it follows by coinduction that S(�) = �, indeed.

Another typical example concerns the construction of an automaton for the inverse of a poly-
nomial. Let � = r0 + r1X + � � � + rm�1X

m�1 + rmX
m with rm 6= 0. It will be convenient to

assume that r0 = 1 (but the construction below works for any r0 6= 0). In order to construct an
nd-automaton for ��1, we compute and split its derivative as follows:

(��1)0

= �r�1
0 �0 � ��1

= �(r1 + r2X + � � �+ rm�1X
m�2 + rmX

m�1)� ��1

= �r1��1 � r2X�
�1 � � � � � rm�1X

m�2��1 � rmX
m�1��1

From this, the following picture can be deduced:

��1 1 //
�r2

yy �r3zzvvvvvvvvv

�rm�1 %%KKKKKKKKKK
�rm

**VVVVVVVVVVVVVVVVVVVVV

@AGF�r1 ED��
X��1

1

55jjjjjjjjjjjjjjjjjjj
X2��1

1
oo � � �

1
oo Xm�2��1

1
oo Xm�1��1

1
oo

(Again, S(��1) = ��1 follows easily by coinduction.) Applying this to the example at the begin-
ning of the present section yields

(1� rX)�1

@AGFr ED ��
1 //

Thus we have obtained a �nite nondeterministic representation for the stream (1� rX)�1 which
deterministically, as we have seen above, could only be represented by an in�nite automaton. 2

The two examples above yielded �nite representations. This is not a coincidence.

Theorem 8.4 A stream � is rational i� it has a �nite representation: there exist an nd-automaton
Q and a state q 2 Q with � = S(q).

Proof: Consider polynomials � = p0 + p1X + � � � + pnX
n and � = r0 + r1X + � � � + rmX

m

with 0 < n < m and r0 = 1, and let � = � � ��1. (The case that m � n can be dealt with

27

similarly.) A computation similar to the ones in Example 8.3 gives rise to the following picture of
an nd-automaton for �, which is presented here without further ado:

� � ��1
p0 //

v2

��
v1

��

vm

))SSSSSSSSSSSSSSS

X��1

1

��

� � �1oo Xm�1��11oo

��1

�r2

SS

�rm

55kkkkkkkkkkkkkkkkkGF@A�r1 BCOO 1
//

vi =

�
pi � p0ri if 1 � i � n
�p0ri if n < i � m

This proves that every rational stream has a �nite representation. For the converse, Example
8.1 can simply be generalised to arbitrary �nite nd-automata Q. If Q = fq1; : : : ; qng then the
streams S(qi) are de�ned by a system of n di�erential equations, containing 2n unknowns: S(qi)
and S(qi)

0. Applying the fundamental theorem of stream calculus (Theorem 5.1) to each of S(qi)
gives n more equations: S(qi) = S(qi)(0) + XS(qi)

0. By solving the 2n equations that we have
now obtained, we �nd regular expressions for each of (S(qi)

0 and) S(qi), which shows that these
streams are rational. 2

One can show that both the nd-automata in Example 8.3 are minimal, and that the nd-automaton
for � = ����1 in Theorem 8.4 is minimal if � and � have no common factor. We leave the subject
of minimality and minimisation to be discussed at another occasion.

One of the advantages of nondeterministic automata is that they form �nite representations for
rational streams whereas, generally, these cannot be �nitely represented by deterministic stream
automata (as was illustrated at the end of Example 8.3). Nevertheless, it may be worthwhile to
study also in�nite nd-automata representing non-rational streams. We hope the next example
convinces the reader hereof.

Example 8.5 Recall from Example 6.6 the behavioural di�erential equation for the Taylor series
of the function tan(x):

behavioural di�erential equation initial value
� 0 = 1 + (�
 �) �(0) = 0

This series is notoriously di�cult in that no closed formula for its elements, the so-called tangent
numbers, exists. Here an nd-automaton for � is constructed, from which such a formula can be
derived. Following again the `splitting of derivatives' procedure for the construction of an nd-
automaton Q for � , the �rst states to be included are � , 1, and �
 � = �2. Computing the
derivative of the latter, we �nd, using the di�erential equation for � again,

(�2)0 = 2� 0
 �

= 2(1 + �2)
 �

= 2� + 2�3

Continuing this way, one obtains Q = f1; �; �2; �3; �4; : : :g with transitions as in the following
diagram:

1 �
1 ++1oo �2
2

jj
2 ++

�3
3

kk
3 ++

�4
4

kk
4 ++ � � �
5

kk

Thus we have obtained an, albeit in�nite but extremely regular and simple nd-automaton, in
which the state � represents the Taylor series of tan(x). Applying Proposition 8.2 now yields a
formula for the n-th tangent number. 2

28

There is also the following algebraic characterisation of the behaviour of a �nite nd-automaton
Q = (Q; ho; ti). It will play no role in the remainder of this paper. Let Q = fq1; : : : ; qng and let �
be the n�n matrix with entries �ij = t(qi)(qj). Furthermore write o : Q! IR as a column vector
ot = (o(q1); : : : ; o(qn))

t.

Proposition 8.6 For any sequence of real numbers a = (a1; : : : ; an) (viewed as a row vector),
and for all k � 0,

a1S(q1)(k) + � � �+ anS(qn)(k) = a� �k � ot

where on the right, matrix multiplication is used.

Proof: The proof is an immediate consequence of Proposition 8.2. 2

9 Formal power series

Time has come to generalise our theory of streams to a much wider setting. Recall that streams
are formal power series in one single variable X with coe�cients in IR, as is stated by Theorem 5.2.
Two aspects will be generalised next: we shall deal with formal power series in many variables,
and with coe�cients in an arbitrary semiring . As we shall see, all results on streams that depend
only on the semiring structure of the real numbers or, in other words, those parts of the theory
that did not use the operations minus and inverse, will turn out to hold for this much larger
family of formal power series, too, with de�nitions and proofs that are almost literally the same.
The outcome of all this will be a calculus of formal power series, in which we shall be reasoning
about streams, formal languages, so-called (max,+)-automata and many other structures, all at
the same time. In addition to the results on streams of the previous sections, the theory of power
series will be further illustrated in Section 10 on formal languages and in Section 11 on max-plus
automata.

A semiring is something like a ring without subtraction. More precisely, it consists of a set k
together with two binary operations + and � (sum and product) and two constants 0 and 1:

k = hk;+;�; 0; 1i
such that, for all x, y, and z in k,

1. (k;+; 0) is a commutative monoid with 0 as identity;

2. (k;�; 1) is a monoid with 1 as identity;

3. x� (y + z) = (x� y) + (x� z) and (y + z)� x = (y � x) + (z � x);

4. 0� x = x� 0 = 0

(Usually we shall write xy for x� y.) Here are the semirings that interest us most:

k k + � 0 1
IR IR + � 0 1
IB f0; 1g _ ^ 0 1
IRmax [�1;1) max + �1 0

Sofar we have only been dealing with the �rst of these, the real numbers. The second semiring is
that of the Booleans, and the third consists again of the real numbers, now extended with minus
in�nity and with di�erent operators and constants. Note that both IB and IRmax are idempotent
semirings in that they satisfy x+ x = x.

Next let A be an arbitrary set, the elements of which will be called letters or variables or input
symbols , depending on where we are in our story. The letters a, b, : : : denote typical elements of
A, but occasionally X and Y will be used as well. Let A� be the set of all �nite words over A,

29

that is, �nite sequences of elements of A. Pre�xing a word w in A� with a letter a in A is denoted
by aw; concatenation of words v and w is denoted by vw; and 0 denotes the empty word (empty
sequence). The context will always make clear which `zero' is meant: 0 2 A� or 0 2 k.

We now come to the main de�nition of the present section: the set khhAii of formal power
series with variables in A and coe�cients in k is given by

khhAii = kA
�

= f� j � : A� ! kg
As mentioned above, formal power series generalise streams, which are obtained as a special case
by taking k = hIR;+;�; 0; 1i and A = fXg:

IRhhfXgii = IRfXg� �= IR!

since fXg� �= f0; 1; 2; : : :g = !. Another example that will be dealt with extensively, is obtained
by taking A arbitrary and k = IB:

IBhhAii = f0; 1gA� �= fL j L � A�g
yielding the set L = fL j L � A�g of formal languages over A.

Next we generalise the de�nition of deterministic stream automata, used for the representation
of streams, to formal power series. A deterministic automaton with inputs in A and outputs in
k or, simply, automaton is a pair Q = (Q; ho; ti) consisting of a set Q of states , and a pair of
functions: an output function o : Q ! k, and a transition function t : Q ! QA. (Here QA is
the set of all functions from A to Q.) The output function o assigns to a state q 2 Q an output
value o(q) in k. The transition function t assigns to a state q 2 Q a function t(q) : A ! Q,
which speci�es the state t(q)(a) that is reached after the input symbol a 2 A has been consumed.
We shall sometimes write q x�! for o(q) = x and q a�! q0 for t(q)(a) = q0. (This notation is not
to be confused with the transitions of type q r�! q0, with r 2 IR, which we encountered in the
nd-automata for streams.)

Taking in this de�nition A = fXg and k = IR yields our earlier de�nition of stream automaton
indeed (modulo the isomorphism QfXg �= Q). In the case of our second canonical choice: arbitrary
A and k = IB, one obtains the classical de�nition of deterministic automaton of formal language
theory. The latter is usually de�ned as a triple (Q;F � Q; � : Q�A! Q) consisting of a set Q of
states, a subset F � Q of so-called �nal or accepting states, and a transition function � (often an
initial state is included as well). The equivalence with our de�nition of deterministic automaton
above is an immediate consequence of the following two bijective correspondences:

fF j F � Qg �= fo j o : Q! f0; 1gg; f� j � : Q�A! Qg �= ft j t : Q! QAg
Similar to the way in which the set IR! of streams was turned into a stream automaton, using

the operation of stream derivative for the de�nition of the transition function, the set khhAii of
formal power series can be provided with an automaton structure too. However, we shall need
more derivative operations, one for each variable in A, to be precise: For a variable or input symbol
a in A, the input derivative or a-derivative �a of a series � 2 khhAii is de�ned by

�a : A
� ! k; w 7! �(aw)

The initial value (or output) of a series � is de�ned by �(0). Now khhAii can be turned into an
automaton (khhAii; ho; ti) by de�ning, for � 2 khhAii and a 2 A,

o(�) = �(0); t(�)(a) = �a

(The reader may wish to check that these de�nitions specialise to the ones for streams.) The
following notation will sometimes be used: �0 = � (here 0 is the empty word) and �aw = (�w)a,
for any word w 2 A�. Note that with this notation, we have �w(0) = �(w).

All the results on the automaton of streams apply to the automaton of power series as well and
are summarised below. We need to introduce a generalised version of the notion of bisimulation

30

�rst. A bisimulation between deterministic automata (Q; hoQ; tQi) and (Q0; hoQ0 ; tQ0i) is a relation
R � Q�Q0 such that for all q in Q and q0 in Q0:

if q R q0 then

�
oQ(q) = oQ0(q0) and
8a 2 A; tQ(q)(a) R tQ0(q0)(a)

As before, q � q0 denotes bisimilarity, and a homomorphism is de�ned as a functional bisimulation.
The proof of the following theorem is an easy variation on the earlier results on streams, and is
therefore omitted.

Theorem 9.1

1. Coinduction: For all series � and � in khhAii, if � � � then � = � .

2. Finality: For any automaton Q there exists a unique homomorphism l : Q ! khhAii. It
satis�es, for all q and q0 in Q, q � q0 i� l(q) = l(q0).

2

For a state q 2 Q, the formal power series l(q) is again called the behaviour of q. Viewing an
automaton Q as a machine that consumes sequences of input symbols (words in A�), the power
series l(q) can be considered as a large table which gives us for any w 2 A� the output value of
the state that is reached after w has been consumed. More formally,

if q a0�! q1
a1�! � � � an�! qn+1

x�! then l(q)(a0 � � �an) = x

Both de�nitions by coinduction, in terms of behavioural di�erential equations, and proofs by
coinduction work the same way for series as they did for streams. We brie
y summarise the
main results (again without proof, as these are easy variations on the ones for streams). There
are unique operators on series satisfying the following behavioural di�erential equations: For all
x 2 k, a; b 2 A, �; � 2 khhAii,

di�erential equation initial value name
xa = 0 x(0) = x constant
bb = 1, ba = 0 (b 6= a) b(0) = 0 variable
(� + �)a = �a + �a (� + �)(0) = �(0) + �(0) sum
(� � �)a = (�a � �) + (�(0)� �a) (� � �)(0) = �(0)� �(0) product
(��)a = �a � �� (��)(0) = 1 star
(��1)a = �(�(0)�1 � �a)� ��1 (��1)(0) = �(0)�1 inverse
(�
 �)a = (�a
 �) + (�
 �a) (�
 �)(0) = �(0)� �(0) shu�e product
(��)a = �a
 ��
 �� (��)(0) = 1 shu�e star
(��1)a = ��a
 (��1
 ��1) ��1(0) = �(0)�1 shu�e inverse
(
P

i2I �i)a =
P

i2I (�i)a (
P

i2I �i)(0) =
P

i2I �i(0) generalised sum

In the above, the following is to be noted:

� We identify constant x and variable b with the power series x and b de�ned by the �rst two
equations. In this way, the semiring k and the set of variables A can be considered as subsets
of khhAii. Identifying moreover a word w = a0 � � � an with the product of (the power series
corresponding to) its letters:

w = a0 � � � � � an

we also have an inclusion of A� in khhAii.
� Inverse and shu�e inverse are de�ned only when k is a ring (we need subtraction) and �(0)
is invertible in k. We do not have these operations on the set L of languages (where k = IB).

� Generalised sum is de�ned only for families of series that are locally �nite, which in the
present context means: for every word w 2 A�, the set fi 2 I j �i(w) 6= 0g is �nite.

31

The above operators satisfy again the usual properties. Keeping in mind the restrictions just
mentioned, all of the stream laws given in Theorem 4.1 are valid for series as well. The bisimulation
relations to be used for the proofs of these laws can be taken identical to those in the proofs for
streams, replacing streams by series everywhere. Although the ordinary product of streams is
commutative (as was stated in Section 7), this is no longer true for power series since, for instance,

a� b 6= b� a

for a; b 2 A with a 6= b. (Shu�e product still is commutative and also satis�es the other identities
formulated in Theorem 6.2.) There is also the following generalisation of Theorem 5.1, which is
proved in the same way.

Theorem 9.2 [Fundamental Theorem of series calculus] For all formal power series � 2 khhAii:

� = �(0) +
X
a2A

a� �a

Proof: The theorem follows by coinduction from the fact that

fh�; �(0) +
X
a2A

a� �ai j � 2 khhAiig [fh�; �i j � 2 khhAiig

is a bisimulation relation on khhAii, which is immediate from the equalities (a � �)a = � and
(a� �)b = 0, for b 6= a. 2

There is also the following expansion theorem for formal power series, generalising Theorem 5.2.
For all series � 2 khhAii,

� =
X
w2A�

�(w) � w

where with the last occurrence of w, we are using the shorthand w = a0 � � � � � an. If we use
shu�e product instead of ordinary product, as in

w = a0
 � � �
 an

we can consider formal power series with commuting variables: Every series � 2 khhAii induces a
series c(�) 2 khhAii de�ned by

c(�) =
X
w2A�

�(w) � w

The variables in this series c(�) can indeed be considered to be commutative since c(�)(w) =
c(�)(w0), for all words w;w0 2 A� with w = w0. For instance, 2aba+ aab induces the series

2(a
 b
 a) + (a
 a
 b) = 3(a
 a
 b) = 3a2
 b

For such commutative series, a Taylor theorem can be formulated, generalising the one for streams
(Theorem 6.3).

Finally, the de�nitions of rationality and of nd-automaton are formulated for series as well.
A formal power series is rational if it can be constructed from �nitely many constants x 2 k
and variables a 2 A, by means of the operators of sum, product, and star. A k-nondeterministic
automaton, or again nd-automaton for short, is a pair Q = (Q; ho; ti) consisting of a set Q of
states, and a pair of functions: an output function o : Q ! k; and a transition function which is
now k-nondeterministic: t : Q ! k(Q)A. Here k(Q)A is the set of all functions from A to k(Q),
which is de�ned by

k(Q) = f� : Q! k j sp (�) is �nite g

32

(recall sp (�) = fq 2 Q j �(q) 6= 0g). The transition function t assigns to a state q in Q a function
t(q) 2 k(Q)A, which at its turn assigns to each input symbol a 2 A a function t(q)(a) : Q! k. As
before, the latter can be viewed as a kind of nondeterministic or distributed state, and speci�es
for any state q0 in Q a multiplicity t(q)(a)(q0) in k. The following notation will be used:

q
ajx�! q0 () t(q)(a)(q0) = x; and q x�!() o(q) = x

The behaviour of a state q in an nd-automaton Q is now a formal power series S(q) 2 khhAii,
again de�ned in terms of di�erential equations: if the support of t(q)(a), for a 2 A, is fq1; : : : ; qng,
then S(q) is de�ned by the following system of behavioural di�erential equations:

di�erential equation initial value
S(q)a = x1S(q1) + � � �+ xnS(qn) S(q)(0) = o(q)

where xi = t(q)(a)(qi), for 1 � i � n. Theorem 8.4 also applies to formal power series: A series
� 2 khhAii is rational i� it has a �nite representation, that is, there exist an nd-automaton Q
and a state q 2 Q with � = S(q). (The proof is slightly more complicated than for streams, for
which rationality is equivalent to being the quotient of polynomials, which simpli�es matters.)
Propositions 8.6 and 8.2 are easily adapted to series. The latter proposition now reads: For an
nd-automaton Q, for all q 2 Q and w = a0 � � � an�1,

S(q)(w) =
X

fx0x1 � � �xn�1x j q = q0
a0jx0���! q1

a1jx1���! � � � an�1jxn�1������! qn
x�!g

10 Languages

Let A be arbitrary and let k = IB. We have already seen that in this case,

IBhhAii �= L = fL j L � A�g
the set of formal languages over A. We shall �rst show how the various de�nitions of Section
9 look like for languages, and next discuss in detail the coinduction proof principle for rational
languages.

As we have already seen, deterministic automata are the usual ones: sets of states Q with a
transition function t : Q ! QA, giving for each state q 2 Q and input symbol a 2 A the next
state t(q)(a), and output function o : Q! f0; 1g, telling whether q is accepting : o(q) = 1, or not:
o(q) = 0. In pictures, we shall write q+ to denote that o(q) = 1. The automaton structure on L
itself looks as follows: o(L) = L(0), where L(0) = 1 if 0 2 L, and L(0) = 0 otherwise. Thus a
language is accepting i� it contains the empty word 0. Transitions are given by

L a�! La

where the a-derivative La of L is de�ned by La = fw 2 A� j aw 2 Lg. The �nality of L asserts
that for a deterministic automaton Q, there exists a unique homomorphism l : Q! L. It assigns
to a state q 2 Q the language l(q) it accepts:

l(q) = fa0 � � �an j q a0�! q1
a1�! � � � an�! qn+1+g

Bisimulation relations on L are relations R � L�L such that, for all K;L 2 L, hK;Li 2 R implies
o(K) = o(L) and hKa; Lai 2 R, for all a 2 A. The coinductive de�nitions of the various operators
in terms of the behavioural di�erential equations presented in Section 9, are easily proved (by
coinduction) to be equivalent to the usual de�nitions:

0 = ;
1 = f0g (here 0 denotes the empty word)

a = fag
K + L = K [L

33

K � L = fvw j v 2 K; w 2 Lg

K� =

1X
n=0

Kn

K
 L =
[
fv
 w j v 2 K; w 2 Lg

where v
 w is de�ned, by induction on the length of words, as follows:

v
 w = v k�w + w k� v; 0 k� v = fvg; (av) k�w = fau j u 2 v
 wg

(Note that the equality for the shu�e product at last explains the terminology: the shu�e product
of two languages consists of the union of all the shu�es of their elements. For instance, fabg
fcg=
fabc; acb; cabg.) The above identities are given merely to show that the coinductive de�nitions are
equivalent to the traditional ones. However, all reasoning about languages and their operators will
be in terms of their coinductive de�nitions, that is, di�erential equations.

Next we shall study in some detail the subautomaton hLi � L generated by a language L 2 L.
It turns out to be minimal among all automata accepting L, and it is moreover �nite i� L is
rational. (Note that the latter fact does not hold for power series over arbitrary semirings; for
instance, in order to obtain �nite representations for rational streams, one has to resort to nd-
automata.) As a consequence, the coinduction proof principle will be shown to be e�ective for
rational languages.

So consider an arbitrary language L 2 L. The subautomaton hLi � L generated by L consists
of the following states:

hLi = fLw 2 L j w 2 A�g
where, recall, L0 = L and Lwa = (Lw)a. Since the inclusion function i : hLi � L is a homomor-
phism, the language accepted by the state L of the automaton hLi is i(L) = L. Next consider any
deterministic automaton Q and state q 2 Q with l(q) = L, where l : Q ! L is the (by �nality)
unique homomorphism from Q into L. Assume that all states in Q are reachable from q: Q = hqi
(where hqi is the subautomaton generated by q); otherwise switch from Q to hqi, and call it Q
again. Because l is a homomorphism, one easily shows that l(hqi) = hl(q)i. As a consequence,
l(Q) = l(hqi) = hl(q)i = hLi, implying that the size of Q is greater than or equal to the size of
hLi. Since Q was arbitrary, this shows that hLi is a minimal automaton for L.

For rational languages, which are built from �nitely many constants (0 and 1) and variables
(a 2 A) by means of the operations of sum, product, and star, we have the following.

Theorem 10.1 A language L 2 L is rational i� hLi is �nite.

Proof: For the implication from left to right, note that h0i = f0g, h1i = f1; 0g, hai = fa; 1; 0g
and, for all K;L 2 L, w 2 A�,

(K + L)w = Kw + Lw (32)

(K � L)w = Kw � L+
X
uv=w

Ku(0)� Lv (33)

(K�)w = Kw �K� +
X

u1���unv=w

Ku1(0)� � � � �Kun(0)�Kv �K� (34)

The latter equations can be proved by induction on the length of w, using the de�ning di�erential
equations for the operators. De�ning w(L), for any language L, as the number of distinct w-
derivatives of L, one has w(0) = 1, w(1) = 2, w(a) = 3, w(K + L) � w(K) � w(L), w(K � L) �
w(K) � 2w(L), w(K�) � 2w(K), using the fact that K(0) 2 f0; 1g, for any language K. It follows
by induction on the construction of a rational language L that hLi is �nite.

34

For the converse, we shall treat an example, leaving the formulation of a proof for the general case
to the diligent reader. Consider the following subautomaton hKi of L:

hKi =
K

a //

b !!BBBBBBBB L+
b

��

GFEDaBC
oo

N

@AGFa ED��GF@Ab BCOO M+
b

oo @A BC
a

EDoo

We are going to use Theorem 4.1(16) and Theorem 9.2: for all K;L;M 2 L with L(0) = 0,

K = (L�K) +M) K = L�M (35)

and, for all K 2 L,

K = K(0) +
X
a2A

a�Ka (36)

Applying (36) four times, we obtain

K = a� L+ b�M

L = a� L+ b�M + 1

M = a�M + b�N + 1

N = a�N + b�N

BecauseN = (a+b)�N+0, (35) impliesN = (a+b)��0 = 0. ThusM = a�M+1, which, again by
(35), givesM = a�. Similarly, one �nds L = a��(b�a�+1) and K = a�a��(b�a�+1)+(b�a�),
which proves that K is rational, indeed. 2

Remark 10.2 Formulas (32), (33), and (34) above are special instances of the following more
general observations, due to Conway [Con71], on which the proof could also be based. Let for
K;L 2 L the K-derivative of L be de�ned by

LK =
X
w2K

Lw

(note that in�nite sums of languages always exist). Then for all K;L;M 2 L,
(K + L)M = KM + LM

(K � L)M = KM � L+ LMK

(K�)M = M(0) +KMK�
K�

2

Remark 10.3 Theorem 10.1 can also be used to prove that a language L is not rational, by
showing that hLi is in�nite. (This method can easily be seen to be equivalent to the traditional
method for demonstrating that a language L is not rational by showing that the equivalence
relation RL � A� �A�, de�ned for v; w 2 A� by

v RL w i� 8u 2 A�; vu 2 L () wu 2 L:
is of in�nite index, that is, has in�nitely many equivalence classes.) Here are three classical
examples, in which the following shorthand will be used. For a language K and k � 0, let the

35

language Kk be the resulting state after k a-steps: Kk = Kak . Let L = fanbn j n � 0g, where as
usual a0 = 1 and an+1 = aan. Clearly, Lk = fan�kbn j n � kg and thus Lk and Lk0 are di�erent
whenever k and k0 are. This shows that hLi is in�nite, hence L is not rational. For a second
example, consider M = fw 2 A� j]a(w) =]b(w)g consisting of all words with an equal number
of a's and b's. All languages Mk are di�erent because for any n and k, the word bn is in Mk i�
k = n. Thus hMi is in�nite and M is not rational. Finally, let N = fan2 j n � 0g. Note that for
any n the length of the shortest word in Nn2+1 is ja(n+1)2�n2�1j = ja2nj = 2n. Therefore Nn2 and
Nm2 are di�erent whenever n and m are. Thus hNi is in�nite and N is not rational. 2

Here is an example of the symbolic computation of the automaton generated by a rational language.
(It should be clear how to deduce an algorithm from this example that works for any rational
language; a proof of the correctness and termination of such an algorithm is contained in Theorem
10.1.) LetK = (b�a)�ab�. (As usual,MN is written forM�N , for languagesM;N 2 L.) We �rst
construct hKi and then hK�i. Following the di�erential equations for the operators, we compute:

Ka = ((b�a)�ab�)a

= ((b�a)�)aab
� + (b�a)�(0)(ab�)a

= (b�a)a(b
�a)�ab� + 1(aab

� + a(0)(b�)a)

= ((b�)aa+ (b�)(0)aa)(b
�a)�ab� + 1(1b� + 0(b�)a)

= (ba(b
�)a+ 11)(b�a)�ab� + 1(b� + 0)

= (0(b�)a+ 1)(b�a)�ab� + 1b�

= (0 + 1)(b�a)�ab� + b�

= (b�a)�ab� + b�

= K + b�

(Note that in the above calculations, the following identities have been used: 0L = 0, 1L = L,
0 + L = L, L+ 0 = L.) Similarly one computes Kb = (b�a)K. Continuing with the computation
of the derivatives of the new states Ka and Kb, one �nds

Kaa = Ka; Kab = Kb + b�; Kba = K; Kbb = Kb

yielding only one new state, Kab = Kb + b�. Computing its derivatives gives Kaba = K and
Kabb = Kab. No new states have been found and so the computation of the states in hKi is
complete. Computing their initial values, we �nd Ka(0) = 1 = Kab(0), and 0 for all other states.
The following picture of hKi has been obtained:

hKi =
Kb

a ++
@AGFb ED��

K
a //

b

kk Ka+
GF EDaBC

oo

b

��
Kab+

a

bbDDDDDDDDGF@A
b

BCOO
We continue with the construction of hK�i. It follows from formula (34) that each of the states
in hK�i is characterised by a �nite subset of states in hKi. Here are a few example calculations,
in which we shall be writing K�

w for (K�)w:

K�
a = Ka �K�

K�
aa = (Ka)a �K� +Ka(0)�K�

a

= Ka �K� + 1�Ka �K�

= K�
a

K�
ab = (Ka)b �K� +Ka(0)�K�

b

36

= Kab �K� +Kb �K�

= (Kab +Kb)�K�

K�
aba = (Kab +Kb)a �K� + (Kab +Kb)(0)�K�

a

= (K +K)�K� +Ka �K�

= (K +Ka)�K�

K�
b = Kb �K�

K�
ba = K �K�

Computing further derivatives and initial values, the following automaton for K� is obtained:

Q =

K�
aba+

b

��

a

##GGGGGGGGG
K�+ b //

a

��

K�
b

a

��

GFEDbBC
oo

K�
ab+

a

KK

BC@A
b

GF // K�
a+GF@Aa BCOOboo K�

baa
oo

b

KK

Is it the minimal automaton for K�, that is, Q = hK�i? That depends on how we read the
information provided by the picture. Consider the following three states in Q: K�

a , K
�
ab, and

K�
aba. Reading these names purely symbolically, they are di�erent, indeed. However, read as

languages, they are identical:

K�
a = K�

ab = K�
aba

This follows easily by coinduction from the fact that they are bisimilar as states in Q. In order to
obtain the minimal automaton hK�i, these three states have to be identi�ed, yielding:

hK�i =

K�+ b //

a

��

K�
b

a

��

GFEDbBC
oo

K�
a+

@AGFa ED��GF@Ab BCOO K�
baa

oo

b

KK

Thus some additional reasoning was needed in order to realise that our picture of Q in fact consists
of 4 rather than 6 di�erent states. More generally speaking, one has to identify all bisimilar states in
order to obtain a minimal automaton. There exist various algorithms for this type of minimisation,
but we shall not pursue the matter any further here. We simply do not need minimal automata
for the algorithmic account of proofs by coinduction, which is presented next.

We illustrate the general idea by proving the following equality by coinduction:

((b�a)�ab�)� = 1 + a(a+ b)� + b(a+ b)�aa(a+ b)�

The language on the left is our friend K� and let L denote the language on the right. We have to
construct a bisimulation relation R � L�L with hK�; Li 2 R. The �rst pair to be included in R
is hK�; Li, and further pairs are determined by the pairwise derivatives hK�

w; Lwi. The derivatives
for K� were already analysed above during the construction of hK�i. A similar computation yields
the following picture of hLi, which contains all possible derivatives of L:

hLi = La+
@AGFa ED��GF@Ab BCOO L

aoo
b

// Lb

EDGFb@A
//

a ,,
Lba

b

kk
a

// Lbaa+
EDGFa@A

//
b --

Lbaab+@A BC
b

EDoo
a

mm

37

(Note that, as with hK�i, not all possible identi�cations have been made; the languages La, Lbaa,
and Lbaab are bisimilar and hence equal.) Reading o� the derivatives from the pictures of hK�i
and hLi, the de�nition of R is now immediate:

R = f hK�; Li; hK�
a ; Lai; hK�

ab; Lai; hK�
aba; Lai; hK�

b ; Lbi;
hK�

ba; Lbai; hK�
a ; Lbaai; hK�

ab; Lbaabi; hK�
aba; Lbaai g

The relation R is a bisimulation: it is closed under taking derivatives, and M(0) = N(0) for all
hM;Ni 2 R. The equality K� = L now follows by coinduction.

The above procedure works for arbitrary pairs hM;Ni of rational languages: either one �nds a
bisimulation indeed, from which the equalityM = N can be concluded, or the attempt to construct
a bisimulation relation fails, because one comes across a pair hMw; Nwi, for some w 2 A�, with
Mw(0) 6= Nw(0). In that case, the conclusion isM 6= N , and w is a witness to this fact: w 62M\N .
In view of the latter possibility, it is in general wise to compute the derivatives ofM andN together
and not separately. This will not make any di�erence if the languages in the end turn out to be
bisimilar, as in our example of K� and L above. But in case they are not, the computation of
derivatives may be stopped as soon as a pair of derivatives with di�erent initial values is found.

The classical way to prove the equality of two (regular expressions denoting) rational languages
is to construct automata for each of them, minimising these automata, and then to see whether
the resulting automata are isomorphic or not. This procedure can be related to the coinductive
proof method explained above, by the observation that bisimulation relations carry themselves
an automaton structure. (Cf. Section 14, where bisimulations are in fact de�ned as coalgebras,
that is, generalised automata satisfying certain properties.) The outputs and transitions are
determined component-wise, as is illustrated by the following picture, which gives the automaton
for the relation R that was used in the proof of K� = L above:

hK�
aba; Lai+

b

��

a

''NNNNNNNNNNN
hK�; Li+ b //

a

��

hK�
b ; Lbi

a

��

GF EDb BC
oo hK�

ab; Lbaabi+
EDGF b@A

//
a .. hK�

aba; Lbaai+
b

nn

a
vvnnnnnnnnnnnn

hK�
ab; Lai+
a

KK

BC@A
b

GF // hK�
a ; Lai+@A BC

a

EDooboo hK�
ba; Lbai a

//

b

KK

hK�
a ; Lbaai+@A BC

a
EDoo

b

OO

The di�erence with the classical approach is twofold. Firstly, only one automaton is constructed
for both languages at the same time. This has the advantage, as explained above, that in case the
languages are di�erent the whole construction can be aborted as soon as a witness is encountered.
Secondly, the automaton need not be minimised. The automaton representing R above consists
of 9 states, whereas its minimisation would only have 4 states. The conclusion that K� = L
could nevertheless be based on the mere fact that R is a bisimulation relation or, equivalently,
that R carries a (not necessarily minimal) automaton structure. No claims are made here as to
whether this leads to more e�cient algorithms for deciding language equality. As a proof method,
coinduction seems to o�er at least conceptually an interesting alternative.

11 An example in the max-plus semiring

Here we consider formal power series over an arbitrary alphabet A with coe�cients in the so-called
max-plus semiring:

IRmax = h [�1;1); max; +; �1; 0i
consisting of the reals extended with minus in�nity, with the operations of max and + for sum and
product, respectively, with �1 and 0 as neutral elements. It is shown how the timed behaviour of

38

task-resource systems can be speci�ed coinductively, that is, by means of a behavioural di�erential
equation, and implemented by a �nite nd-automaton, derived from this di�erential equation. The
relevance of this example is not so much the obtained automaton (which is not new|see, e.g.,
[GM98]), but rather the way in which it illustrates once again our methodology of deriving �nite
representations from behavioural speci�cations.

A (timed) task-resource system is a four tuple (A;R; r; h) consisting of a �nite set A of tasks ,
a �nite set R of resources , a function r : A ! P(R) assigning to each task the �nite non-empty
set of resources it uses, and a function h : A! IR+ specifying for each task its execution time. A
word w = a1 � � � an 2 A� is interpreted as a schedule, that is, a sequence of tasks. The question to
be addressed is how long it takes to perform all the tasks in a given schedule, while adhering to
the following rules:

� all resources are available at time 0;

� the execution of a task ai in w begins as soon as all resources r(ai) it requires, possibly used
by earlier tasks, are available;

� a task ai uses the resources in r(ai) for h(ai) time units, during which these resources are
not available for other tasks.

To mention two extreme cases, the execution time of a word a1 � � � an will be equal to the maximum
of the durations h(ai) in case no tasks have any resources in common. If, in contrast, any two
subsequent tasks do have a common resource, the execution time will be the sum of the durations
h(ai).

The latter examples motivate the choice to work with the max-plus semiring. We take the
�nite set A of tasks as our input alphabet. As a solution for the task-resource scheduling problem,
a formal power series y : A� ! IRmax in IRmaxhhAii will be de�ned that assigns to each schedule
w its execution time y(w) according to the above informal speci�cation. In order to give a formal
de�nition of y, �rst a power series ~a is associated with every task a 2 A, which for a schedule
w 2 A� will give the execution time ~a(w) of w counted from the �rst time that the task a in w is
executed . Then y can be expressed as the maximum of all ~a. The following system of behavioural
di�erential equations de�nes all these series formally:

di�erential equation initial value
(~a)b = ~a (for b 6= a) (~a)(0) = 0
(~a)a = max fh(a) + ~c j r(a) \ r(c) 6= ; g
y = max f~a j a 2 Ag

Here we silently adopt the convention that the maximum of an empty set is (the constant series)
�1, which is the 0 of the semiring IRmax. The existence of unique solutions for these equations
is proved by a straightforward variation on the proof of Theorem 3.2.

Thus the scheduling problem has been formalised in terms of a system of behavioural di�erential
equations, allowing for the use of coinductive techniques that we have seen many examples of in
the previous sections. Here we shall brie
y illustrate one aspect, namely the derivation of a �nite
representation for the series ~a from its de�ning di�erential equation. The procedure is the same
as in Section 8, where nd-automata are obtained by `splitting' a derivative into its summands,
according to its di�erential equation. Note that in the present setting, the operation max plays
the role of sum and the operation + plays the role of multiplication. Denoting for a moment max,
+, and 0 by +, �, and 1, respectively, the di�erential equation for ~a reads:

di�erential equation initial value
(~a)b = ~a (for b 6= a) (~a)(0) = 1
(~a)a = (h(a)� ~c1) + � � �+ (h(a)� ~cn)

39

with fc1; : : : ; cng = fc 2 A j r(a) \ r(c) 6= ;g. This gives rise to the following nd-automaton:

~a

@AGFbj1 ED ��
ajh(a)

���������
ajh(a)

��????????
1 //

~c1 ~cn

(where we have only indicated the transitions from ~a and the b-transition from ~a to itself occurs
for all b 2 A with b 6= a). This type of automaton is sometimes called a max-plus automaton. By
de�nition, the state ~a in this automaton represents the series ~a, indeed: S(~a) = ~a, which can be
easily proved by|you guessed right|coinduction!!

12 Related work and discussion

The present paper subsumes and extends two of our earlier papers: The idea of coinductive
de�nitions in terms of input derivatives stems from [Rut98a]; in [Rut99a], this was generalised
to formal power series, using a notion of input derivative that generalises Brzozowski's original
de�nition for regular expressions [Brz64, Con71]. Compared to our earlier papers, most of the
material on stream calculus and nondeterministic stream automata is new. As explained in some
detail in the second appendix, Section 14, the approach has been in essence coalgebraic. Notably
the elementary results of Section 2 are instances of basic facts from universal algebra [Rut96, JR97].
Coalgebras and �nal coalgebras have been around in the literature already for quite some time
now. But it was not until the formulation of a general notion of coalgebraic bisimulation, by
Aczel and Mendler in [AM89], generalising Park's [Par81] and Milner's [Mil80] de�nition of strong
bisimulation for concurrent processes, that coalgebra could be really `put to work'. Notably, one
needs the notion of coalgebraic bisimulation to formulate a general principle of coinduction, and
it is coinduction which constitutes|all of this according to our taste, of course|the heart of the
coalgebraic matter.

The important example of Taylor series of analytic functions, Example 2.2, is due to Pavlovi�c
and Escard�o [PE98]. Their coinductive perspective on (certain aspects of) classical analysis has
added to our motivation to take behavioural di�erential equations as a coinductive de�nition for-
mat, even more seriously. Also, the operator � in Section 6 occurs in [PE98] under the name g.
Theorem 6.5 extends a similar result from that paper by including also the case of the inverse
operator. Some of the coinductive de�nitions of streams can also be found in [McI99]. For a
number of examples, it is shown there how this type of de�nition can be implemented in the
functional programming language Haskell. A truly rich source of examples of streams and gen-
erating functions has been the book [GKP94]. Our main source on formal power series has been
[BR88], which contains amongst many other results a proof that rational series and hence rational
streams, which are series in one variable, have �nite representations. The explicit construction of
�nite nd-automata for rational streams, in Section 8, which is directly based on the behavioural
di�erential equations for product and inverse, seems to be new.

Our construction of automata for rational languages in Section 10, based on input derivatives,
is in essence the same as the algorithm by Brzozowski in [Brz64]. The, closely related, coinductive
proof method for language equality seems to be new. This in spite of the fact that in concurrency
theory, it is well-known that Milner's strong bisimulation for transition systems amounts to trace
equivalence if the systems at hand are deterministic: both the notion of bisimulation used here
(which includes a condition on the outputs) and the use of input derivatives in the construction
of bisimulations, are new. The relation with the more traditional methods for proving language
equality, has already been discussed at the end of Section 10. Another well-known way of proving
equality of (regular expressions denoting) rational languages is to use a complete axiom system,
such as given by Salomaa in [Sal66], and apply purely algebraic reasoning. The reader is invited
to consult [Gin68, pp.68-69], which contains a minor variation on the example K� = L, at the end

40

of Section 10, and convince himself of the greater complexity of that approach. The connection
between �nality and minimality, in Section 10, can already be found in [Gog73].

There are a number of di�erent directions in which the present work can be extended. Coin-
duction has been formulated here, as usual, in terms of bisimulations. In [Rut98a], a more general
coinduction principle is discussed for language inclusion, in terms of simulation relations. This
can be straightforwardly extended to formal power series over semirings that carry a partial order
(such as the Booleans and the reals). The present setting seems also suitable for experiments with
even more general notions of bisimulations, sometimes referred to as quantitative bisimulations.
Related work includes [Rut98b, Bal00, Wor00]. Another way of generalising the current framework
is to allow for partially de�ned transition functions. This is brie
y worked out for deterministic
automata in [Rut98a] (see also [Rut99b], where these partial automata are used in the context of
supervisory control problems for discrete event systems). Again it would be interesting to study
partiality also for streams and formal power series. Yet another direction for future work concerns
the generalised nondeterministic automata of Section 8. They can be equipped with a notion of
bisimulation of their own (as mentioned at the end of Section 14), which would generalise both
Milner's strong bisimulation and Larsen and Skou's probabilistic bisimulation [LS91, dVR97].
Further study seems worthwhile. Finally there is the theory of combinatorial species, based on
work by Joyal [Joy81] and explained in all detail in the book [BLL98], to which in particular the
coinductive treatment of streams seems to be closely related. We would like to understand the
exact nature of the relation between these two worlds.

Acknowledgements

Many many thanks are due to the following persons, for pointers to the literature, corrections,
and discussions: Jaco de Bakker, Marcello Bonsangue, Falk Bartels, Alexandru Baltag, Franck
van Breugel, Matteo Coccia, Dora Giammarresi, Bart Jacobs, Aart Middeldorp, Maurice Nivat,
Andy Pitts, Fer-Jan de Vries.

13 Appendix: the proof of Theorem 3.2

The remaining steps in the proof of Theorem 3.2 are given here.
The operators satisfy the di�erential equations : In order to show that, for instance, the product
satis�es its de�ning behavioural di�erential equation, we compute as follows:

(� � �)(0)

= l(� � �)(0)

= (� � �)(0) [l is a homomorphism]

= �(0)� � (0) [by the de�nition of oE]

= �(0)� �(0) [by the de�nition of oE]

This shows that � � � has the correct initial value. Checking the equality for the derivative, we
compute

(� � �)0

= (l(� � �))0

= l((� � �)0) [l is a homomorphism]

= l(((�)0 � �) + (�(0)� (�)0)) [by the de�nition of tE]

= l((�0 � �) + (�(0)� � 0)) [by the de�nitions of oE and tE]

= l(�0 � �) + l(�(0)� � 0) [(ii): l is compositional]

= (l(�0)� l(�)) + (l(�(0))� l(� 0)) [(ii): l is compositional]

= (�0 � �) + (�(0)� � 0) [(i): l is the identity on stream constants]

41

Once we have proved assumptions (i) and (ii), this �nishes the proof that the product operator
satis�es its de�ning behavioural di�erential equation (one shows in a similar way that the other
operators satisfy their de�ning di�erential equation):

(i) For all streams � in IR!: l(�) = �.

(ii) The homomorphism l : E ! IR! is compositional. That is, for all expressions E and F in E ,
(a) l(E + F) = l(E) + l(F)

(b) l(E � F) = l(E)� l(F)

(c) l(E�) = l(E)�

(d) l(E�1) = l(E)�1

Note that the operators on the left are syntactic constructors of expressions, while on the
right there are the operators on streams de�ned by the equalities in (1) above.

Fact (i) is an immediate consequence of our observation above that the behaviour of the constants
� in E is the same as that of � in IR!, which is formally expressed by the fact that

fh�; �i j � 2 IR!g
is a bisimulation relation between the automaton E and the automaton IR!. This proves � � �.
Because l is a homomorphism, l(�) � �, whence l(�) � �. Now the equality l(�) = � follows by
the coinduction proof principle Theorem 2.4.

For (ii), we again treat the case of the product; the other operators can be dealt with similarly.
By the de�nition of the product operator, we have

l(E)� l(F) = l(l(E)� l(F))

so in order to obtain l(E � F) = l(E)� l(F), we are left with proving

l(l(E)� l(F)) = l(E � F)

By Proposition 2.6, this is equivalent to

(l(E)� l(F)) � (E � F) (37)

Note that E � l(E) since l is a homomorphism, and that l(E) � l(E) by (the proof of) fact (i)
above. Thus l(E) � E and similarly l(F) � F . Now (37) follows the fact that bisimilarity is a
congruence with respect to the operators, which we shall prove next: for all expressions E, F , G
and H in E , if E � G and F � H then

(E + F) � (G+H); (E � F) � (G�H); E� � G�; E�1 � G�1 (38)

For a proof, let �c� IR! � IR! be the smallest congruence relation containing �. That is, let �c

be the smallest relation on E with ���c and such that, for all expressions E, F , G, and H in E :
if E �c G and F �c H then

(E + F) �c (G+H); (E � F) �c (G�H); E� �c G�; E�1 �c G�1

The relation �c is a bisimulation on E , which can be shown by induction on its de�nition; this
implies �c��, because bisimilarity is the greatest bisimulation relation and consequently, �c=�,
which proves (38). (To prove that �c is a bisimulation, consider for instance (E�F) �c (G�H),
and assume, as an inductive hypothesis, that E(0) = G(0), F (0) = H(0), E0 �c G0, and F 0 �c H 0.
Then (E�F)(0) = (G�H)(0) is equivalent to E(0)�F (0) = G(0)�H(0), which is immediate by
the inductive hypothesis. To show (E � F)0 �c (G�H)0, �rst note that the inductive hypothesis
together with the congruence property of �c implies (E0 � F) �c (G0 � H) and (E(0) � F 0) �c

(G(0)�H 0). It follows that

(E � F)0 = (E0 � F) + (E(0)� F 0) �c (G0 �H) + (G(0)�H 0) = (G�H)0

42

The other cases are similar. This proves that �c is a bisimulation relation on E .)
The operators are unique: Finally, it is shown that the solutions we have obtained are unique.

To this end, let +̂, �̂, (�)�̂, and (�)�̂1 be operators satisfying the di�erential equations of the
present theorem. Let R be de�ned as the smallest relation on R � IR! � IR! containing fh�; �i j
� 2 IR!g and such that, for all streams �, � , �, and � in IR!: if � R � and � R � then

(�+̂�) R (� + �); (��̂�) R (� � �); ��̂ R ��; ��̂1 R ��1

The relation R is a bisimulation (which can be shown in precisely the same way as for �c above).
It follows from the coinduction proof principle (Theorem 2.4) that � + � = �+̂� , for all streams
� and � , and similarly for the other operators. This shows that the operators are unique and
concludes the proof of Theorem 3.2.

14 Appendix: automata are coalgebras

We explain precisely in what way our approach to streams is coalgebraic, by recalling a number
of elementary de�nitions and results from universal coalgebra (as in [Rut96]). It is then straight-
forward to do the same for power series, which is left to the reader.

Let F : Set ! Set be a functor on the category of sets and functions. An F -coalgebra is a
pair (S; �) consisting of a set S and a function � : S ! F (S). If (S; �) and (T; �) are two F -
coalgebras, then a function f : S ! T is a homomorphism of F -coalgebras , or F -homomorphism,
if F (f) � � = � � f :

S
f //

�

��

T

�

��
F (S)

F (f)
// F (T)

A relation R � S �T is called an F -bisimulation if there exists an F -coalgebra structure
 : R!
F (R) on R such that the projections �1 : R! S and �2 : R! T are F -homomorphisms:

S

�

��

R
�1oo �2 //

���
�
�

9

T

�

��
F (S) F (R)

F (�1)
oo

F (�2)
// F (T)

An F -coalgebra (P; �) is �nal if for any F -coalgebra (S; �) there exists one and only one F -
homomorphism from (S; �) to (P; �). The following results hold for all functors F satisfying some
rather mild conditions (F should preserve weak pullbacks and should be bounded) which are
explained in detail in [Rut96]:

1. The union of F -bisimulations is again an F -bisimulation. In particular, the union of all F -
bisimulations relations, called F -bisimilarity and denoted by �, is itself an F -bisimulation.

2. An F -bisimulation relation which actually is a function is an F -homomorphism.

3. There exists a �nal F -coalgebra (P; �).

4. For any F -coalgebra (S; �), the unique F -homomorphism l : (S; �)! (P; �) satis�es, for all
s; t 2 S: s � t i� l(s) = l(t).

5. For all p; q 2 P : if p � q then p = q.

The de�nitions and results in Section 2 can be obtained by considering the functor

IR� (�) : Set ! Set

43

which maps a set S to the Cartesian product IR � S, and a function f : S ! T to the function
IR � f : (IR � S) ! (IR� T), which sends hr; si 2 IR� S to the pair hr; f(s)i 2 IR � T . It is an
easy exercise to verify that the de�nitions of stream automaton, homomorphism, and bisimulation,
are equivalent to the above de�nitions of F -coalgebra, F -homomorphism, and F -bisimulation, for
F = IR � (�). The �nal coalgebra for this functor is the set IR! (Theorem 2.5), which indeed
satis�es the above mentioned properties, stated in Section 2 as Proposition 2.6 and Theorem 2.4.

Also the de�nition of nondeterministic stream automaton, in Section 8, can be obtained in a
similar way. The functor involved is

IR� IR(�) : Set ! Set

mapping a set S to the set IR� IR(S) with

IR(S) = f� : S ! IR j sp (�) is �nite g
Clearly, nd-automata are F -coalgebras for F = IR � IR(�). Note that we did not yet specify
how this functor acts on functions. Although this is not needed for the reconstruction of the
results on nd-automata (we did not introduce the notions of homomorphism and bisimulation for
nd-automata), here is the de�nition, for completeness sake. A function f : S ! T is mapped to

IR� IR(f) : (IR� IR(S))! (IR� IR(T)); hr; �i 7! hr; IR(�)i
where IR(�) : T ! IR is de�ned, for t 2 T , by

IR(�)(t) =
X

f(s)=t

�(s)

Note that this sum exists because of the requirement on � to be of �nite support. Although
we have not dealt with the notions of homomorphism and bisimulation for this functor, it would
actually be quite interesting to do so. In particular, the notion of IR� IR(�)-bisimulation would
generalise both Milner's classical strong bisimulation [Mil80] as well as the more recent notion of
probabilistic bisimulation [LS91, dVR97]. But alas, this will have to wait for another occasion.

Before we conclude this section and therewith the paper, let us give a brief comment on the
word `coinduction'. This terminology suggest that we are dealing here with a principle that is
somehow dual to that of induction. This is explained by the observation that induction principles
apply to initial algebras . Somewhat more concretely, the duality can be understood as follows.
It is not di�cult to prove that coinduction on IR! is equivalent to the statement that IR! has
no proper quotients , that is, if f : IR! ! Q is a surjective homomorphism then IR! �= Q. This
property is dual to the principle of mathematical induction on the algebra of natural numbers,
which essentially states that the algebra of natural numbers has no proper subalgebras . See [Rut96,
Sec.13] for a more detailed explanation.

Summarising the above, we hope to have explained in what sense the treatment of automata
in the preceding sections has been coalgebraic: the de�nitions of automaton, homomorphism,
and bisimulation, as well as the focus on �nality and coinduction, all have been derived from or
motivated by very general de�nitions and observations from coalgebra. As such, this coalgebraic
story of (stream) automata is just one out of many, in principle as many as there are functors (on
Set but also on other categories). Many other examples have been studied in considerable detail
already, including transition systems, data types (such as streams and trees), dynamical systems,
probabilistic systems, object-based systems, and many more. And many more are still to follow.

References

[AM89] P. Aczel and N. Mendler. A �nal coalgebra theorem. In D.H. Pitt, D.E. Ryeheard,
P. Dybjer, A. M. Pitts, and A. Poigne, editors, Proceedings category theory and computer
science, number 389 in Lecture Notes in Computer Science, pages 357{365, 1989.

44

[Bal00] Alexandru Baltag. A logic for coalgebraic simulation. In Horst Reichel, editor, Electronic
Notes in Theoretical Computer Science, volume 33. Elsevier Science Publishers, 2000.

[Bar00] F. Bartels. Generalised coinduction. Report SEN-R00??, CWI, Amsterdam, 2000. In
preparation.

[BLL98] F. Bergeron, G. Labelle, and P. Leroux. Combinatorial species and tree-like structures,
volume 67 of Encyclopedia of Mathematics and its Applications. Cambridge University
Press, 1998.

[BR88] J. Berstel and C. Reutenauer. Rational series and their languages, volume 12 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, 1988.

[Brz64] J.A. Brzozowski. Derivatives of regular expressions. Journal of the ACM, 11(4):481{494,
1964.

[Con71] J.H. Conway. Regular algebra and �nite machines. Chapman and Hall, 1971.

[dVR97] E.P. de Vink and J.J.M.M. Rutten. Bisimulation for probabilistic transition systems: a
coalgebraic approach. In P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, editors,
Proceedings of ICALP'97, volume 1256 of Lecture Notes in Computer Science, pages
460{470, 1997. To appear in Theoretical Computer Science.

[Gin68] A. Ginzburg. Algebraic theory of automata. ACM Monograph series. Academic Press,
1968.

[GKP94] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics, Second Edition.
Addison-Wesley, 1994.

[GM98] S. Gaubert and J. Mairesse. Task resource models and (max,+) automata. In [Gun98],
pages 133{144, 1998.

[Gog73] J. Goguen. Realization is universal. Mathematical System Theory, 6:359{374, 1973.

[Gun98] J. Gunawardena. Idempotency. Publications of the Newton Institute. Cambridge Uni-
versity Press, 1998.

[Joy81] A. Joyal. Une th�eorie combinatoire des s�eries formelles. Advances in mathematics,
42:1{82, 1981.

[JR97] Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction. Bulletin of
the EATCS, 62:222{259, 1997. Available at URL: www.cwi.nl/�janr.

[LS91] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and
Computation, 94:1{28, 1991.

[McI99] M. D. McIlroy. Power series, power serious. J. Functional Programming, 9:323{335,
1999.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Com-
puter Science. Springer-Verlag, Berlin, 1980.

[Par81] D.M.R. Park. Concurrency and automata on in�nite sequences. In P. Deussen, editor,
Proceedings 5th GI conference, volume 104 of Lecture Notes in Computer Science, pages
15{32. Springer-Verlag, 1981.

[PE98] Dusko Pavlovi�c and Mart��n Escard�o. Calculus in coinductive form. In Proceedings of
the 13th Annual IEEE Symposium on Logic in Computer Science, pages 408{417. IEEE
Computer Society Press, 1998.

45

[Rut96] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Report CS-R9652, CWI,
1996. Available at URL: www.cwi.nl. To appear in Theoretical Computer Science.

[Rut98a] J.J.M.M. Rutten. Automata and coinduction (an exercise in coalgebra). Report SEN-
R9803, CWI, 1998. Available at URL: www.cwi.nl. Also in the proceedings of CONCUR
'98, LNCS 1466, 1998, pp. 194{218.

[Rut98b] J.J.M.M. Rutten. Relators and metric bisimulations. In Horst Reichel Bart Jacobs,
Larry Moss and Jan Rutten, editors, Electronic Notes in Theoretical Computer Science,
volume 11. Elsevier Science Publishers, 1998.

[Rut99a] J.J.M.M. Rutten. Automata, power series, and coinduction: taking input derivatives
seriously (extended abstract). Report SEN-R9901, CWI, 1999. Available at URL:
www.cwi.nl. Also in the proceedings of ICALP '99, LNCS 1644, 1999, pp. 645{654.

[Rut99b] J.J.M.M. Rutten. Coalgebra, concurrency, and control. Report SEN-R9921, CWI, 1999.
Available at URL: www.cwi.nl. Extended abstract in: Discrete Event Systems, R. Boel
and G. Stremersch (eds.), Kluwer, 2000.

[Sal66] A. Salomaa. Two complete axiom systems for the algebra of regular events. Journal of
the ACM, 13(1):158{169, 1966.

[Wor00] James Worrel. Coinduction for recursive data types: partial orders, metric spaces and
omega-categories. In Horst Reichel, editor, Electronic Notes in Theoretical Computer
Science, volume 33. Elsevier Science Publishers, 2000.

46

