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Recently, a new weighted generalization of the branching rule for
the hook lengths, equivalent to the hook formula, was proved.
In this paper, we generalize the complementary branching rule,
which can be used to prove Burnside’s formula. We present three
different proofs: bijective, via weighted hook walks, and via the
ordinary weighted branching rule.
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1. Introduction

The classical hook-length formula gives an elegant product formula for the number of standard
Young tableaux. Since its discovery by Frame et al. in [2], it has been reproved, generalized and
extended in several different ways, and applications have been found in a number of fields of
mathematics.

Let λ = (λ1, λ2, . . . , λℓ), λ1 ≥ λ2 ≥ · · · ≥ λℓ > 0, be a partition of n, λ ⊢ n, and let [λ] =
{(i, j) ∈ Z2: 1 ≤ i ≤ ℓ, 1 ≤ j ≤ λi} be the corresponding Young diagram. The conjugate partition λ′ is
defined by λ′j = max{i : λi ≥ j}. We will freely use implications such as i ≤ j ⇒ λi ≥ λj. The hook
Hz ⊆ [λ] is the set of squares weakly to the right and below of z = (i, j) ∈ [λ], and the hook length
hz = hij = |Hz| = λi + λ′j − i− j+ 1 is the size of the hook. See Fig. 1, left drawing.

A standard Young tableau of shape λ is a bijective map f : [λ] → {1, . . . , n}, such that f (i1, j1) <
f (i2, j2) whenever i1 ≤ i2, j1 ≤ j2, and (i1, j1) ≠ (i2, j2). See Fig. 1, right drawing. We denote the
number of standard Young tableaux of shape λ by f λ. The hook-length formula states that if λ is a
partition of n, then

f λ
=

n!∏
z∈[λ]

hz
.
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Fig. 1. Young diagram [λ], λ = 66,532, and a hook H23 with hook length h23 = 6; a standard Young tableau of shape 322.

For example, for λ = (3, 2, 2) ⊢ 7, the hook-length formula gives

f 322 =
7!

5 · 4 · 3 · 2 · 2 · 1 · 1
= 21.

Oneway to prove the hook-length formula is by induction on n. Namely, it is obvious that in a standard
Young tableau, nmust be in one of the corners, squares (i, j) of [λ] satisfying (i+ 1, j), (i, j+ 1) ∉ [λ].
Therefore

f λ
=

−
c∈C[λ]

f λ−c,

where C[λ] is the set of all corners of λ, and λ− c is the partition whose diagram is [λ] \ {c}.
That means that in order to prove the hook-length formula, we have to prove that Fλ

= n!/
∏

hz
satisfy the same recursion. It is easy to see that this is equivalent to the following branching rule for
the hook lengths:−

(r,s)∈C[λ]

1
n

r−1∏
i=1

his

his − 1

s−1∏
j=1

hrj

hrj − 1
= 1. (1)

In an important development, Greene, Nijenhuis and Wilf introduced the hook walk which proves
(1) by a combination of a probabilistic and a short but delicate induction argument [4]. Zeilberger
converted the hook walk proof into a bijective proof [9], but laments on the ‘‘enormous size of the
input and output’’ and ‘‘the recursive nature of the algorithm’’ ([9], Section 3). With time, several
variations of the hook walk have been discovered, most notably the q-version of Kerov [6], and its
further generalization, the (q, t)-version of Garsia and Haiman [3]. In a recent paper [1], a direct
bijective proof of (1) is presented. In fact, a bijective proof is presented for the following more general
identity, called the weighted branching formula: −

(p,q)∈[λ]

xpyq


·

 ∏
(i,j)∈[λ]\C[λ]

(xi+1 + · · · + xλ′j
+ yj+1 + · · · + yλi)



=

−
(r,s)∈C[λ]

 ∏
(i,j)∈[λ]\C[λ]

i≠r,j≠s

(xi+1 + · · · + xλ′j
+ yj+1 + · · · + yλi)


×


r∏

i=1

(xi + · · · + xr + ys+1 + · · · + yλi)


·


s∏

j=1

(xr+1 + · · · + xλ′j
+ yj + · · · + ys)


.

Here x1, . . . , xℓ(λ), y1, . . . , yλ1 are some commutative variables. To see that the stated formula is
equivalent to [1, equation (WHL)], note that in the last products on the right, the terms for i = r
and j = s are xr and ys, respectively.

If we substitute all xi and yj by 1, we get

n ·
∏

z∈[λ]\C[λ]
(hz − 1) =

−
(r,s)∈C[λ]

 ∏
(i,j)∈[λ]\C[λ]

i≠r,j≠s

(hz − 1)

 r∏
i=1

his

s∏
j=1

hrj,

which is equivalent to (1).
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Three more identities are also proved, with very similar bijective proofs. Namely, we can replace
the sum

∑
(p,q)∈[λ] xpyq on the left-hand sidewith

∑ℓ(λ)
p=1 xp and theproduct

∏s
j=1 on the right-hand side

with
∏s

j=2; we can replace the sum
∑

(p,q)∈[λ] xpyq on the left-hand side with
∑λ1

q=1 yq and the product∏r
i=1 on the right-hand sidewith

∏r
i=2; or, we can delete the sum

∑
(p,q)∈[λ] xpyq on the left-hand side,

and replace the products
∏r

i=1 and
∏s

j=1 on the right-hand side with
∏r

i=2 and
∏s

j=2, respectively.
An open question posed in [1] is to find the weighted analogue of the formula

∏
z∈[λ]

(hz + 1) =
−

(r,s)∈C′[λ]

 ∏
(i,j)∈[λ]
i≠r,j≠s

(hz + 1)

 r−1∏
i=1

his

s−1∏
j=1

hrj. (2)

Here C ′[λ] is the set of outer corners of λ, squares (i, j) ∉ [λ] satisfying i = 1 or (i − 1, j) ∈ [λ], and
j = 1 or (i, j−1) ∈ [λ]. Themotivation for this formula is as follows, see [8]. Division by

∏
z∈[λ](hz+1)

and
∏

z∈[λ] hz yields

1∏
z∈[λ]

hz
=

−
(r,s)∈C′[λ]

r−1∏
i=1

1
his + 1

s−1∏
j=1

1
hrj + 1

∏
(i,j)∈[λ]
i≠r,j≠s

1
hz

.

Wemultiply by (n+ 1)! and use the hook-length formula. We get

(n+ 1)f λ
=

−
c∈C′[λ]

f λ+c,

where λ+ c is the partition whose diagram is [λ] ∪ {c}.
Let us introduce the notation µ→ λ or λ← µ if λ = µ− c for a corner c of µ, or, equivalently, if

µ = λ+ c for an outer corner c of λ. We then have−
µ⊢n+1

(f µ)2 =
−

µ⊢n+1

f µ

−
λ←µ

f λ


=

−
λ⊢n

f λ

−
µ→λ

f µ


= (n+ 1)

−
λ⊢n

(f λ)2.

Induction proves the famous formula
∑

λ⊢n(f
λ)2 = n!.

This paper is organized as follows. In Section 2, we present four new formulas. The first is a
weighted version of (2), and we call it the complementary weighted branching rule. The others are
variants of this, similar to the variants of the weighted branching rule presented above. In Section 3,
we give a bijective proof of this formula, which is, in particular, the first simple bijective proof of (2).
In Section 4, we present some results on weighted hook walks, which also give a new way to prove
all the eight formulas; the proofs of main theorems from this section are deferred to Section 5. And
in Section 6, we explain how our new formulas can be proved using the four formulas from [1] on
complementary partitions (which are, roughly, partitions whose diagrams are the complements of
[λ] in rectangles).

2. New formulas

The main result of this paper is the following theorem.

Theorem 1 (Complementary Weighted Branching Rule). Choose a partition λ, and let x1, . . . , xℓ(λ),
y1, . . . , yλ1 be some commutative variables. Then∏

(i,j)∈[λ]

(xi + · · · + xλ′j
+ yj + · · · + yλi) =

−
(r,s)∈C′[λ]

∏
(i,j)∈[λ]
i≠r,j≠s

(xi + · · · + xλ′j
+ yj + · · · + yλi)

×


r−1∏
i=1

(xi+1 + · · · + xr−1 + ys + · · · + yλi)


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Fig. 2. The term on the left-hand side of CWBR corresponding to the square (3, 2) is x3 + x4 + x5 + y2 + y3 + y4 + y5
(left); the terms on the right-hand side of CWBR corresponding to the outer corner (4, 4) and the squares (2, 4) and (4, 1) are
x3 + y4 + y5 + y6 (middle) and x4 + x5 + y2 + y3 (right).

×


s−1∏
j=1

(xr + · · · + xλ′j
+ yj+1 + · · · + ys−1)


.

We refer to this result as CWBR. Fig. 2 should help understand what the formula is saying. A term on
the left-hand side corresponds to a square (i, j) of the diagram [λ] and is a natural weighted version
of hij + 1; see the left diagram in Fig. 2. On the right-hand side of CWBR, we have a sum over outer
corners. If the square (i, j) of the diagram is in a different row and column of [λ] from the chosen outer
corner, the corresponding term is the same as on the left-hand side. If it is in the same column, we
delete xi, and if it in the same row, we delete yj. Such a term is a weighted version of hij. See themiddle
and right diagrams of Fig. 2.

Example. For λ = 3211, CWBR gives the following equality:

(x1 + x2 + x3 + x4 + y1 + y2 + y3)(x1 + x2 + y2 + y3)(x1 + y3)
× (x2 + x3 + x4 + y1 + y2)(x2 + y2)(x3 + x4 + y1)(x4 + y1)
= (x2 + x3 + x4 + y1 + y2)(x2 + y2)(x3 + x4 + y1)(x4 + y1)
× (x1 + x2 + x3 + x4 + y2 + y3)(x1 + x2 + y3)x1
+ (x1 + x2 + x3 + x4 + y1 + y2 + y3)(x1 + x2 + y2 + y3)(x3 + x4 + y1)
× (x4 + y1)y3(x2 + x3 + x4 + y2)x2
+ (x1 + x2 + x3 + x4 + y1 + y2 + y3)(x1 + y3)(x2 + x3 + x4 + y1 + y2)
× (x4 + y1)(x2 + y2 + y3)y2(x3 + x4)
+ (x1 + x2 + y2 + y3)(x1 + y3)(x2 + y2)(x2 + x3 + x4 + y1 + y2 + y3)
× (x3 + x4 + y1 + y2)(x4 + y1)y1.

We give three more formulas involving outer corners.
ℓ(λ)−
p=1

xp

 ∏
(i,j)∈[λ],j≠1

(xi + · · · + xλ′j
+ yj + · · · + yλi)

=

−
(r,s)∈C′[λ],s≠1

∏
(i,j)∈[λ],i≠r,j≠1,s

(xi + · · · + xλ′j
+ yj + · · · + yλi)

×


r−1∏
i=1

(xi+1 + · · · + xr−1 + ys + · · · + yλi)



×


s−1∏
j=1

(xr + · · · + xλ′j
+ yj+1 + · · · + ys−1)


(3)

λ1−
q=1

yq

 ∏
(i,j)∈[λ],i≠1

(xi + · · · + xλ′j
+ yj + · · · + yλi)
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=

−
(r,s)∈C′[λ],r≠1

∏
(i,j)∈[λ],i≠1,r,j≠s

(xi + · · · + xλ′j
+ yj + · · · + yλi)

×


r−1∏
i=1

(xi+1 + · · · + xr−1 + ys + · · · + yλi)



×


s−1∏
j=1

(xr + · · · + xλ′j
+ yj+1 + · · · + ys−1)


(4) −

(p,q)∉[λ]

xpyq

 ∏
(i,j)∈[λ],i,j≠1

(xi + · · · + xλ′j
+ yj + · · · + yλi)

=

−
(r,s)∈C′[λ],r,s≠1

∏
(i,j)∈[λ],i≠1,r,j≠1,s

(xi + · · · + xλ′j
+ yj + · · · + yλi)

×


r−1∏
i=1

(xi+1 + · · · + xr−1 + ys + · · · + yλi)



×


s−1∏
j=1

(xr + · · · + xλ′j
+ yj+1 + · · · + ys−1)


. (5)

This last formula requires some clarification: the sum on the left-hand side is over all (i, j) such that
1 ≤ i ≤ ℓ(λ), 1 ≤ j ≤ λ1, (i, j) ∉ [λ]. In other words, we could write (

∑ℓ(λ)
p=1 xp) · (

∑λ1
q=1 yq) −∑

(p,q)∈[λ] xpyq instead.

Example. For λ = 3211, formulas (3)–(5) give

(x1 + x2 + x3 + x4)(x1 + x2 + y2 + y3)(x1 + y3)(x2 + y2)
= (x2 + y2)(x1 + x2 + x3 + x4 + y2 + y3)(x1 + x2 + y3)x1
+ (x1 + y3)(x2 + y2 + y3)y2(x3 + x4)
+ (x1 + x2 + y2 + y3)y3(x2 + x3 + x4 + y2)x2,

(y1 + y2 + y3)(x2 + x3 + x4 + y1 + y2)(x2 + y2)(x3 + x4 + y1)(x4 + y1)
= (x3 + x4 + y1)(x4 + y1)y3(x2 + x3 + x4 + y2)x2
+ (x2 + x3 + x4 + y1 + y2)(x4 + y1)(x2 + y2 + y3)y2(x3 + x4)
+ (x2 + y2)(x2 + x3 + x4 + y1 + y2 + y3)(x3 + x4 + y1 + y2)(x4 + y1)y1,

(x3y2 + x4y2 + x2y3 + x3y3 + x4y3)(x2 + y2)
= y3(x2 + x3 + x4 + y2)x2 + (x2 + y2 + y3)y2(x3 + x4).

3. Bijective proof of complementary weighted branching rule

A direct bijective proof of Theorem 1 shares many characteristics with the bijective proof of the
weighted branching rule in [1, Section 2].We interpret both left-hand and right-hand sides as labelings
of the diagram;we start the bijectionwith a (variant of the) hookwalk; and the hookwalk determines
a relabeling of the diagram. There are, however, some important differences. First, the walk always
starts in the square (1, 1). Second, the hook walk can never pass through a square that is not in the
same row as an outer corner and the same column as an outer corner. Third, the rule for one step of the
hook walk is different from the one in [1]. And finally, there is an extra shift in the relabeling process.

For the left-hand side of CWBR,we are given a label xk for some i ≤ k ≤ λ′j , or yl for some j ≤ l ≤ λi,
for every square (i, j) ∈ [λ]. Denote by F the resulting arrangement of n labels (see Fig. 3, left), and by
Fλ the set of such labeling arrangements F .
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Fig. 3. An example of an arrangement corresponding to the left-hand side of CWBR for λ = 988,666,542; the corresponding
hook walk.

For the right-hand side of CWBR, we are given

• an outer corner (r, s);
• a label xk for some i ≤ k ≤ λ′j , or yl for some j ≤ l ≤ λi, for every square (i, j) ∈ [λ] satisfying

i ≠ r , j ≠ s;
• a label xk for some i < k ≤ λ′j , or yl for some s ≤ l ≤ λi, for every square (i, s);
• a label xk for some r ≤ k ≤ λ′j , or yl for some j < l ≤ λi, for every square (r, j).

Denote by G the resulting arrangement of n labels (see Fig. 5), and by Gλ the set of all such labelings G.
Our goal is to give a natural bijection ϕ : Fλ → Gλ.
We start the bijection by constructing a hook walk. In [1], a label xk in the square (i, j) meant that

we moved to square (k, j), and a label yl meant that we moved to square (i, l). It should be clear that
such a simple rule does notwork for CWBR. The first reason is that labels xi and yj are also allowed, and
this would create a loop. Another important reason is that while the right-hand side of CWBR suggests
that we should end every hook walk in an outer corner, there are squares of [λ] from which an outer
corner cannot be reached. In the simplest case of λ = ab, we have two outer corners, (1, a + 1) and
(b+ 1, 1). These two squares can be reached with downward and rightward steps only from the first
row and first column of [λ]. Moreover, we can reach both outer corners only from (1, 1).

We therefore start the hook walk in (1, 1) and move only through squares which are in the same
row as an outer corner and in the same column as an outer corner. The rule is as follows. If the current
square is (i, j) and the label of (i, j) in F is xk for i ≤ k ≤ λ′j , move to (i, λk + 1). If the label of (i, j) in
F is yl for j ≤ l ≤ λ′j , move to (λ′l + 1, j). Note that in each case, we move to a square which is in the
same row as an outer corner and the same column as an outer corner. Moreover, i ≤ k implies λk ≤ λi
and j ≤ l implies λ′l ≤ λ′j , so the square we move to is either in [λ] or is the outer corner to the right
of or below (i, j). The process continues until we arrive at an outer corner (r, s); see the right drawing
in Fig. 3.

Example. Take λ = 988,666,542 and the label arrangement drawn in Fig. 3 on the left.
We start in square (1, 1). Since the label in (1, 1) is y8, we move to (λ′8 + 1, 1) = (4, 1). The label

in (4, 1) is x9, so in the next step, we move to (4, λ9 + 1) = (4, 3). The label there is x8 and our next
square is (4, λ8+1) = (4, 5). Since the label in (4, 5) is y6, we move to (λ′6+1, 5) = (7, 5). The label
in that square is x7 andwe thereforemove to the outer corner (7, λ7+1) = (7, 6) and stop. This hook
walk is pictured on the right.

Shade row r and column s. Now we shift the labels in the hook walk and in its projection onto the
shaded row and column. If the hook walk has a horizontal step from (i, j) to (i, j′), i ≠ r , move the
label in (i, j) right and down to (r, j′), and the label from (r, j) up to (i, j). If the hookwalk has a vertical
step from (i, j) to (i′, j), j ≠ s, move the label from (i, j) down and right to (i′, s), and the label from
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Fig. 4. An example of the shift of labels for λ = 988,666,542.

Fig. 5. The final arrangement.

(i, s) left to (i, j). If the hook walk has a horizontal step from (r, j) to (r, j′), move the label in (r, j)
right to (r, j′). If the hook walk has a vertical step from (i, s) to (i′, s), move the label in (i, s) down to
(i′, s). See Fig. 4.

Example. We continue with the previous example. On the left, we show how labels trade places. On
the right, we have the arrangement after label changes. There are two labels in the square (7, 6), x7
and y6.

After these changes, we have the following situation. If r = 1, there is no label in (1, 1), and in (1, s)
the label is xk, 1 ≤ k ≤ λ′λ1 . Move all the labels in row 1 one square to the left. If s = 1, there is no
label in (1, 1), and in (r, 1) the label is yl, 1 ≤ l ≤ λℓ(λ). Move all the labels in column 1 one square
up. If r > 1 and s > 1, there are no labels in (r, 1) and (1, s). In (r, s), there are two labels: one of the
form xk for r ≤ k ≤ λ′s−1, and one of the form yl for s ≤ l ≤ λr−1. Push all the labels in row r , including
xk in (r, s), one square to the left; and push all labels in column s, including yl in (r, s), one square up.
See Fig. 5 for the final arrangement, which we denote G.

Example. We continue with the previous example. Fig. 5 shows the final label arrangement.

We claim that the final arrangement is in Gλ. If (i, j), i ≠ r , j ≠ s, is not one of the squares in the
hook walk, then the label of (i, j) in G is the same as in F , and it is therefore xk for i ≤ k ≤ λ′j , or yl for
j ≤ l ≤ λi. If (i, j) is one of the squares in the hook walk, i ≠ r , j ≠ s, then the label of (i, j) in G is
the label of either (i, s) or (r, j) in F . That means that it is either xk for i ≤ k ≤ λ′s = r − 1, or yl for
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s ≤ l ≤ λi, or xk for r ≤ k ≤ λ′j , or yl for j ≤ l ≤ λr = s − 1. In other words, the new label in (i, j) is
either xk for i ≤ k ≤ λ′j , or yl for j ≤ l ≤ λi.

The label of (i, s), 1 ≤ i ≤ r − 1, in G is the label of (i + 1, s) in F if (i + 1, s) is not in the
projection of the hook walk onto column s; in other words, it is either xk for i+ 1 ≤ k ≤ λ′s = r − 1,
or yl for s ≤ l ≤ λi+1 ≤ λi. If (i + 1, s) is in the projection of the hook walk onto column s, we
know by construction of the hook walk and relabelings that the new label in (i, s) is yl, where λ′l = i.
Now i = λ′l ≤ r − 1 = λ′s < λ′s−1 implies l > s − 1. Also, l ≤ λλ′l

= λi. In other words, the
label in (i, s) is yl for s ≤ l ≤ λi. The following is important in the construction of the inverse: since
λ′l = max{k: λk ≥ l} = i, we have λi+1 < l. In other words, the label in (i, s) is always either xk for
i + 1 ≤ k ≤ λ′s = r − 1, or yl for s ≤ l ≤ λi, and it is yl for λi+1 < l ≤ λi if and only if (i + 1, s) is in
the projection of the hook walk onto column s.

We similarly prove that the label in (r, j) is always either xk for r ≤ k ≤ λ′j , or yl for j + 1 ≤ l ≤
λr = s− 1, and it is xk for λ′j+1 < k ≤ λ′j if and only if (r, j+ 1) is in the projection of the hook walk
onto row r .

This shows that G ∈ Gλ.
In the following paragraphs, we sketch the proof of the fact thatϕ has an inverse. The only difficulty

lies in reconstructing the hookwalk; oncewe have that, the relabeling process that gives back F is very
straightforward.

We are given:

• an outer corner (r, s);
• a label xk for some i ≤ k ≤ λ′j , or yl for some j ≤ l ≤ λi, for every square (i, j) ∈ [λ] satisfying

i ≠ r , j ≠ s;
• a label xk for some i < k ≤ λ′j , or yl for some s ≤ l ≤ λi, for every square (i, s);
• a label xk for some r ≤ k ≤ λ′j , or yl for some j < l ≤ λi, for every square (r, j).

We can read off the projections of the hook walk onto row r immediately. It is the square (r, 1), plus
all squares (r, j), j ≤ s, for which the label in (r, j − 1) is xk for k > λ′j . Note that since k ≤ λ′j−1, this
can only happen when (r, j) is in the same column as an outer corner. Similarly, the projection of the
hook walk onto column s is (1, s) and all squares (i, s), i ≤ r , for which the label in (i − 1, s) is yl for
l > λi.

Once we have the projections, it only remains to see whether the hook walk should go right from
(i, j), down from (i, j), or terminate. If i = r or j = s, the decision is obvious. If i ≠ r and j ≠ s, the
label of (i, j) in G is either xk for i ≤ k ≤ λ′j or yl for j ≤ l ≤ λi. If the label is either xk for r ≤ k or yl for
l ≤ s− 1, we should move to the right; if the label is either xk for k ≤ r− 1 or yl for s ≤ l, move down.

We illustrate this with G from the last example, and leave it as an exercise for the reader to check
whether such a construction indeed gives an inverse of ϕ in general.

Example. Let G be the arrangement in Fig. 5, corresponding to the outer corner (7, 6). Since the labels
of (7, 2), (7, 4) and (7, 5) are x9, x8 and x7, respectively, and since λ′3 < 9, λ′5 < 8 and λ′6 < 7, the
projection of the hookwalk onto row7 contains squares (7, 1), (7, 3), (7, 5) and (7, 6). Similarly, since
the labels of (3, 6) and (6, 6) are y8 and y6, respectively, and since λ4 < 8 and λ7 < 6, the projection
of the hook walk onto column 6 are the squares (1, 6), (4, 6) and (7, 6).

The hook walk starts in (1, 1). The label is x1 and 1 ≤ 7− 1, so we move down to (4, 1). The label
there is y2 with 2 ≤ 6− 1, so move right to (4, 3). The label in (4, 3) is y4, and 4 ≤ 6− 1. Therefore
wemove right to (4, 5). The label x4 and the inequality 4 ≤ 7− 1 imply that wemove down to (7, 5),
and from there we move right to (7, 6).

The shifting of labels is easy: move the labels in row 7 right by one, and the labels in column 6
down by one. Then reverse the direction of arrows in the right picture in Fig. 4 and move the labels as
indicated by arrows. We get F from Fig. 3.

The proofs of identities (3)–(5) are very similar. Note that for an arrangement corresponding to the
left-hand side, we now have a chosen row p (respectively, column q, respectively, both). We start
the hook walk in square (1, λp + 1) (respectively, in (λ′q + 1, 1), respectively, in (λ′q + 1, λp + 1)).
It is not difficult to see that such a starting square has the second coordinate (respectively, the first
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Fig. 6. Division of the plane into regions R1, . . . , R10 for λ = 66,532, with some lines in bold.

Fig. 7. Examples of (weighted) hook walks for λ = 66,532.

coordinate, respectively, both coordinates) greater than 1 and that it is either in [λ] or an outer corner.
We construct the hookwalk in exactly the same fashion as before;weperform the relabeling as before;
but before the final shift to the left and/or up by one, we label (r, λp + 1) (respectively, (λ′q + 1, s),
respectively, both) with xp (respectively, yq, respectively, both). The details are left as an exercise for
the reader.

4. Weighted hook walks

Choose a partition λ and draw the borders of its diagram in the plane. Now add lines x = 0,
x = ℓ(λ), y = 0, y = λ1; this divides the plane into ten regions R1, . . . , R10. See Fig. 6 for an example
and the labelings of these regions. Draw the following lines in bold: the half-line x = 0, y ≥ λ1, the
half-line x = ℓ(λ), y ≤ 0, the half-line y = 0, x ≥ ℓ(λ), the half-line y = λ1, x ≤ 0, and the zigzag
line separating regions R1 and R5.

Define a weighted hook walk as follows. Choose positive weights (xi)∞i=−∞, (yj)∞j=−∞ satisfying∑
i xi <∞,

∑
j yj <∞. Select the starting square for the hookwalk so that the probability of selecting

the square (i, j) is proportional to xiyj. In each step, move in a vertical or horizontal direction toward
the bolded line; in regions R1, R2, R3 and R4, right or down; in regions R5, R6, R7 and R8, left or up; in
region R9, right or up; and in region R10, left or down. Fig. 7 shows some examples of weighted hook
walks.

More specifically, if the current position is (i, j), move to the square (i′, j) between (i, j) and the
bolded line with probability proportional to xi′ , and to the square (i, j′) between (i, j) and the bolded
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line with probability proportional to yj′ . The process stops if we are either in one of the corners of λ (if
the initial square was in regions R1, R2, R3 or R4), one of the outer corners of λ (if the initial square was
in regions R5, R6, R7 or R8), the square (ℓ(λ)+1, 0) (if the initial square was in region R9) or (0, λ1+1)
(if the initial square was in region R10). These last two possibilities are not particularly interesting.

The probability of the process ending in a corner (r, s), conditional on starting in R1, was already
computed in [1, Theorem 3]. Our goal is to give the probabilities of terminating in a particular
corner conditional on starting in R2, R3 and R4, as well as probabilities of ending in a particular
outer corner, conditional on starting in R5, R6, R7 and R8. The most interesting observation is that
these probabilities turn out to depend only on x1, . . . , xℓ(λ), y1, . . . , yλ1 . As a corollary, we obtain the
conditional probabilities in the case where all these values are equal. They represent generalizations
of classical results due to Greene et al. from [4,5].

We extend the definition of λi, λ′j to all i, j ∈ Z in a natural way as follows:

• for i ≤ 0, λi = λ1,
• for i ≥ ℓ(λ)+ 1, λi = 0,
• for j ≤ 0, λ′j = ℓ(λ),
• for j ≥ λ1 + 1, λ′j = 0.

The following statement was proved in [1] for (i, j) ∈ R1 by induction on |I| + |J|.

Lemma 2. Assume that the weighted hook walk is (i1, j1) → (i2, j2) → · · · → (r, s), where (r, s) is
either a corner or an outer corner of λ. Write I = {i1, i2, . . . , r} and J = {j1, j2, . . . , s} for its vertical and
horizontal projections.

(a) Suppose that (r, s) is a corner of λ. Then the probability that the vertical and horizontal projections
are I and J, conditional on starting at (i1, j1), is∏

i∈I\{i1}
xi∏

i∈I\{r}
(xi+1 + · · · + xr + ys+1 + · · · + yλi)

·

∏
j∈J\{j1}

yj∏
j∈J\{s}

(xr+1 + · · · + xλ′j
+ yj+1 + · · · + ys)

.

(b) Suppose that (r, s) is an outer corner of λ. Then the probability that the vertical and horizontal
projections are I and J, conditional on starting at (i1, j1), is∏

i∈I\{i1}
xi∏

i∈I\{r}
(xr + · · · + xi−1 + yλi+1 + · · · + ys−1)

·

∏
j∈J\{j1}

yj∏
j∈J\{s}

(xλ′j+1
+ · · · + xr−1 + ys + · · · + yj−1)

.

Sketch of Proof. The statement (a) for (i1, j1) ∈ [λ] is proved in [1, Lemma 5]. If we apply this to
the partition whose diagram is (

4
k=1 Rk) ∩ {(i, j): i ≥ min{i1, 1}, j ≥ min{j1, 1}}, we get part (a) in

general. Part (b) follows if we rotate the graph by 180°. �

The following two theorems tell us how to compute probabilities of ending in corners and outer
corners. Proofs are deferred to Section 5.

Theorem 3. For a corner c = (r, s) of λ, denote by P(c|R) the probability that the weighted hook walk
terminates in c, conditional on the starting point being in R. Write∏

rs

= xrys
r−1∏
i=1


1+

xi
xi+1 + · · · + xr + ys+1 + · · · + yλi



×

s−1∏
j=1


1+

yj
xr+1 + · · · + xλ′j

+ yj+1 + · · · + ys


.
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Then:

(a) P(c|R1) =
1∑

(p,q)∈[λ] xpyq
·
∏

rs.

(b) P(c|R2) =
1

(
∑ℓ(λ)

p=1 xp)(xr+1+···+xℓ(λ)+y1+···+ys)
·
∏

rs.

(c) P(c|R3) =
1

(
∑λ1

q=1 yq)(x1+···+xr+ys+1+···+yλ1 )
·
∏

rs.

(d) P(c|R4) =
1

(xr+1+···+xℓ(λ)+y1+···+ys)(x1+···+xr+ys+1+···+yλ1 )
·
∏

rs.

In particular, the sum of each of the above terms over all corners of λ equals 1. Also,

(e) P(c) = 1
(
∑

p xp)·(
∑

q yq)
· (1+

∑
p≤0 xp

x1+···+xr+ys+1+···+yλ1
) · (1+

∑
q≤0 yq

xr+1+···+xℓ(λ)+y1+···+ys
) ·
∏

rs.

Theorem 4. For an outer corner, c = (r, s) of λ, denote by P(c|R) the probability that the weighted hook
walk terminates in c, conditional on the starting point being in R. Write∏

′

rs
=

r−1∏
i=1


1−

xi
xi + · · · + xr−1 + ys + · · · + yλi



×

s−1∏
j=1


1−

yj
xr + · · · + xλ′j

+ yj + · · · + ys−1


.

Then:

(a) P(c|R5) =
(xr+···+xℓ(λ)+y1+···+ys−1)(x1+···+xr−1+ys+···+yλ1 )∑

(p,q)∉[λ] xpyq
·
∏
′

rs.

(b) P(c|R6) =
xr+···+xℓ(λ)+y1+···+ys−1∑ℓ(λ)

i=1 xp
·
∏
′

rs.

(c) P(c|R7) =
x1+···+xr−1+ys+···+yλ1∑λ1

q=1 yq
·
∏
′

rs.

(d) P(c|R8) =
∏
′

rs.

In particular, the sum of each of the above terms over all outer corners of λ equals 1; note that this proves
CWBR, (3)–(5). Also,

(e) P(c) =
(x1+···+xr−1+

∑
∞
q=s yq)·(

∑
∞
p=r xp+y1+···+ys−1)

(
∑

p xp)·(
∑

q yq)
·
∏
′

rs.

Corollary 5. If x1 = · · · = xℓ(λ) = y1 = · · · = yλ1 , then we have the following. For a corner c = (r, s)
of λ,

P(c|R1) =
f λ−c

f λ
, P(c|R2) =

nf λ−c

ℓ(λ)(ℓ(λ)− r + s)f λ

P(c|R3) =
nf λ−c

λ1(λ1 + r − s)f λ
, P(c|R4) =

nf λ−c

(ℓ(λ)− r + s)(λ1 + r − s)f λ
.

In particular, the sum of each of the above terms over all corners of λ equals 1.
For an outer corner, c = (r, s) of λ,

P(c|R5) =
(ℓ(λ)− r + s)(λ1 + r − s)f λ+c

(n+ 1)(ℓ(λ)λ1 − n)f λ
, P(c|R6) =

(ℓ(λ)− r + s)f λ+c

(n+ 1)ℓ(λ)f λ

P(c|R7) =
(λ1 + r − s)f λ+c

(n+ 1)λ1f λ
, P(c|R8) =

f λ+c

(n+ 1)f λ
.

In particular, the sum of each of the above terms over all outer corners of λ equals 1.
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The corollary gives six new recursive formulas for numbers of standard Young tableaux (and
dimensions of irreducible representations of the symmetric group). Recall that one of the classical
recursions, f λ

=
∑

c f
λ−c, has a trivial bijective proof, and a bijective proof of (n + 1)f λ

=
∑

c f
λ+c

is essentially the bumping process of the Robinson–Schensted algorithm. It would be nice to find
bijective proofs for the new recursions.

Also, we showed in the introduction how the classical recursions prove
∑

λ⊢n(f
λ)2 = n!. An

interesting question is whether other pairs of ‘‘dual’’ recursions, say

ℓ(λ)f λ
= n

−
c

f λ−c

ℓ(λ)− r + s
and (n+ 1)ℓ(λ)f λ

=

−
c

(ℓ(λ)− r + s)f λ+c

give a similar identity, and what the version of the Robinson–Schensted proof for that identity would
be.

The sums over outer corners have the following interesting interpretation. Recall that the content
of a square (i, j) of a diagram [λ] is defined as i− j.

Corollary 6. Fix a partition λ ⊢ n. Choose a standard Young tableau of shape λ uniformly at random, and
an integer i, 1 ≤ i ≤ n+ 1 uniformly at random. In the standard Young tableau, increase all integers≥ i
by 1, and use the bumping process of the Robinson–Schensted algorithm to insert i in the tableau. Define
the random variable X as the content of the square that is added to λ. Then

E(X) = 0, var(X) = n.

Proof. The bumping process is a bijection

SYT(λ)× {1, . . . , n+ 1} −→


c∈C′[λ]

SYT(λ+ c).

This means that the probability that c, the square added to λ, is equal to f λ+c

(n+1)f λ . We have

(n+ 1)λ1f λ
=

−
(λ1 + r − s)f λ+c

= λ1

−
f λ+c
+

−
(r − s)f λ+c

= (n+ 1)λ1f λ
+

−
(r − s)f λ+c

and therefore−
(r − s)f λ+c

= 0,

which is equivalent to E(X) = 0. On the other hand, we know that

(n+ 1)(ℓ(λ)λ1 − n)f λ
=

−
(ℓ(λ)− r + s)(λ1 + r − s)f λ+c

= ℓ(λ)λ1

−
f λ+c
+ (ℓ(λ)− λ1)

−
(r − s)f λ+c

−

−
(r − s)2f λ+c

and so−
(r − s)2f λ+c

= (n+ 1)nf λ.

Division by (n+ 1)f λ shows that var(X) = n.

Remark. The corollary also follows from the results of Kerov. From [7, equations (3.4.3), (3.4.4)], we
get E(X) = h1 = p1 and var(X) = h2 = p21+ p2/2, where p1 = 0 and p2 = 2n by [7, equation (3.4.6)].

5. Proofs of hook walk theorems

We only prove parts (d) and (e) of Theorem 3, and only part (b) of Theorem 4, as the proofs of other
parts are very similar.
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For part (d) of Theorem 3, pick i1 ≤ 0, j1 ≤ 0, and a corner c = (r, s) of λ. We know that

P(c|(i1, j1)) =
−
I,J

P(I, J|(i1, j1)),

where the sum is over all I, J satisfying max I = r , min I = i1, max J = s, min J = j1. By part (a) of
Lemma 2, this is

−
I,J

∏
i∈I\{i1}

xi∏
i∈I\{r}

(xi+1 + · · · + xr + ys+1 + · · · + yλi)
·

∏
j∈J\{j1}

yj∏
j∈J\{s}

(xr+1 + · · · + xλ′j
+ yj+1 + · · · + ys)

=

xrys
∑
I ′,J ′

∏
i∈I′

xi∏
i∈I′

(xi+1+···+xr+ys+1+···+yλi )
·

∏
j∈J′

yj∏
j∈J′

(xr+1+···+xλ′j
+yj+1+···+ys)

(xi1+1 + · · · + xr + ys+1 + · · · + yλ1)(xr+1 + · · · + xℓ(λ) + yj1+1 + · · · + ys)
,

where the sum is over I ′ ⊆ {i1 + 1, . . . , r − 1}, J ′ ⊆ {j1 + 1, . . . , s− 1}. It is clear that this is equal to

xrys
r−1∏

i=i1+1


1+ xi

xi+1+···+xr+ys+1+···+yλi

 s−1∏
j=j1+1


1+ yj

xr+1+···+xλ′j
+yj+1+···+ys


(xi1+1 + · · · + xr + ys+1 + · · · + yλ1)(xr+1 + · · · + xℓ(λ) + yj1+1 + · · · + ys)

.

Now note that

1
(xi1+1 + · · · + xr + ys+1 + · · · + yλ1)

0∏
i=i1+1


1+

xi
xi+1 + · · · + xr + ys+1 + · · · + yλi



=
1

(xi1+1 + · · · + xr + ys+1 + · · · + yλ1)

0∏
i=i1+1

xi + xi+1 + · · · + xr + ys+1 + · · · + yλ1

xi+1 + · · · + xr + ys+1 + · · · + yλ1

=
1

x1 + · · · + xr + ys+1 + · · · + yλ1

.

Together with a similar computation for

1
xr+1 + · · · + xℓ(λ) + yj1+1 + · · · + ys

0∏
j=j1+1


1+

yj
xr+1 + · · · + xλ′j

+ yj+1 + · · · + ys


,

this proves that P(c|(i1, j1)) = 1
(xr+1+···+xℓ(λ)+y1+···+ys)(x1+···+xr+ys+1+···+yλ1 )

·
∏

rs. This proves (d).

We have

P(R1) =

∑
(p,q)∈[λ]

xpyq∑
p
xp


·

∑
q
yq

 , P(R2) =


ℓ(λ)∑
p=1

xp

∑
q≤0

yq


∑

p
xp


·

∑
q
yq

 ,

P(R3) =

∑
p≤0

xp


λ1∑
q=1

yq


∑

p
xp


·

∑
q
yq

 , P(R4) =

∑
p≤0

xp

∑
q≤0

yq


∑

p
xp


·

∑
q
yq

 ,
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and therefore, assuming (a)–(d),

P(c) = P(c|R1)P(R1)+ P(c|R2)P(R2)+ P(c|R3)P(R3)+ P(c|R4)P(R4)

=
1∑

p
xp


·

∑
q
yq

 ·
1+

∑
q≤0

yq

xr+1 + · · · + xℓ(λ) + y1 + · · · + ys

+

∑
p≤0

xp

x1 + · · · + xr + ys+1 + · · · + yλ1

+

∑
p≤0

xp

∑
q≤0

yq


(xr+1 + · · · + xℓ(λ) + y1 + · · · + ys)(x1 + · · · + xr + ys+1 + · · · + yλ1)

 ·
∏

rs
,

which is (e).
To prove part (b) of Theorem 4, pick an outer corner c = (r, s) of λ. We want to find

P(c|R6) =

∑
1≤i1≤ℓ(λ),j1>λ1

P(i1, j1) · P(c|(i1, j1))

P(R6)

=

∑
1≤i1≤ℓ(λ),j1>λ1

xi1yj1
∑ ∏

i∈I\{i1}
xi∏

i∈I\{r}
(xr+···+xi−1+yλi+1+···+ys−1)

·

∏
j∈J\{j1}

yj∏
j∈J\{s}

(x
λ′j+1
+···+xr−1+ys+···+yj−1)

ℓ(λ)∑
p=1

xp

 ∑
q>λ1

yq

 ,

where the inner sum is over all I, J satisfying min I = r , max I = i1, min J = s, max J = j1. We used
part (b) of Lemma 2 for P(c|(i1, j1)).

The trick is to move xi1 into the first inner summation, and to leave yj1 outside. Since

xi1 ·
∏

i∈I\{i1}

xi = xr ·
∏

i∈I\{r}

xi,

we get

∑
j1>λ1

xryj1

∑ ∏
i∈I\{r}

xi∏
i∈I\{r}

(xr+···+xi−1+yλi+1+···+ys−1)


·

∑ ∏
j∈J\{j1}

yj∏
j∈J\{s}

(x
λ′j+1
+···+xr−1+ys+···+yj−1)




ℓ(λ)∑
p=1

xp

 ∑
q>λ1

yq

 ,

where the first inner sum is over all I satisfying min I = r , max I ≤ ℓ(λ), and the second inner sum is
over all J satisfying min J = s, max J = j1.

Let us deal with the inner sums individually. First, we have

−
min I=r,max I≤ℓ(λ)

∏
i∈I\{r}

xi∏
i∈I\{r}

(xr + · · · + xi−1 + yλi+1 + · · · + ys−1)

=

ℓ(λ)∏
i=r+1


1+

xi
xr + · · · + xi−1 + yλi+1 + · · · + ys−1


,
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and

xr ·
ℓ(λ)∏

i=r+1


1+

xi
xr + · · · + xi−1 + yλi+1 + · · · + ys−1



= xr ·
ℓ(λ)∏

i=r+1

xr + · · · + xi + yλi+1 + · · · + ys−1
xr + · · · + xi−1 + yλi+1 + · · · + ys−1

= xr ·

ℓ(λ)∏
i=r+1

(xr + · · · + xi + yλi+1 + · · · + ys−1)

ℓ(λ)∏
i=r+1

(xr + · · · + xi−1 + yλi+1 + · · · + ys−1)

= xr ·

ℓ(λ)∏
i=r+1

(xr + · · · + xi + yλi+1 + · · · + ys−1)

ℓ(λ)−1∏
i=r

(xr + · · · + xi + yλi+1+1 + · · · + ys−1)

= (xr + · · · + xℓ(λ) + y1 + · · · + ys−1) ·

ℓ(λ)∏
i=r

(xr + · · · + xi + yλi+1 + · · · + ys−1)

ℓ(λ)∏
i=r

(xr + · · · + xi + yλi+1+1 + · · · + ys−1)

= (xr + · · · + xℓ(λ) + y1 + · · · + ys−1) ·
ℓ(λ)∏
i=r

λi∏
j=λi+1+1

xr + · · · + xi + yj+1 + · · · + ys−1
xr + · · · + xi + yj + · · · + ys−1

,

where the last equality is proved by telescoping. But we have λi+1 < j ≤ λi if and only if i = λ′j , so
reversing the order of multiplication yields

(xr + · · · + xℓ(λ) + y1 + · · · + ys−1) ·
∏

j:r≤λ′j≤ℓ(λ)


xr + · · · + xλ′j

+ yj+1 + · · · + ys−1

xr + · · · + xλ′j
+ yj + · · · + ys−1



= (xr + · · · + xℓ(λ) + y1 + · · · + ys−1) ·
s−1∏
j=1


1−

yj
xr + · · · + xλ′j

+ yj + · · · + ys−1


.

The second computation is very similar. If s = j1, we have

−
min J=s, max J=j1

∏
j∈J\{j1}

yj∏
j∈J\{s}

(xλ′j+1
+ · · · + xr−1 + ys + · · · + yj−1)

= 1.

Otherwise, it is equal to

ys
xλ′j1
+1 + · · · + xr−1 + ys + · · · + yj1−1

·

j1−1∏
j=s+1


1+

yj
xλ′j+1
+ · · · + xr−1 + ys + · · · + yj−1


.

In either case, we can write this as
j1−1∏
j=s

(xλ′j+1
+ · · · + xr−1 + ys + · · · + yj)

j1∏
j=s+1

(xλ′j+1
+ · · · + xr−1 + ys + · · · + yj−1)

=

j1∏
j=s+1

(xλ′j−1+1
+ · · · + xr−1 + ys + · · · + yj−1)

j1∏
j=s+1

(xλ′j+1
+ · · · + xr−1 + ys + · · · + yj−1)

,
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Fig. 8. Complementary partitions of λ = 66,532 with respect to (5, 6), (5, 7), (8, 6) and (6, 8) are 431, 54,211, 666,431,
865,322, respectively.

and telescoping helps us to write this as

j1∏
j=s+1

λ′j−1∏
i=λ′j+1

xi+1 + · · · + xr−1 + ys + · · · + yj−1
xi + · · · + xr−1 + ys + · · · + yj−1

=

r−1∏
i=1

xi+1 + · · · + xr−1 + ys + · · · + yλi

xi + · · · + xr−1 + ys + · · · + yλi

,

where we used the fact that λ′j < i ≤ λ′j−1 if and only if j− 1 = λi, and that λ′j1 = 0.
Putting these calculations together, our final result for P(c|R6) is∑

j1>λ1


yj1 (xr + · · · + xℓ(λ) + y1 + · · · + ys−1)

r−1∏
i=1


1− xi

xi+···+xr−1+ys+···+yλi

 s−1∏
j=1


1− yj

xr+···+xλ′j
+yj+···+ys−1




ℓ(λ)∑
p=1

xp

 ∑
q>λ1

yq



=
xr + · · · + xℓ(λ) + y1 + · · · + ys−1

ℓ(λ)∑
i=1

xp

·

∏
′

rs
.

6. Proofs via complementary partitions

A partition λ = (λ1, λ2, . . . , λℓ) of n has several complementary partitions determined by
rectangles that contain [λ] and have one vertex in (0, 0). Namely, choose a ≥ ℓ(λ) and b ≥ λ1.
Pick the non-zero entries of

(b, . . . , b  
a−ℓ

, b− λℓ, b− λℓ−1, . . . , b− λ2, b− λ1).

We obtain a partition of ab− n, which we call the complementary partition of λ with respect to (a, b).
Fig. 8 represents four different complementary partitions.

It turns out that the formulas CWBR, (3)–(5) are equivalent to the four formulas from [1] for
complementary partitions. We sketch the proof of this statement for (4) in this section.

First note that in (4), some terms cancel out. For example, for λ = 3211, the term x4 + y1 appears
on the left (corresponding to the square (4, 1)), as well as in all the terms on the right (corresponding
to the squares (4, 1) for outer corner (2, 3), (4, 1) for outer corner (3, 2), and (3, 1) for outer corner (5,
1)). In general, define I = {i: i > 1, (i, s) ∈ C ′[λ] for some s}, J = {j: (r, j) ∈ C ′[λ] for some r > 1}.
Note that |I| = |J| = |C[λ]|. We claim that for (i, j) ∈ [λ], i > 1, the term xi+· · ·+ xλ′j

+yj+· · ·+yλi

appears (exactly once) in all the terms on the right-hand side of (4) whenever i ∉ I or j ∉ J .
If i ∉ I and j ∉ J , then in particular i ≠ r and j ≠ s for an outer corner (r, s), so the term

xi + · · · + xλ′j
+ yj + · · · + yλi appears in the first product on the right-hand side (and it does not

appear in other products, for those, either the lowest x-term is xr , or the lowest y-term is ys). If i = r
and j ∉ J , then xr +· · ·+ xλ′j

+ yj+· · ·+ ys−1 does not appear in either the first or the second product
on the right. Since j ∉ J , we have λ′j−1 = λ′j , and therefore

xr + · · · + xλ′j
+ yj + · · · + ys−1 = xr + · · · + xλ′j−1

+ y(j−1)+1 + · · · + ys−1

does appear in the third product on the right. The reasoning for i ∉ I and j = s is very similar.
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This means that (4) is equivalent to
λ1−
q=1

yq

 ∏
(i,j)∈[λ]∩I×J,i≠1

(xi + · · · + xλ′j
+ yj + · · · + yλi)

=

−
(r,s)∈C′[λ],r≠1

∏
(i,j)∈[λ]∩I×J
i≠1,r,j≠s

(xi + · · · + xλ′j
+ yj + · · · + yλi)

×

 ∏
i+1∈I∩{2,...,r}

(xi+1 + · · · + xr−1 + ys + · · · + yλi)



×

 ∏
j+1∈J∩{2,...,s}

(xr + · · · + xλ′j
+ yj+1 + · · · + ys−1)


. (6)

On the other hand, we proved in [1] and mentioned in Section 1 that for every partition µ, we have
the equality

µ1−
q=1

yq


·

 ∏
(i,j)∈[µ]\C[µ]

(xi+1 + · · · + xµ′j
+ yj+1 + · · · + yµi)



=

−
(r,s)∈C[µ]

 ∏
(i,j)∈[µ]\C[µ]

i≠r,j≠s

(xi+1 + · · · + xµ′j
+ yj+1 + · · · + yµi)


×


r∏

i=2

(xi + · · · + xr + ys+1 + · · · + yµi)


·


s∏

j=1

(xr+1 + · · · + xµ′j
+ yj + · · · + ys)


.

Define I ′ = {i: (i, s) ∈ C[µ] for some s} and J ′ = {j: (r, j) ∈ C[µ] for some r}. We can now prove that
a term xi+1+· · ·+ xµ′j

+ yj+1+· · ·+ yµi cancels out from the above equality whenever i ∉ I ′ or j ∉ J ′.
That means that we have

µ1−
q=1

yq


·

 ∏
(i,j)∈[µ]\C[µ]∩I ′×J ′

(xi+1 + · · · + xµ′j
+ yj+1 + · · · + yµi)



=

−
(r,s)∈C[µ]

 ∏
(i,j)∈[µ]\C[µ]∩I′×J′

i≠r,j≠s

(xi+1 + · · · + xµ′j
+ yj+1 + · · · + yµi)


×

 ∏
i−1∈I′∩
{1,...,r−1}

(xi + · · · + xr + ys+1 + · · · + yµi)



×

 ∏
j−1∈J′∩
{0,...,s−1}

(xr+1 + · · · + xµ′j
+ yj + · · · + ys)

 .

It turns out that if we write this identity for µ the complement of λ with respect to (ℓ(λ) + 1, λ1),
with xi replaced by xℓ(λ)+2−i, and with yj replaced by yλ1+1−j, we get (6).

The geometric reason for that is as follows. If (i, j) is a square of λ that is in the same row as an outer
corner and the same column as an outer corner, the hook of (i, j) in [λ], with (i, j) counted twice, is the
same as the hook of (λ′j + 1, λi + 1) without the square (λ′j + 1, λi + 1) in the complement of λ with
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Fig. 9. Hooks for the partition and its complement when λ = 988,864,442.

respect to (ℓ(λ)+1, λ1); see Fig. 9, left. Moreover, (λ′j+1, λi+1) is in the same row and column as a
corner of the complement of λ with respect to (ℓ(λ)+ 1, λ1). Similarly, the hook of (i, s), i+ 1 ∈ I , in
λ is the same as the hook of the square (r, λi) in the complement of λ with respect to (ℓ(λ)+ 1, λ1);
see Fig. 9, right. Moreover, (r, λi) is next to a square that is in the same column as a corner of the
complement of λ with respect to (ℓ(λ)+ 1, λ1). This is also the reason why the telescoping argument
in the previous section worked. We omit the details.

For CWBR, we would take the complement of λ with respect to (ℓ(λ) + 1, λ1 + 1); for (3), with
respect to (ℓ(λ), λ1 + 1) and for (5), with respect to (ℓ(λ), λ1). The details are left to the reader.
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