13,693 research outputs found

    The weighted hook length formula

    Full text link
    Based on the ideas in [CKP], we introduce the weighted analogue of the branching rule for the classical hook length formula, and give two proofs of this result. The first proof is completely bijective, and in a special case gives a new short combinatorial proof of the hook length formula. Our second proof is probabilistic, generalizing the (usual) hook walk proof of Green-Nijenhuis-Wilf, as well as the q-walk of Kerov. Further applications are also presented.Comment: 14 pages, 4 figure

    The weighted hook-length formula II: Complementary formulas

    Get PDF
    Recently, a new weighted generalization of the branching rule for the hook lengths, equivalent to the hook formula, was proved. In this paper, we generalize the complementary branching rule, which can be used to prove Burnside's formula. We present three different proofs: bijective, via weighted hook walks, and via the ordinary weighted branching rule.Comment: 20 pages, 9 figure

    Quasimodularity and large genus limits of Siegel-Veech constants

    No full text
    Quasimodular forms were first studied in the context of counting torus coverings. Here we show that a weighted version of these coverings with Siegel-Veech weights also provides quasimodular forms. We apply this to prove conjectures of Eskin and Zorich on the large genus limits of Masur-Veech volumes and of Siegel-Veech constants. In Part I we connect the geometric definition of Siegel-Veech constants both with a combinatorial counting problem and with intersection numbers on Hurwitz spaces. We introduce modified Siegel-Veech weights whose generating functions will later be shown to be quasimodular. Parts II and III are devoted to the study of the quasimodularity of the generating functions arising from weighted counting of torus coverings. The starting point is the theorem of Bloch and Okounkov saying that q-brackets of shifted symmetric functions are quasimodular forms. In Part II we give an expression for their growth polynomials in terms of Gaussian integrals and use this to obtain a closed formula for the generating series of cumulants that is the basis for studying large genus asymptotics. In Part III we show that the even hook-length moments of partitions are shifted symmetric polynomials and prove a formula for the q-bracket of the product of such a hook-length moment with an arbitrary shifted symmetric polynomial. This formula proves quasimodularity also for the (-2)-nd hook-length moments by extrapolation, and implies the quasimodularity of the Siegel-Veech weighted counting functions. Finally, in Part IV these results are used to give explicit generating functions for the volumes and Siegel-Veech constants in the case of the principal stratum of abelian differentials. To apply these exact formulas to the Eskin-Zorich conjectures we provide a general framework for computing the asymptotics of rapidly divergent power series.Comment: 107 pages, final version, to appear in J. of the AM

    Combinatorial families of multilabelled increasing trees and hook-length formulas

    Full text link
    In this work we introduce and study various generalizations of the notion of increasingly labelled trees, where the label of a child node is always larger than the label of its parent node, to multilabelled tree families, where the nodes in the tree can get multiple labels. For all tree classes we show characterizations of suitable generating functions for the tree enumeration sequence via differential equations. Furthermore, for several combinatorial classes of multilabelled increasing tree families we present explicit enumeration results. We also present multilabelled increasing tree families of an elliptic nature, where the exponential generating function can be expressed in terms of the Weierstrass-p function or the lemniscate sine function. Furthermore, we show how to translate enumeration formulas for multilabelled increasing trees into hook-length formulas for trees and present a general "reverse engineering" method to discover hook-length formulas associated to such tree families.Comment: 37 page

    Hook formulas for skew shapes III. Multivariate and product formulas

    Get PDF
    We give new product formulas for the number of standard Young tableaux of certain skew shapes and for the principal evaluation of the certain Schubert polynomials. These are proved by utilizing symmetries for evaluations of factorial Schur functions, extensively studied in the first two papers in the series "Hook formulas for skew shapes" [arxiv:1512.08348, arxiv:1610.04744]. We also apply our technology to obtain determinantal and product formulas for the partition function of certain weighted lozenge tilings, and give various probabilistic and asymptotic applications.Comment: 40 pages, 17 figures. This is the third paper in the series "Hook formulas for skew shapes"; v2 added reference to [KO1] (arxiv:1409.1317) where the formula in Corollary 1.1 had previously appeared; v3 Corollary 5.10 added, resembles published versio

    Plane overpartitions and cylindric partitions

    Get PDF
    Generating functions for plane overpartitions are obtained using various methods such as nonintersecting paths, RSK type algorithms and symmetric functions. We extend some of the generating functions to cylindric partitions. Also, we show that plane overpartitions correspond to certain domino tilings and we give some basic properties of this correspondence.Comment: 42 pages, 11 figures, corrected typos, revised parts, figures redrawn, results unchange
    corecore