13 research outputs found

    A new foundational crisis in mathematics, is it really happening?

    Full text link
    The article reconsiders the position of the foundations of mathematics after the discovery of HoTT. Discussion that this discovery has generated in the community of mathematicians, philosophers and computer scientists might indicate a new crisis in the foundation of mathematics. By examining the mathematical facts behind HoTT and their relation with the existing foundations, we conclude that the present crisis is not one. We reiterate a pluralist vision of the foundations of mathematics. The article contains a short survey of the mathematical and historical background needed to understand the main tenets of the foundational issues.Comment: Final versio

    Internal Parametricity for Cubical Type Theory

    Get PDF
    We define a computational type theory combining the contentful equality structure of cartesian cubical type theory with internal parametricity primitives. The combined theory supports both univalence and its relational equivalent, which we call relativity. We demonstrate the use of the theory by analyzing polymorphic functions between higher inductive types, and we give an account of the identity extension lemma for internal parametricity

    Unifying Cubical Models of Univalent Type Theory

    Get PDF
    We present a new constructive model of univalent type theory based on cubical sets. Unlike prior work on cubical models, ours depends neither on diagonal cofibrations nor connections. This is made possible by weakening the notion of fibration from the cartesian cubical set model, so that it is not necessary to assume that the diagonal on the interval is a cofibration. We have formally verified in Agda that these fibrations are closed under the type formers of cubical type theory and that the model satisfies the univalence axiom. By applying the construction in the presence of diagonal cofibrations or connections and reversals, we recover the existing cartesian and De Morgan cubical set models as special cases. Generalizing earlier work of Sattler for cubical sets with connections, we also obtain a Quillen model structure

    Cubical Assemblies, a Univalent and Impredicative Universe and a Failure of Propositional Resizing

    Get PDF

    Model structure on the universe of all types in interval type theory

    Get PDF
    International audienceModel categories constitute the major context for doing homotopy theory. More recently, Homotopy Type Theory has been introduced as a context for doing syntactic homotopy theory. In this paper, we show that a slight generalization of Homotopy Type Theory, called Interval Type Theory, allows to define a model structure on the universe of all types, which, through the model interpretation, corresponds to defining a model structure on the category of cubical sets. This work generalizes previous works of Gambino, Garner and Lumsdaine from the universe of fibrant types to the universe of all types. Our definition of Interval Type Theory comes from the work of Orton and Pitts to define a syntactic approximation of the internal language of the category of cubical sets. In this paper, we extend the work of Orton and Pitts by introducing the notion of degenerate fibrancy, which allows to define a fibrant replacement, at the heart of the model structure on the universe of all types. All our definitions and propositions have been formalized using the Coq proof assistant
    corecore