460 research outputs found

    A Method to determine Partial Weight Enumerator for Linear Block Codes

    Get PDF
    In this paper we present a fast and efficient method to find partial weight enumerator (PWE) for binary linear block codes by using the error impulse technique and Monte Carlo method. This PWE can be used to compute an upper bound of the error probability for the soft decision maximum likelihood decoder (MLD). As application of this method we give partial weight enumerators and analytical performances of the BCH(130,66), BCH(103,47) and BCH(111,55) shortened codes; the first code is obtained by shortening the binary primitive BCH (255,191,17) code and the two other codes are obtained by shortening the binary primitive BCH(127,71,19) code. The weight distributions of these three codes are unknown at our knowledge.Comment: Computer Engineering and Intelligent Systems Vol 3, No.11, 201

    On the Peak-to-Mean Envelope Power Ratio of Phase-Shifted Binary Codes

    Full text link
    The peak-to-mean envelope power ratio (PMEPR) of a code employed in orthogonal frequency-division multiplexing (OFDM) systems can be reduced by permuting its coordinates and by rotating each coordinate by a fixed phase shift. Motivated by some previous designs of phase shifts using suboptimal methods, the following question is considered in this paper. For a given binary code, how much PMEPR reduction can be achieved when the phase shifts are taken from a 2^h-ary phase-shift keying (2^h-PSK) constellation? A lower bound on the achievable PMEPR is established, which is related to the covering radius of the binary code. Generally speaking, the achievable region of the PMEPR shrinks as the covering radius of the binary code decreases. The bound is then applied to some well understood codes, including nonredundant BPSK signaling, BCH codes and their duals, Reed-Muller codes, and convolutional codes. It is demonstrated that most (presumably not optimal) phase-shift designs from the literature attain or approach our bound.Comment: minor revisions, accepted for IEEE Trans. Commun

    Error-Correction Coding and Decoding: Bounds, Codes, Decoders, Analysis and Applications

    Get PDF
    Coding; Communications; Engineering; Networks; Information Theory; Algorithm

    A STUDY OF LINEAR ERROR CORRECTING CODES

    Get PDF
    Since Shannon's ground-breaking work in 1948, there have been two main development streams of channel coding in approaching the limit of communication channels, namely classical coding theory which aims at designing codes with large minimum Hamming distance and probabilistic coding which places the emphasis on low complexity probabilistic decoding using long codes built from simple constituent codes. This work presents some further investigations in these two channel coding development streams. Low-density parity-check (LDPC) codes form a class of capacity-approaching codes with sparse parity-check matrix and low-complexity decoder Two novel methods of constructing algebraic binary LDPC codes are presented. These methods are based on the theory of cyclotomic cosets, idempotents and Mattson-Solomon polynomials, and are complementary to each other. The two methods generate in addition to some new cyclic iteratively decodable codes, the well-known Euclidean and projective geometry codes. Their extension to non binary fields is shown to be straightforward. These algebraic cyclic LDPC codes, for short block lengths, converge considerably well under iterative decoding. It is also shown that for some of these codes, maximum likelihood performance may be achieved by a modified belief propagation decoder which uses a different subset of 7^ codewords of the dual code for each iteration. Following a property of the revolving-door combination generator, multi-threaded minimum Hamming distance computation algorithms are developed. Using these algorithms, the previously unknown, minimum Hamming distance of the quadratic residue code for prime 199 has been evaluated. In addition, the highest minimum Hamming distance attainable by all binary cyclic codes of odd lengths from 129 to 189 has been determined, and as many as 901 new binary linear codes which have higher minimum Hamming distance than the previously considered best known linear code have been found. It is shown that by exploiting the structure of circulant matrices, the number of codewords required, to compute the minimum Hamming distance and the number of codewords of a given Hamming weight of binary double-circulant codes based on primes, may be reduced. A means of independently verifying the exhaustively computed number of codewords of a given Hamming weight of these double-circulant codes is developed and in coiyunction with this, it is proved that some published results are incorrect and the correct weight spectra are presented. Moreover, it is shown that it is possible to estimate the minimum Hamming distance of this family of prime-based double-circulant codes. It is shown that linear codes may be efficiently decoded using the incremental correlation Dorsch algorithm. By extending this algorithm, a list decoder is derived and a novel, CRC-less error detection mechanism that offers much better throughput and performance than the conventional ORG scheme is described. Using the same method it is shown that the performance of conventional CRC scheme may be considerably enhanced. Error detection is an integral part of an incremental redundancy communications system and it is shown that sequences of good error correction codes, suitable for use in incremental redundancy communications systems may be obtained using the Constructions X and XX. Examples are given and their performances presented in comparison to conventional CRC schemes

    Uncorrectable Errors of Weight Half the Minimum Distance for Binary Linear Codes

    Full text link
    A lower bound on the number of uncorrectable errors of weight half the minimum distance is derived for binary linear codes satisfying some condition. The condition is satisfied by some primitive BCH codes, extended primitive BCH codes, Reed-Muller codes, and random linear codes. The bound asymptotically coincides with the corresponding upper bound for Reed-Muller codes and random linear codes. By generalizing the idea of the lower bound, a lower bound on the number of uncorrectable errors for weights larger than half the minimum distance is also obtained, but the generalized lower bound is weak for large weights. The monotone error structure and its related notion larger half and trial set, which are introduced by Helleseth, Kl{\o}ve, and Levenshtein, are mainly used to derive the bounds.Comment: 5 pages, to appear in ISIT 200
    corecore