17 research outputs found

    Bernstein Polynomials for Radiative Transfer Computations

    Get PDF
    In this paper we propose using planar and spherical Bernstein polynomials over triangular domain for radiative transfer computations. In the planar domain, we propose using piecewise Bernstein basis functions and symmetric Gaussian quadrature formulas over triangular elements for high quality radiosity solution. In the spherical domain, we propose using piecewise Bernstein basis functions over a geodesic triangulation to represent the radiance function. The representation is intrinsic to the unit sphere, and may be efficiently stored, evaluated, and subdivided by the de Casteljau algorithm. The computation of other fundamental radiometric quantities such as vector irradiance and reflected radiance may be reduced to the integration of the piecewise Bernstein basis functions on the unit sphere. The key result of our work is a simple geometric integration algorithm based on adaptive domain subdivision for the Bernstein-Bézier polynomials over a geodesic triangle on the unit sphere

    Autómata de Lattice Boltzmann para modelar la difusión óptica en materiales translúcidos

    Get PDF
    La interrogación de objetos traslúcidos mediante luz láser en el rango infrarrojo cercano es una técnica para recabar información tomográfica que está siendo usada cada vez más en diagnóstico médico y en inspecciones industriales. En este trabajo se presenta una estrategia para la simulación de la difusión de luz visible en materiales translúcidos basada en el método de Lattice Bolzmann (LBM). LBM es un autómata celular que simula fenómenos de transporte a nivel macroscópico mediante una representación mesoscópica, muy fácil de implementar y altamente paralelizable. En nuestro caso el transporte de fotones en la materia se modela mediante una matriz de colisión y absorción definida en cada celda del dominio espacial simulado. La grilla de soporte es tridimensional y los resultados son visualizados superponiendo los elementos de una malla triangular. El modelo fue validado con datos experimentales medidos en un fantoma de laboratorio. Se presentan también las posibles aplicaciones del autómata en un motor de visualizaciónSociedad Argentina de Informática e Investigación Operativ

    Efficient rendering of atmospheric phenomena

    Get PDF
    Journal ArticleRendering of atmospheric bodies involves modeling the complex interaction of light throughout the highly scattering medium of water and air particles. Scattering by these particles creates many well-known atmospheric optical phenomena including rainbows, halos, the corona, and the glory. Unfortunately, most radiative transport approximations in computer graphics are ill-suited to render complex angularly dependent effects in the presence of multiple scattering at reasonable frame rates. Therefore, this paper introduces a multiple-model lighting system that efficiently captures these essential atmospheric effects. We have solved the rendering of fine angularly dependent effects in the presence of multiple scattering by designing a lighting approximation based upon multiple scattering phase functions. This model captures gradual blurring of chromatic atmospheric optical phenomena by handling the gradual angular spreading of the sunlight as it experiences multiple scattering events with anisotropic scattering particles. It has been designed to take advantage of modern graphics hardware; thus, it is capable of rendering these effects at near interactive frame rates

    Model for volume lighting and modeling

    Get PDF
    Journal ArticleAbstract-Direct volume rendering is a commonly used technique in visualization applications. Many of these applications require sophisticated shading models to capture subtle lighting effects and characteristics of volumetric data and materials. For many volumes, homogeneous regions pose problems for typical gradient-based surface shading. Many common objects and natural phenomena exhibit visual quality that cannot be captured using simple lighting models or cannot be solved at interactive rates using more sophisticated methods. We present a simple yet effective interactive shading model which captures volumetric light attenuation effects that incorporates volumetric shadows, an approximation to phase functions, an approximation to forward scattering, and chromatic attenuation that provides the subtle appearance of translucency. We also present a technique for volume displacement or perturbation that allows realistic interactive modeling of high frequency detail for both real and synthetic volumetric data

    Metropolis light transport for participating media

    Get PDF
    We show how Metropolis light transport can be extended both in the underlying theoretical framework and the algorithmic implementation to incorporate volumetric scattering. We present a generalization of the path integral formulation that handles anisotropic scattering in non-homogeneous media. Based on this framework we introduce a new mutation strategy that is specifically designed for participating media. Our algorithm includes effects such as volume caustics and multiple volume scattering, is not restricted to certain classes of geometry and scattering models and has minimal memory requirements. Furthermore, it is unbiased and robust, in the sense that it produces satisfactory results for a wide range of input scenes and lighting situations within acceptable time bound

    A General and Multiscale Model for Volumetric Textures

    Get PDF
    International audienceThis paper presents an important extension of the volumetric textures introduced by Kajiya in 1989. Volumetric textures are used to model complex geometries (such as foliage, fur, ...) on a textural way, by mapping a 'thick skin' made of a repetitive pattern (the texel) covering a simple surface. Like for the Kajiya's implementation, our model code the reference volume with voxels, which contain in addition to the density an illumination model. (Even if we are far from a waved iron-sheet, it don't look like a flat sheet: shapes can be approximated, but reflectance behavior are different.) The extension lais in a quite generic illumination coding, and more, in the ability of the model to be 'smoothed', so that the representation is similar to the mip-map 2D-textures coding. Thus, it is now possible to compute quite quickly and with low aliasing very complicated scene, the details being represented adaptatively.Cet article présente une extension importante des textures volumiques introduites par Kajiya en 1989. Les textures volumiques permettent de modéliser les géométries complexes (feuillage, fourrure...) à la manière d'une texture, comme une 'peau épaisse' constituée d'un motif répétitif volumique, le texel, recouvrant une surface simple. Comme dans l'implémentation de Kajiya, le modèle proposé code un volume de référence par des voxels, dans lesquel on stocke en plus de la densité un modèle d'illumination. (En effet, même à grande distance, une tôle ondulée n'est pas assimilable à une plaque: si on peu approximer la forme, le comportement en réflectance reste différent.) L'extension réside dans le fait d'utiliser un modèle relativement générique de codage de l'illumination, et surtout dans la capacité du modèle à être 'filtré', de telle sorte que la représentation obtenue soit l'équivalent volumique du codage mip-map des textures 2D. Ainsi, il devient possible de calculer relativement rapidement et avec assez peu d'aliasing des scènes très chargées en détails, la représentation de ceux-ci se faisant de manière adaptative

    Plane-Parallel Radiance Transport for Global Illumination in Vegetation

    Get PDF
    This paper applies plane parallel radiance transport techniques to scattering from vegetation. The leaves, stems, and branches are represented as a volume density of scattering surfaces, depending only on height and the vertical component of the surface normal. Ordinary differential equations are written for the multiply scattered radiance as a function of the height above the ground, with the sky radiance and ground reflectance as boundary conditions. They are solved using a two-pass integration scheme to unify the two-point boundary conditions, and Fourier series for the dependence on the azimuthal angle. The resulting radiance distribution is used to precompute diffuse and specular `ambient` shading tables, as a function of height and surface normal, to be used in rendering, together with a z-buffer shadow algorithm for direct solar illumination

    Rendering of light shaft and shadow for indoor environments enhancing technique

    Get PDF
    The ray marching methods have become the most attractive method to provide realism in rendering the effects of light scattering in the participating media of numerous applications. This has attracted significant attention from the scientific community. Up-sampling of ray marching methods is suitable to evaluate light scattering effects such as volumetric shadows and light shafts for rendering realistic scenes, but suffers of cost a lot for rendering. Therefore, some encouraging outcomes have been achieved by using down-sampling of ray marching approach to accelerate rendered scenes. However, these methods are inherently prone to artifacts, aliasing and incorrect boundaries due to the reduced number of sample points along view rays. This study proposed a new enhancing technique to render light shafts and shadows taking into consideration the integration light shafts, volumetric shadows, and shadows for indoor environments. This research has three major phases that cover species of the effects addressed in this thesis. The first phase includes the soft volumetric shadows creation technique called Soft Bilateral Filtering Volumetric Shadows (SoftBiF-VS). The soft shadow was created using a new algorithm called Soft Bilateral Filtering Shadow (SBFS). This technique was started by developing an algorithm called Imperfect Multi-View Soft Shadows (IMVSSs) based on down-sampling multiple point lights (DMPLs) and multiple depth maps, which are processed by using bilateral filtering to obtain soft shadows. Then, down-sampling light scattering model was used with (SBFS) to create volumetric shadows, which was improved using cross-bilateral filter to get soft volumetric shadows. In the second phase, soft light shaft was generated using a new technique called Realistic Real-Time Soft Bilateral Filtering Light Shafts (realTiSoftLS). This technique computed the light shaft depending on down-sampling volumetric light model and depth test, and was interpolated by bilateral filtering to gain soft light shafts. Finally, an enhancing technique for integrating all of these effects that represent the third phase of this research was achieved. The performance of the new enhanced technique was evaluated quantitatively and qualitatively a measured using standard dataset. Results from the experiment showed that 63% of the participants gave strong positive responses to this technique of improving realism. From the quantitative evaluation, the results revealed that the technique has dramatically outpaced the stateof- the-art techniques with a speed of 74 fps in improving the performance for indoor environments

    Physics-Based Modeling, Analysis and Animation

    Get PDF
    The idea of using physics-based models has received considerable interest in computer graphics and computer vision research the last ten years. The interest arises from the fact that simple geometric primitives cannot accurately represent natural objects. In computer graphics physics-based models are used to generate and visualize constrained shapes, motions of rigid and nonrigid objects and object interactions with the environment for the purposes of animation. On the other hand, in computer vision, the method applies to complex 3-D shape representation, shape reconstruction and motion estimation. In this paper we review two models that have been used in computer graphics and two models that apply to both areas. In the area of computer graphics, Miller [48] uses a mass-spring model to animate three forms of locomotion of snakes and worms. To overcome the problem of the multitude of degrees of freedom associated with the mass-spring lattices, Witkin and Welch [87] present a geometric method to model global deformations. To achieve the same result Pentland and Horowitz in [54] delineate the object motion into rigid and nonrigid deformation modes. To overcome problems of these two last approaches, Metaxas and Terzopoulos in [45] successfully combine local deformations with global ones. Modeling based on physical principles is a potent technique for computer graphics and computer vision. It is a rich and fruitful area for research in terms of both theory and applications. It is important, though, to develop concepts, methodologies, and techniques which will be widely applicable to many types of applications
    corecore