2,113 research outputs found

    Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach

    Full text link
    This paper develops theoretical results regarding noisy 1-bit compressed sensing and sparse binomial regression. We show that a single convex program gives an accurate estimate of the signal, or coefficient vector, for both of these models. We demonstrate that an s-sparse signal in R^n can be accurately estimated from m = O(slog(n/s)) single-bit measurements using a simple convex program. This remains true even if each measurement bit is flipped with probability nearly 1/2. Worst-case (adversarial) noise can also be accounted for, and uniform results that hold for all sparse inputs are derived as well. In the terminology of sparse logistic regression, we show that O(slog(n/s)) Bernoulli trials are sufficient to estimate a coefficient vector in R^n which is approximately s-sparse. Moreover, the same convex program works for virtually all generalized linear models, in which the link function may be unknown. To our knowledge, these are the first results that tie together the theory of sparse logistic regression to 1-bit compressed sensing. Our results apply to general signal structures aside from sparsity; one only needs to know the size of the set K where signals reside. The size is given by the mean width of K, a computable quantity whose square serves as a robust extension of the dimension.Comment: 25 pages, 1 figure, error fixed in Lemma 4.

    Quantization and Compressive Sensing

    Get PDF
    Quantization is an essential step in digitizing signals, and, therefore, an indispensable component of any modern acquisition system. This book chapter explores the interaction of quantization and compressive sensing and examines practical quantization strategies for compressive acquisition systems. Specifically, we first provide a brief overview of quantization and examine fundamental performance bounds applicable to any quantization approach. Next, we consider several forms of scalar quantizers, namely uniform, non-uniform, and 1-bit. We provide performance bounds and fundamental analysis, as well as practical quantizer designs and reconstruction algorithms that account for quantization. Furthermore, we provide an overview of Sigma-Delta (ΣΔ\Sigma\Delta) quantization in the compressed sensing context, and also discuss implementation issues, recovery algorithms and performance bounds. As we demonstrate, proper accounting for quantization and careful quantizer design has significant impact in the performance of a compressive acquisition system.Comment: 35 pages, 20 figures, to appear in Springer book "Compressed Sensing and Its Applications", 201

    Hybrid MIMO Architectures for Millimeter Wave Communications: Phase Shifters or Switches?

    Full text link
    Hybrid analog/digital MIMO architectures were recently proposed as an alternative for fully-digitalprecoding in millimeter wave (mmWave) wireless communication systems. This is motivated by the possible reduction in the number of RF chains and analog-to-digital converters. In these architectures, the analog processing network is usually based on variable phase shifters. In this paper, we propose hybrid architectures based on switching networks to reduce the complexity and the power consumption of the structures based on phase shifters. We define a power consumption model and use it to evaluate the energy efficiency of both structures. To estimate the complete MIMO channel, we propose an open loop compressive channel estimation technique which is independent of the hardware used in the analog processing stage. We analyze the performance of the new estimation algorithm for hybrid architectures based on phase shifters and switches. Using the estimated, we develop two algorithms for the design of the hybrid combiner based on switches and analyze the achieved spectral efficiency. Finally, we study the trade-offs between power consumption, hardware complexity, and spectral efficiency for hybrid architectures based on phase shifting networks and switching networks. Numerical results show that architectures based on switches obtain equal or better channel estimation performance to that obtained using phase shifters, while reducing hardware complexity and power consumption. For equal power consumption, all the hybrid architectures provide similar spectral efficiencies.Comment: Submitted to IEEE Acces

    Improved Bounds for Universal One-Bit Compressive Sensing

    Full text link
    Unlike compressive sensing where the measurement outputs are assumed to be real-valued and have infinite precision, in "one-bit compressive sensing", measurements are quantized to one bit, their signs. In this work, we show how to recover the support of sparse high-dimensional vectors in the one-bit compressive sensing framework with an asymptotically near-optimal number of measurements. We also improve the bounds on the number of measurements for approximately recovering vectors from one-bit compressive sensing measurements. Our results are universal, namely the same measurement scheme works simultaneously for all sparse vectors. Our proof of optimality for support recovery is obtained by showing an equivalence between the task of support recovery using 1-bit compressive sensing and a well-studied combinatorial object known as Union Free Families.Comment: 14 page

    Estimation in high dimensions: a geometric perspective

    Full text link
    This tutorial provides an exposition of a flexible geometric framework for high dimensional estimation problems with constraints. The tutorial develops geometric intuition about high dimensional sets, justifies it with some results of asymptotic convex geometry, and demonstrates connections between geometric results and estimation problems. The theory is illustrated with applications to sparse recovery, matrix completion, quantization, linear and logistic regression and generalized linear models.Comment: 56 pages, 9 figures. Multiple minor change

    Compressed Sensing Using Binary Matrices of Nearly Optimal Dimensions

    Get PDF
    In this paper, we study the problem of compressed sensing using binary measurement matrices and 1\ell_1-norm minimization (basis pursuit) as the recovery algorithm. We derive new upper and lower bounds on the number of measurements to achieve robust sparse recovery with binary matrices. We establish sufficient conditions for a column-regular binary matrix to satisfy the robust null space property (RNSP) and show that the associated sufficient conditions % sparsity bounds for robust sparse recovery obtained using the RNSP are better by a factor of (33)/22.6(3 \sqrt{3})/2 \approx 2.6 compared to the sufficient conditions obtained using the restricted isometry property (RIP). Next we derive universal \textit{lower} bounds on the number of measurements that any binary matrix needs to have in order to satisfy the weaker sufficient condition based on the RNSP and show that bipartite graphs of girth six are optimal. Then we display two classes of binary matrices, namely parity check matrices of array codes and Euler squares, which have girth six and are nearly optimal in the sense of almost satisfying the lower bound. In principle, randomly generated Gaussian measurement matrices are "order-optimal". So we compare the phase transition behavior of the basis pursuit formulation using binary array codes and Gaussian matrices and show that (i) there is essentially no difference between the phase transition boundaries in the two cases and (ii) the CPU time of basis pursuit with binary matrices is hundreds of times faster than with Gaussian matrices and the storage requirements are less. Therefore it is suggested that binary matrices are a viable alternative to Gaussian matrices for compressed sensing using basis pursuit. \end{abstract}Comment: 28 pages, 3 figures, 5 table
    corecore