32 research outputs found

    The xSAP Safety Analysis Platform

    Full text link
    This paper describes the xSAP safety analysis platform. xSAP provides several model-based safety analysis features for finite- and infinite-state synchronous transition systems. In particular, it supports library-based definition of fault modes, an automatic model extension facility, generation of safety analysis artifacts such as Dynamic Fault Trees (DFTs) and Failure Mode and Effects Analysis (FMEA) tables. Moreover, it supports probabilistic evaluation of Fault Trees, failure propagation analysis using Timed Failure Propagation Graphs (TFPGs), and Common Cause Analysis (CCA). xSAP has been used in several industrial projects as verification back-end, and is currently being evaluated in a joint R&D Project involving FBK and The Boeing Company

    Causality and Temporal Dependencies in the Design of Fault Management Systems

    Get PDF
    Reasoning about causes and effects naturally arises in the engineering of safety-critical systems. A classical example is Fault Tree Analysis, a deductive technique used for system safety assessment, whereby an undesired state is reduced to the set of its immediate causes. The design of fault management systems also requires reasoning on causality relationships. In particular, a fail-operational system needs to ensure timely detection and identification of faults, i.e. recognize the occurrence of run-time faults through their observable effects on the system. Even more complex scenarios arise when multiple faults are involved and may interact in subtle ways. In this work, we propose a formal approach to fault management for complex systems. We first introduce the notions of fault tree and minimal cut sets. We then present a formal framework for the specification and analysis of diagnosability, and for the design of fault detection and identification (FDI) components. Finally, we review recent advances in fault propagation analysis, based on the Timed Failure Propagation Graphs (TFPG) formalism.Comment: In Proceedings CREST 2017, arXiv:1710.0277

    Model Checking at Scale: Automated Air Traffic Control Design Space Exploration

    Get PDF
    Many possible solutions, differing in the assumptions and implementations of the components in use, are usually in competition during early design stages. Deciding which solution to adopt requires considering several trade-offs. Model checking represents a possible way of comparing such designs, however, when the number of designs is large, building and validating so many models may be intractable. During our collaboration with NASA, we faced the challenge of considering a design space with more than 20,000 designs for the NextGen air traffic control system. To deal with this problem, we introduce a compositional, modular, parameterized approach combining model checking with contract-based design to automatically generate large numbers of models from a possible set of components and their implementations. Our approach is fully automated, enabling the generation and validation of all target designs. The 1,620 designs that were most relevant to NASA were analyzed exhaustively. To deal with the massive amount of data generated, we apply novel data-analysis techniques that enable a rich comparison of the designs, including safety aspects. Our results were validated by NASA system designers, and helped to identify novel as well as known problematic configurations

    compass 3 0

    Get PDF
    COMPASS (COrrectness, Modeling and Performance of AeroSpace Systems) is an international research effort aiming to ensure system-level correctness, safety, dependability and performability of on-board computer-based aerospace systems. In this paper we present COMPASS 3.0, which brings together the results of various development projects since the original inception of COMPASS. Improvements have been made both to the frontend, supporting an updated modeling language and user interface, as well as to the backend, by adding new functionalities and improving the existing ones. New features include Timed Failure Propagation Graphs, contract-based analysis, hierarchical fault tree generation, probabilistic analysis of non-deterministic models and statistical model checking

    A runtime safety analysis concept for open adaptive systems

    Get PDF
    © Springer Nature Switzerland AG 2019. In the automotive industry, modern cyber-physical systems feature cooperation and autonomy. Such systems share information to enable collaborative functions, allowing dynamic component integration and architecture reconfiguration. Given the safety-critical nature of the applications involved, an approach for addressing safety in the context of reconfiguration impacting functional and non-functional properties at runtime is needed. In this paper, we introduce a concept for runtime safety analysis and decision input for open adaptive systems. We combine static safety analysis and evidence collected during operation to analyse, reason and provide online recommendations to minimize deviation from a system’s safe states. We illustrate our concept via an abstract vehicle platooning system use case

    Characterizing the Identity of Model-based Safety Assessment: A Systematic Analysis

    Full text link
    Model-based safety assessment has been one of the leading research thrusts of the System Safety Engineering community for over two decades. However, there is still a lack of consensus on what MBSA is. The ambiguity in the identity of MBSA impedes the advancement of MBSA as an active research area. For this reason, this paper aims to investigate the identity of MBSA to help achieve a consensus across the community. Towards this end, we first reason about the core activities that an MBSA approach must conduct. Second, we characterize the core patterns in which the core activities must be conducted for an approach to be considered MBSA. Finally, a recently published MBSA paper is reviewed to test the effectiveness of our characterization of MBSA

    Rigorous Design of FDIR Systems with BIP

    Get PDF
    The correct design of autonomous systems is a challenge, due to the uncertainties arising at execution time. A special case of uncertainties are the faults and failures that break the system’s requirements. Dealing with such situations requires to design fault detection, isolation and recovery (FDIR) components. The aim of FDIR components is to detect when a fault has occurred and to apply a recovery strategy that brings the system into a mode where the requirements are satisfied. In this paper we describe an approach based on the Behavior, Interaction, Priority (BIP) tools for the rigorous design of FDIR components. This approach leverages the scalability of statistical model-checking tool BIP-SMC to check for requirement satisfaction, and the code generation feature of the BIP compiler. Moreover, the generated code is executable with the BIP engine(s) and easily integrated with the original system. The approach has been used in the H2020 ESROCOS and ERGO projects for the development of (autonomous) robotics control systems, which have been validated through field trials

    Design of a Thermal and Micrometeorite Protection System for an Unmanned Lunar Cargo Lander

    Get PDF
    The first vehicles to land on the lunar surface during the establishment phase of a lunar base will be unmanned lunar cargo landers. These landers will need to be protected against the hostile lunar environment for six to twelve months until the next manned mission arrives. The lunar environment is characterized by large temperature changes and periodic micrometeorite impacts. An automatically deployable and reconfigurable thermal and micrometeorite protection system was designed for an unmanned lunar cargo lander. The protection system is a lightweight multilayered material consisting of alternating layers of thermal and micrometeorite protection material. The protection system is packaged and stored above the lander common module. After landing, the system is deployed to cover the lander using a system of inflatable struts that are inflated using residual fuel (liquid oxygen) from the fuel tanks. Once the lander is unloaded and the protection system is no longer needed, the protection system is reconfigured as a regolith support blanket for the purpose of burying and protecting the common module, or as a lunar surface garage that can be used to sort and store lunar surface vehicles and equipment. A model showing deployment and reconfiguration of the protection system was also constructed
    corecore