4 research outputs found

    The Mechanism of Crowd Stampede Based on Case Statistics through SNA Method

    Get PDF
    Stampede is a concern of urban pubic security management. The current academic research focus is the identification of risk factors of trampling accidents and determination of correlation patterns and accident-causing mechanisms among stampede elements in order to effectively obtain the influencing factors of stampede and clarify the transmission routes of stampede risk factors. Previous index cases were scrutinized and analyzed in 78 typical stampedes from 2010 - 2019 based on "pedestrian-equipment-environment-management" framework, and 17 influencing factors of stampede by adopting a conceptual coding method were obscured. Then, the degree centrality, intermediate centrality and respective weights of the influencing factors were calculated based on the social network analysis (SNA) method. The influencing level of the factors was signified, and the transmission mechanism of risk in the system network was determined. The results reveal that the degree centrality and weight with conspicuous features of over-density of crowds, pedestrian swarming and falling, and insufficient on-site transactions contribute the most. This finding indicates that these factors play a relatively major role in the stampede system. Furthermore, the intermediate centrality of insufficient on-site transactions is the top factor, meaning that this factor has a strong controlling force in the incident system and considerably influences other factors. This study shows that the SNA method is feasible in analyzing the mechanism of stampede incidents, simultaneously addressing the shortcomings of the linear statistical model of factors and providing theoretical support for comprehensive control of crowd risk

    DYNAMIC BEHAVIOR OF OPERATING CREW IN COMPLEX SYSTEMS: AN OBJECT-BASED MODELING & SIMULATION APPROACH

    Get PDF
    High-risk environments such as the control room of Nuclear Power Plants are extremely stressful for the front line operators; during accidents and under high task load situations, the operators are solely responsible for the ultimate decision-making and control of such complex systems. Individuals working as a team constantly interact with each other and therefore introduce team related issues such as coordination, supervision and conflict resolution. The aggregate impact of multiple human errors inside communication and coordination loops in a team context can give rise to complex human failure modes and failure mechanisms. This research offers a model of operating crew as an interactive social unit and investigates the dynamic behavior of the team under upset situations through a simulation method. The domain of interest in this work is the class of operating crew environments that are subject to structured and regulated guidelines with formal procedures providing the core of their response to accident conditions. In developing the cognitive models for the operators and teams of operators, their behavior and relations, this research integrates findings from multiple disciplines such as cognitive psychology, human factors, organizational factors, and human reliability. An object-based modeling methodology is applied to represent system elements and different roles and behaviors of the members of the operating team. The proposed team model is an extended version of an existing cognitive model of individual operator behavior known as IDAC (Information, Decision, and Action in Crew context). Scenario generation follows DPRA (Dynamic Probabilistic Risk Assessment) methodologies. The method capabilities are demonstrated through building and simulating a simplified model of a steam/power generating plant. Different configurations of team characteristics and influencing factors have been simulated and compared. The effects of team factors and crew dynamics on system risk with main focus on team errors, associated causes and error management processes and their impact on team performance have been studied through a large number of simulation runs. The results are also compared with several theoretical models and empirical studies

    Decisions of technology innovation: the role of indicators

    Get PDF
    This work presents research conducted to understand the role of indicators in decisions of technology innovation. A gap was detected in the literature of innovation and technology assessment about the use and influence of indicators in this type of decision. It was important to address this gap because indicators are often frequent elements of innovation and technology assessment studies. The research was designed to determine the extent of the use and influence of indicators in decisions of technology innovation, to characterize the role of indicators in these decisions, and to understand how indicators are used in these decisions. The latter involved the test of four possible explanatory factors: the type and phase of decision, and the context and process of construction of evidence. Furthermore, it focused on three Portuguese innovation groups: public researchers, business R&D&I leaders and policymakers. The research used a combination of methods to collect quantitative and qualitative information, such as surveys, case studies and social network analysis. This research concluded that the use of indicators is different from their influence in decisions of technology innovation. In fact, there is a high use of indicators in these decisions, but lower and differentiated differences in their influence in each innovation group. This suggests that political-behavioural methods are also involved in the decisions to different degrees. The main social influences in the decisions came mostly from hierarchies, knowledge-based contacts and users. Furthermore, the research established that indicators played mostly symbolic roles in decisions of policymakers and business R&D&I leaders, although their role with researchers was more differentiated. Indicators were also described as helpful instruments to conduct a reasonable interpretation of data and to balance options in innovation and technology assessments studies, in particular when contextualised, described in detail and with discussion upon the options made. Results suggest that there are four main explanatory factors for the role of indicators in these decisions: First, the type of decision appears to be a factor to consider when explaining the role of indicators. In fact, each type of decision had different influences on the way indicators are used, and each type of decision used different types of indicators. Results for policy-making were particularly different from decisions of acquisition and development of products/technology. Second, the phase of the decision can help to understand the role indicators play in these decisions. Results distinguished between two phases detected in all decisions – before and after the decision – as well as two other phases that can be used to complement the decision process and where indicators can be involved. Third, the context of decision is an important factor to consider when explaining the way indicators are taken into consideration in policy decisions. In fact, the role of indicators can be influenced by the particular context of the decision maker, in which all types of evidence can be selected or downplayed. More importantly, the use of persuasive analytical evidence appears to be related with the dispute existent in the policy context. Fourth and last, the process of construction of evidence is a factor to consider when explaining the way indicators are involved in these decisions. In fact, indicators and other evidence were brought to the decision processes according to their availability and capacity to support the different arguments and interests of the actors and stakeholders. In one case, an indicator lost much persuasion strength with the controversies that it went through during the decision process. Therefore, it can be argued that the use of indicators is high but not very influential; their role is mostly symbolic to policymakers and business decisions, but varies among researchers. The role of indicators in these decisions depends on the type and phase of the decision and the context and process of construction of evidence. The latter two are related to the particular context of each decision maker, the existence of elements of dispute and controversies that influence the way indicators are introduced in the decision-making process

    The role of indicators in decisions of technology innovation

    Get PDF
    There are thousands of indicators produced to understand and govern our societies. Studies about the way indicators are used in technological innovation are significantly rare, despite the centrality of these decisions to promote growth in our technology-intensive civilization. This book presents what is known and what was discovered in a doctoral research, which analysed innovative business leaders, policymakers and public researchers responsible for technological innovations
    corecore