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Abstract
We define a computational type theory combining the contentful equality structure of cartesian
cubical type theory with internal parametricity primitives. The combined theory supports both
univalence and its relational equivalent, which we call relativity. We demonstrate the use of the
theory by analyzing polymorphic functions between higher inductive types, and we give an account
of the identity extension lemma for internal parametricity.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases parametricity, cubical type theory, higher inductive types

Digital Object Identifier 10.4230/LIPIcs.CSL.2020.13

Related Version https://arxiv.org/abs/1901.00489

Funding We gratefully acknowledge the support of the Air Force Office of Scientific Research
through MURI grant FA9550-15-1-0053. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the
AFOSR.

Acknowledgements We thank Carlo Angiuli, Steve Awodey, Daniel Gratzer, Kuen-Bang Hou
(Favonia), Dan Licata, Anders Mörtberg, Emily Riehl, Christian Sattler, and Jonathan Sterling for
their comments and insights.

1 Introduction

Cubical type theory [17, 3, 2] is a recent extension of type theory with contentful equality (or
paths). The central concept of cubical type theory, inherited from homotopy type theory [30],
is that terms can be equal in multiple ways, each of which is a method of translating results
between them. The motivating example of contentful equality is structured isomorphism. In
informal mathematical practice, it is common to treat isomorphic objects as if they were
“the same,” because any interesting property of one will also hold of the other. Cubical type
theory makes this informal practice formal: equality of types is isomorphism, which is to say
that we have Voevodsky’s univalence axiom [32]. For this to be possible, it is essential that
equality be contentful, because two objects can be isomorphic in many ways. The key feature
of cubical type theory, in comparison with homotopy type theory, is that it is a programming
language, not just a logical formalism; in particular, uses of contentful equality compute.

A user of cubical type theory can also define types with custom equality structure using
higher inductive types (HITs) [18, 14]. A simultaneous generalization of inductive types and
quotient types, a HIT is freely generated by a collection of constructors, each of which may
introduce not only elements but also paths between elements. For example, the following
specification defines a type Z/2Z of integers modulo 2 from a type Z of integers.

data Z/2Z : U where
| in(n : Z) : Z/2Z
| mod(n : Z, x : I) : Z/2Z [x = 0 ↪→ in(n) | x = 1 ↪→ in(n+ 2)]
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13:2 Internal Parametricity for Cubical Type Theory

This type has two constructors, in and mod. The first introduces an element of Z/2Z for each
element of Z, while the second identifies in(n) and in(n+ 2) for every n : Z. To construct a
function out of Z/2Z, we simply explain where to send in and mod, in direct analogy with the
induction principle of an ordinary inductive type. In addition to quotients, HITs permit the
definition of higher-dimensional objects, enabling the use of type theory as a domain-specific
language for formalizing homotopy-theoretic mathematics [30].

While contentful equality creates new possibilities, it also introduces new obligations. The
type of equalities between any pair of objects has its own equality structure, which means
that every type actually contains an infinite tower of structure: paths, paths between paths,
and so on. A user of HITs is often forced to wrestle with this higher-dimensional structure. A
particularly vicious example is provided by the smash product [30, §6.8], a key construction
in homotopy theory. The smash product is a binary operator − ∧− : U∗ → U∗ → U∗ on the
universe U∗ := (X : U) ×X of pointed types. Defined as a HIT (see Section 4.3), it is the
natural notion of tensor product for U∗, being left adjoint to the pointed function space. We
thus expect properties such as commutativity and associativity: for any X,Y, Z : U∗, we hope
that X ∧ Y ' Y ∧X and (X ∧ Y )∧Z ' X ∧ (Y ∧Z). However, these laws are not so simple
to prove. The associator, in particular, involves two stacked applications of ∧; this means the
programmer must wrangle with two-dimensional structure to define functions back and forth,
then three-dimensional structure to prove they are inverses. Worse yet, these are only the
first level of an infinite hierarchy of laws satisfied by ∧. For example, Mac Lane’s pentagon
relates the two different ways of re-associating the product of four types; to prove it requires
building four-dimensional terms. Despite concerted effort [31, 12], a complete formal proof
that the smash product is a symmetric monoidal product has yet to be produced.

For all the suffering, these properties seem “obvious” in a way familiar to computer
scientists: they look like consequences of parametricity [25]. Parametricity is Reynolds’
crystallization of a property enjoyed by many type theories: programs behave uniformly
in their type variables. Reynolds captures this uniformity in the existence of a relational
interpretation of type theory that expresses the invariance of type constructions under a broad
class of relations. With parametricity, it is often possible to derive what Wadler dubs “free
theorems” [33], naturality properties enjoyed by any term of a given type. In our case, we can
hope that there are only so many functions α : (X,Y, Z:U∗)→ (X ∧ Y ) ∧ Z → X ∧ (Y ∧ Z).
Perhaps any definable function of this type satisfies Mac Lane’s pentagon?

Contributions

We present a cubical type theory with internal parametricity, a further extension to type
theory introduced by Bernardy and Moulin [8, 9, 6, 21, 23, 22]. Just as cubical type
theory makes the fact that all constructions act on isomorphisms available to the user,
internally parametric type theory exposes that all constructions act on relations, providing
an operational account of Reynolds’s denotational presentation of parametricity. In fact, the
two are based on the same design principle: the use of dimension variables.

Our contribution can be viewed in two ways. On the one hand, we bring parametricity
to bear on problems in cubical type theory, giving in particular a characterization of maps
between smash products. On the other, we provide an internally parametric theory that
enjoys the extensionality principles of cubical type theory. A lack of function extensionality,
for one, is acutely visible when working with Church encodings. By relying on univalence, we
are able to eliminate the technical device of I-sets used by Bernardy, Coquand, and Moulin
in their presheaf model [6]. We also explore the use of internal parametricity beyond the
initial forays of Bernardy et al., internally developing the sub-universe of bridge-discrete
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types (which is closed under all type formers except the universe) as a substitute for the
traditional identity extension lemma. This is a departure from previous approaches [4, 23]
where the goal is typically to externally restrict the universe to bridge-discrete types from
the start. We also show by example that the relational interpretations of inductive types can
be characterized. Finally, we use this paper as an opportunity to compare and contrast the
mechanisms underlying cubical and parametric type theory.

We begin in Section 2 by introducing cubical type theory. In Section 3, we mix in the
parametricity primitives. With the theory complete, we make use of it in Section 4, proving
results about the smash product and probing the status of the identity extension lemma.
In Section 5, we go into more detail on the meaning of the judgments and canonicity. In
Section 6, we briefly sketch a presheaf model. We close in Section 7 with a discussion of
related work. Complete proofs of our results, and in particular a detailed development of the
computational interpretation, can be found in our companion technical report [15].

2 Cubical type theory

Cubical type theory, in its various incarnations, is a means of organizing the data of a
type equipped with path structure. Homotopy theory suggests various ways of doing this;
empirically, cubical structure is most convenient for the design of type theories, because
n-dimensional elements of a type can be represented by terms in a context of n dimension
variables. In this section, we recall cartesian cubical type theory [3, 2]; however, one can
substitute another cubical type theory (e.g., [17, 24]) in the remainder of this paper without
difficulty.

2.1 Path dimensions
Like ordinary type theory, cubical type theory is based on four judgment forms, expressing
typehood, type equality, elementhood, and element equality.

Γ� A type Γ� A = B type Γ�M ∈ A Γ�M = N ∈ A

For us, these judgments are behavioral specifications on terms of an untyped programming
language. Roughly, a program A is a type when, for any instantiation of its hypotheses,
it computes to a name in some prescribed set of value types, while M is in A when its
instantiations compute to values in the type named by A. Types and elements are equal
when they compute to the same values, where value equality is again prescribed in advance.
We use the notation � for the behavioral counterpart of the formal `. To more quickly give
the reader a feel for the system, however, we will defer precise definitions of the judgments
to Section 5, and instead first present a collection of rules they satisfy.

Cubical type theory is distinguished by the addition of path dimensions, for which we
write r, s. These are specified by judgments Γ� r pdim and Γ� r = s pdim and populated
by variables and two distinguished constants.

Γ, x : I,Γ′ � x pdim Γ� 0 pdim Γ� 1 pdim

In the context we write dimension variable assumptions in the form x : I, but this is merely
suggestive notation: “I” is not the name of a type. We also allow dimension equality
assumptions. (Note that dimension equality is decidable.)

CSL 2020



13:4 Internal Parametricity for Cubical Type Theory

Γ, x : I� A type Γ�M0 ∈ A〈0/x〉 Γ�M1 ∈ A〈1/x〉
Γ� Pathx.A(M0,M1) type

Γ, x : I� P ∈ A Γ� P 〈0/x〉 = M0 ∈ A〈0/x〉 Γ� P 〈1/x〉 = M1 ∈ A〈1/x〉
Γ� λIx.P ∈ Pathx.A(M0,M1)

Γ� Q ∈ Pathx.A(M0,M1) Γ� r pdim
Γ� Q@r ∈ A〈r/x〉

Γ, x : I� P ∈ A
Γ� (λIx.P )@r = P 〈r/x〉 ∈ A〈r/x〉

Γ� Q ∈ Pathx.A(M0,M1) ε ∈ {0, 1}
Γ� Q@ε = Mε ∈ A〈ε/x〉

Γ� Q ∈ Pathx.A(M0,M1)
Γ� Q = λIx.Q@x ∈ Pathx.A(M0,M1)

Figure 1 Rules for Path-types.

· ctx
Γ ctx Γ� A type

Γ, a : A ctx
Γ ctx

Γ, x : I ctx
Γ ctx Γ� r pdim Γ� s pdim

Γ, r = s ctx

A path dimension variable can be pictured as varying in the real unit interval [0, 1]: as x
varies in a term x : I�M ∈ A, the term M draws out a “line” in A. The line’s “endpoints”
are obtained by substituting 0 and 1 for x: writing −〈r/x〉 for path dimension substitution,
we have M〈0/x〉 ∈ A〈0/x〉 and M〈1/x〉 ∈ A〈1/x〉. Path dimension variables support all of
the structural rules (weakening, contraction, and exchange) enjoyed by ordinary variables.
In contrast to ordinary variables, however, there is more to M than its closed instantiations
M〈0/x〉 and M〈1/x〉: there can be many distinct terms with the same endpoints.

Path dimensions provide a judgmental notion of contentful equality: a path between
M0 ∈ A and M1 ∈ A is a term x : I � P ∈ A such that P 〈0/x〉 = M0 and P 〈1/x〉 = M1.
The judgmental notion is then internalized via Path-types, shown in Figure 1. Aside from the
indices M0 and M1, they behave as “functions out of I”: they are introduced by abstraction,
eliminated by application, and satisfy β- and η-rules. In general, Path-types are heterogeneous,
meaning that they are dependent functions: they take the form Pathx.A(M0,M1) where
x : I� A type, and applying Q ∈ Pathx.A(M0,M1) at r yields Q@r ∈ A〈r/x〉. When A does
not depend on x, we simply write PathA(M0,M1).

Using just these few principles of cubical type theory, we can already observe that path
types validate function extensionality. Given F0, F1 ∈ (a:A)→ B, a pointwise path between
them is a term H ∈ (a:A)→ PathB(F0a, F1a). Given such an H, we obtain a path between
F0 and F1 by simply flipping the order of abstraction: λIx.λa.Ha@x ∈ Path(a:A)→B(F0, F1).

2.2 Coercion and composition

The path apparatus equips each type with some kind of infinite-dimensional relation. It is
reflexive: given any M ∈ A, we have λI .M ∈ PathA(M,M). However, there is as yet no
reason for it to be symmetric or transitive, nor for all constructions to respect it. These
properties are ensured by adding two operations: coercion and composition.
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The coercion operation turns paths between types into isomorphisms,1 implementing one
direction of the correspondence required by the univalence axiom. Given a line x.A and an
element M ∈ A〈r/x〉 at some index r, coercion produces an element at any other index s.

Γ, x : I� A type Γ� r, s pdim Γ�M ∈ A〈r/x〉
Γ� coer sx.A (M) ∈ A〈s/x〉

We moreover impose the equation coer rx.A (M) = M ∈ A〈r/x〉. From this, one can show that
λa.coer sx.A (a) ∈ A〈r/x〉 → A〈s/x〉 is in fact an isomorphism. Using coercion, we can see that
all constructions respect paths, in the following sense: if we have some property B ∈ A→ U ,
a proof N ∈ BM0 that B holds of some M0 ∈ A0, and a path Q ∈ PathA(M0,M1), we get
a proof coe0 1

x.B(Q@x)(N) ∈ BM1 that B holds of M1. This fact can be used to invert and
compose paths, establishing that path equality is symmetric and transitive.

While coercion gives us all we need of equality, it is not a strong enough “induction
hypothesis.” Operationally, the evaluation of a coercion term is guided by the outermost
constructor of type line. To explain the reduction of coercion for Path-types, a second
operation, (homogeneous) composition, is required to obtain a term with the correct endpoints.
As the purpose of this operation is essentially technical, however, we defer to [3, 2] for details.

2.3 Paths in the universe: V-types and univalence
Coercion converts paths of types into isomorphisms, but we still need a way to convert
isomorphisms into paths. This is accomplished by a new type former: Glue-types in [17, 2],
V-types in [3], and G-types in [11]. We use V-types, a sufficient special case of Glue-types.

The V constructor does not, strictly speaking, convert an isomorphism into a path.
Rather, it takes an isomorphism and a path as input, and produces a second path that is the
concatenation of the two inputs. Precisely, it takes a dimension r pdim, some r = 0� A type
defined at its 0 endpoint, some B type, and an isomorphism r = 0 � E ∈ A ' B. These
inputs form a V-shape, hence the name.

A

B0 B1
r →

E
Vr(A,B,E)

B

The output is a type Vr(A,B,E) satisfying the equations r = 0 � Vr(A,B,E) = A type
and r = 1� Vr(A,B,E) = B type.

To transform an isomorphism E ∈ A ' B of types A,B ∈ U into a path, we simply take
λIx.Vx(A,B,E) ∈ PathU (A,B). This is the special case of the V-type where B is constant
in the direction of the output (here x).

2.4 Higher inductive types
As described in the introduction, cubical type theory also supports higher inductive types,
types generated by constructors that may take dimension arguments and be attached at
their boundaries to other elements. We refer to [18, 14] for formal treatments of HITs in
cubical type theory; for this paper, we will only need an intuitive understanding.

1 For us, an isomorphism is a function with a left and right inverse up to path equality. That is, we define
A ' B to be the following type.

(f : A→ B)× (l : B → A)× (r : B → A)× ((a:A)→ PathA(l(fa), a))× ((b:B)→ PathB(f(rb), b))
These are often called equivalences in the literature, and have several equivalent definitions [30, §4].

CSL 2020
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3 Internalizing parametricity

We now add internal parametricity primitives, closely following Bernardy, Coquand, and
Moulin [6]. (Our notation, however, differs substantially from theirs; see [15, Figure 7] for a
translation dictionary.) Reynolds’ parametricity captures the vague concept of “uniformity in
type variables” by the precise concept of acting on relations. To say that all constructions act
on relations is essentially to say that type theory has a relational semantics. With internal
parametricity, we make that semantics visible inside the theory.

With cubical type theory, the goal was to ensure that all constructions act on isomorphisms;
the solution was to equip each type with equality structure via dimension variables, then to
identify lines between types with isomorphisms. For internal parametricity, we ensure that
constructions act on relations with the same technique, but now identifying lines between
types with type-valued relations. Where we use the word path in cubical type theory, we will
use bridge in parametric type theory, following Nuyts et al. [23].

3.1 Bridge dimensions
Second verse, same as the first: we introduce bridge dimensions r, s, . . . by judgments
Γ� r bdim and Γ� r = s bdim with two constants Γ� 0, 1 bdim. We use bold type to
distinguish bridge from path dimensions. We likewise add bridge dimension and equality
assumptions – but this time, only equations where one side is a constant.

Γ ctx
Γ,x : 2 ctx

Γ ctx Γ� r bdim ε ∈ {0,1}
Γ, r = ε ctx

The distinguishing feature of bridge dimensions is that they are substructural, specifically
affine: they do not support contraction. For Γ ctx and (x : 2) ∈ Γ, write Γ\x for the result
of deleting x and all term variables that occur beyond it from the context.2

(Γ, y : I)\x := (Γ\x, y : I) (Γ, a : A)\x := Γ\x (Γ,y : 2)\x :=
{

Γ if x = y

(Γ\x,y : 2) if x 6= y

Set Γ\ε = Γ. We then have the following structural rules for bridge dimension variables.

Γ,x : 2,Γ′ � x bdim
BHyp

ΓΓ′ � J
Γ,x : 2,Γ′ � J

BWeak

Γ� r bdim Γ\r,x : 2� Γ′ ctx Γ\r,x : 2,Γ′ � J
Γ(Γ′〈r/x〉)� J 〈r/x〉

BCut

The first two rules are unsurprising, but the third contains an essential restriction. To
substitute r for x in a judgment Γ,x : 2,Γ′ � J , we must know that neither Γ′ or J refers
to r (if it is a variable). In other words, r must be fresh for Γ′ and J .

The Bezem-Coquand-Huber (BCH) cubical sets model [10, 11] also uses affine dimension
variables, but recent work on cubical type theories has focused on structural variables.
The primary motivation for the shift is to support HITs, whose development remains an
open problem in the affine setting; ease of implementation is another factor. For internal

2 Here we follow the approach developed by Cheney for nominal dependent type theory [16].
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Γ� r bdim Γ\r,x : 2� A type Γ\r,x : 2, a : A� B type Γ�M ∈ A〈r/x〉
Γ\r, a0 : A〈0/x〉� N0 ∈ B〈0/x〉[a0/a] Γ\r, a1 : A〈1/x〉� N1 ∈ B〈1/x〉[a1/a]
Γ\r, a0 : A〈0/x〉, a1 : A〈1/x〉, a : Bridgex.A(a0, a1)� N ∈ Bridgex.B[a@x/a](N0, N1)

Γ� extentr(M ; a0.N0, a1.N1, a0.a1.a.N) ∈ B〈r/x〉[M/a]

extentε(M ; · · · ) = Nε[M/aε] ∈ B〈ε/x〉[M/a]

Γ\r,x : 2�M ∈ A
Γ� extentr(M〈r/x〉; · · · ) = N [M〈0/x〉/a0][M〈1/x〉/a1][λ2x.M/a]@r ∈ B〈r/x〉[M/a]

Figure 2 The extent operator. We omit straightforwardly inferrable premises for readability.

parametricity, however, affine dimensions are essential to ensure the correct characterization
of bridges in function types (Section 3.2) and in the universe (Section 3.3).

As with paths, we introduce types Bridgex.A(M0,M1) of bridges over x.A from M0 to
M1. We write λ2x.P for the values of these types. In accordance with the judgmental
structure, a bridge can only be applied to a fresh variable: if Γ\r � Q ∈ Bridgex.A(M0,M1),
then Γ � Q@r ∈ A〈r/x〉. Otherwise, they are exactly like path types; see [15, §8.3] for
rules. We now have one direction of our desired correspondence between bridges of types and
binary relations: for any x.A, we have the relation Bridgex.A(−,−) on A〈0/x〉 and A〈1/x〉.

3.2 Bridges at function type: extent
In the standard relational interpretation of type theory [7, 4], two functions are related when
they take related arguments to related results. As such, we expect Bridgex.(a:A)→B(F0, F1)
to be isomorphic to the following.

(a0:A〈0/x〉)(a1:A〈1/x〉)(q:Bridgex.A(a0, a1))→ Bridgex.B[q@x/a](F0a0, F1a1) (1)

Although it is simple to define a map from Bridgex.(a:A)→B(F0, F1) to the type (1), the con-
verse is more delicate. In fact, the first role of substructurality is in enabling this principle. As
we have seen, structural dimensions give rise to a different principle: Pathx.(a:A)→B(F0, F1) '
(a:A) → Pathx.B(F0a, F1a) when A does not depend on x. The proof, sketched in Sec-
tion 2.1, uses the interchangeability of terms λa.λIx.P and λIx.λa.P . However, λa.λ2x.P

and λ2x.λa.P are not interchangeable: in the former, x ranges over dimensions that are
fresh for a, whereas no such restriction is in play in the latter. Conversely, structural
dimensions would not allow us to prove that the map from Bridgex.(a:A)→B(F0, F1) to (1)
is an isomorphism, as having both principles at once would lead to a contradiction (in the
presence of Gel-types, defined below). The two principles are both derivable for paths, but
only thanks to the presence of coercion – an operation with no equivalent for bridges.

To see how we can get from (1) to Bridgex.(a:A)→B(F0, F1) with affine dimensions, let H in
(1) be given. Abstracting x and a, our goal is to exhibit a term in B that is equal to F0a when
x = 0 and F1a when x = 1. Recall that a, being abstracted when x is in scope, ranges over
terms that may mention x. We would like, then, to think of a as a bridge in direction x, and to
supply that bridge to H. In syntax, we would like to write “H(a〈0/x〉)(a〈1/x〉)(λ2x.a)@x”.
This does not quite make sense: a is a variable, so a〈0/x〉 = a.

We instead introduce an operator, extentr(M ; a0.N0, a1.N1, a0.a1.a.N), that performs
the substitutions and capture once a (now M) is instantiated. This operator satisfies the
rules shown in Figure 2; we call it extent because it reveals the extent of the term M as a

CSL 2020
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Γ� r bdim Γ\r � A type Γ\r � B type Γ\r, a : A, b : B � R type
Γ� Gelr(A,B, a.b.R) type

Γ\r �M ∈ A Γ\r � N ∈ B Γ\r � P ∈ R[M,N/a, b]
Γ� gelr(M,N,P ) ∈ Gelr(A,B,R)

Γ,x : 2� Q ∈ Gelx(A,B,E)
Γ� ungel(x.Q) ∈ R[Q〈0/x〉, Q〈1/x〉/a, b]

Gel0(A,B, a.b.R) = A Gel1(A,B, a.b.R) = B gel0(M,N,P ) = M : A

gel1(M,N,P ) = N : B ungel(x.gelx(M,N,P )) = P : R[M,N/a, b]

Q〈r/x〉 = gelr(Q〈0/x〉, Q〈1/x〉,x.Q) : Gelr(A,B, a.b.R)

Figure 3 Rules for Gel-types.

line in direction r. There are three cases: either r is 0 or 1, in which case M is simply a
point, or r is a variable x, in which case M is a bridge in direction x. The operator takes
an argument for each case, here N0, N1, and N . The last of these takes as input endpoints
a0, a1 and a bridge a between them and produces a bridge between N0 and N1; when extentx

executes, it supplies M〈0/x〉, M〈1/x〉, and λ2x.M to N and outputs its value at x.
Substructurality is essential to extent because of its use of variable capture: the mapping

λ2 : (x,M)  λ2x.M is not stable under all dimension substitutions. If M = M ′(x,y),
for example, then applying λ2 after substituting 〈y/x〉 results in λ2y.M ′(y,y), while
applying λ2 before substituting 〈y/x〉 results in the inequivalent λ2x.M ′(x,y). However,
variable capture does commute with substitution of fresh variables. Returning to the original
motivation, extent is exactly what is needed to get from (1) to Bridgex.(a:A)→B(F0, F1).

H  λ2x.λa.extentx(a; a0.F0a0, a1.F1a1, a0.a1.a.Ha0a1a) : Bridgex.(a:A)→B(F0, F1)

It is straightforward to show that this map is in fact an isomorphism [15, Theorem 6.9].

3.3 Bridges in the universe: Gel-types and relativity
The final ingredient is the equivalent of univalence: a characterization of bridges in the
universe as binary type-valued relations. We call this property relativity.

I Definition 1. A universe U is relativistic when for every pair of types A,B : U , the map
λC.Bridgex.C@x(−,−) ∈ BridgeU (A,B)→ (A×B → U) is an isomorphism.

As in cubical type theory, we implement the inverse map with a new type constructor:
Gel, so named because it resembles the G-types of the BCH model but applies to relations
rather than isomorphisms. Rules for Gel-types – omitting those for coercion and composition
– are displayed in Figure 3. In stark contrast to V- or Glue-types, coercion and composition
in Gel-types are simple; this is because the direction of a coercion or composition is always a
path dimension and therefore orthogonal to the direction of the Gel-type.

Given a dimension r and a relation Γ\r, a : A, b : B � R type for which r is fresh, we
obtain a type Gelr(A,B, a.b.R) satisfy Gel0(A,B, a.b.R) = A and Gel1(A,B, a.b.R) = B.
Its values take the form gelr(M,N,P ) where M ∈ A, N ∈ B, and P is a proof the
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two are related by R; we have gel0(M,N,P ) = M ∈ A and gel1(M,N,P ) = N ∈ B.
Given a bridge Γ,x : 2 � Q ∈ Gelx(A,B, a.b.R) over a Gel-type, we can project the proof
ungel(x.Q) : R[Q〈0/x〉, Q〈1/x〉/a, b] that its endpoints – elements of A and B respectively
– are related by R. When we have A,B ∈ U and R ∈ A×B → U , we write Gelr(A,B,R) as
shorthand for Gelr(A,B, a.b.R〈a, b〉).

Whereas V-types concatenate an isomorphism and a path to produce a path, Gel-types
directly convert relations to bridges. That this is possible is a consequence of substructurality.
The constructor Gelx performs a dimension shift: it takes A, B, and R in some context Γ,
and it produces a type in context Γ,x : 2. To express a typing rule for Gel, we must be able
to specify that x is fresh for A,B,R. By contrast, Vx takes a type in context Γ,x with an
isomorphism at one end and produces a type in context Γ,x; there is no dimension shift.

Moreover, a V-like type would be insufficient for internal parametricity. In cubical type
theory, we can turn E : A ' B into a path by attaching it to the constant path λI .B, which
corresponds to the identity equivalence at B. For bridges, however, this might not give the
desired result: the constant bridge λ2 .B corresponds to the relation BridgeB(−,−), which
may be distinct from the identity relation PathB(−,−). In particular, they fail to coincide
when B is a universe: we have BridgeU (A,B) ' (A×B → U) 6' (A ' B) ' PathU (A,B).

I Theorem 2. Any universe U closed under Gel types is relativistic.

Sketch. Given a : A and b : B, the gel and ungel operators constitute an isomorphism between
R〈a, b〉 and Bridgex.Gelx(A,B,R)(a, b) by virtue of their β- and η-rules. By univalence, this
gives a path in U between the two. By function extensionality, then, we have a path from R to
Bridgex.Gelx(A,B,R)(−,−). Thus λR.Gelx(A,B,R) is a left inverse to λC.Bridgex.C@x(−,−),
getting us halfway to a proof that U is relativistic.

For the right inverse, we need a path from λ2x.Gelx(A,B,Bridgex.C@x(−,−)) to C

for C : BridgeU (A,B). We use the fact that bridges between paths correspond to paths
between bridges, a correspondence implemented by swapping binders [15, Theorem 6.2]. It
thus suffices to exhibit a bridge over x.PathU (Gelx(A,B,Bridgex.C@x(−,−)), C@x) between
λI .A and λI .B. Next, we apply univalence, reducing the goal to constructing a bridge over
x.Gelx(A,B,Bridgex.C@x(−,−)) ' C@x between the identity equivalences on A and B.

Finally, we can show, using the characterization of bridges at function type, that bridges
at an isomorphism type correspond to isomorphisms between bridges in the source and target
types [15, Corollary 6.10]. That is, it is enough to show that for every a : A and b : B, we
have an isomorphism between Bridgex.Gelx(A,B,Bridgex.C@x(−,−))(a, b) and Bridgex.C@x(a, b).
This is a special case of the inverse condition already proven. J

4 The practice of internal parametricity

We have completed a formulation of internally parametric cubical type theory. Now, we will
use it. As a warm-up, we prove that bool is isomorphic to its Church encoding. Then we
move on to novel results: a characterization of bridges in bool, the definition and applications
of bridge-discrete types, and finally, a characterization of maps between smash products.

4.1 The basics: booleans
A classic application of parametricity is the characterization of Church encodings, definitions
of inductive types by their universal properties. Our universes are predicative, so Church
encodings likely cannot be used to obtain data types ex nihilo. If we know that a data type
exists, however, we can show that it is isomorphic to its Church encoding.
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I Theorem 3. The type B := (X:U)→ X → X → X is isomorphic to bool.

Proof. It is easy to exhibit functions in either direction.

λb.(λX.λt.λf.ifX(b; t, f)) ∈ bool→ B λg.g(bool)(true)(false) ∈ B → bool

One inverse condition is immediate. For the other, we must construct a path from
λX.λt.λf.ifX(g(bool)(true)(false); t, f) to g for all g : B. Applying function extensional-
ity, we assume X : U and t, f : X and aim to connect ifX(g(bool)(true)(false); t, f) to
gXtf .

Intuitively, we want to say that g is natural in its type argument; specifically, with respect
to the map ifX(−; t, f) : bool→ X. Accordingly, we define the relation given by the graph
of this map: R : bool × X → U given by R〈b, a〉 := PathX(ifX(b; t, f), a). To obtain the
relational interpretation of g at R, we introduce a dimension x and apply g at its Gel-type.

g(Gelx(bool, X,R)) ∈ Gelx(bool, X,R)→ Gelx(bool, X,R)→ Gelx(bool, X,R)

Next, we apply this to the related pairs (true, t) and (false, f), in the form of gelx terms.

g(Gelx(bool, X,R))(gelx(true, t, λI .t))(gelx(false, f, λI .f)) ∈ Gelx(bool, X,R)

Call this term W . If we substitute 0 for x in W , each Gel or gel term steps to its first
argument; thus W 〈0/x〉 = g(bool)(true)(false). Likewise, W 〈1/x〉 = gXtf . The term
ungel(x.W ) is then a proof that these are related by R, which is precisely what we need. J

We can also characterize the bridges in bool. Intuitively, these are all trivial: bool’s only
elements are the zero-dimensional true and false. To show this, we use parametricity, an
interesting parallel with the use of univalence for characterizing paths in HITs.

I Theorem 4. For any b0, b1 : bool, we have Bridgebool(b0, b1) ' Pathbool(b0, b1).

Sketch. We will only construct the forward map; for a full proof, see [15, Theorem 11.5]. Let
q : Bridgebool(b0, b1). Given x, we have Px := Gelx(bool, bool,Pathbool(−,−)) corresponding
to the identity relation on bool, as well as a map Fx : bool→ Px defined as follows.

Fx := λb.ifPx(b; gelx(true, true, λI .true), gelx(false, false, λI .false))

Note that F0 = F1 = λb.ifbool(b; true, false). By applying F pointwise to q, we thus obtain
λ2x.Fx(q@x) ∈ Bridgex.Px

(ifbool(b0; true, false), ifbool(b1; true, false)). It is easy to show that
for any b : bool, there is a path from ifbool(b; true, false) to b; using coercion, we obtain some
T ∈ Bridgex.Px

(b0, b1). Applying ungel gives an element of Pathbool(b0, b1). J

The definition of the forward map uses parametricity; showing that it is an isomorphism
uses iterated parametricity, which is to say two-bridge-dimensional types. Just as a one-
dimensional bridge corresponds to a relation indexed by its boundary (the two endpoint
types), relativity and the characterization of bridges at function type suffice to show that
two-dimensional bridges satisfy the same characterization, the boundary now being given by
four types and four relations in a square shape.

4.2 Bridge-discrete types
The booleans are one example of a bridge-discrete type, a type with trivial bridge structure.



E. Cavallo and R. Harper 13:11

I Definition 5. A type A is bridge-discrete when for all pairs a0, a1 : A, the canonical map
λp.coe0 1

x.BridgeA(a0,p@x)(λ2 .a0) ∈ PathA(a0, a1)→ BridgeA(a0, a1) is an isomorphism. We
write isBDisc(A) for the type of proofs that A is bridge-discrete.

To show that A is bridge-discrete, it suffices to exhibit any family of isomorphisms between
PathA and BridgeA [15, Corollary 10.7]. The type isBDisc(A) is a homotopy proposition [30,
§3.3]: all proofs of isBDisc(A) are equal up to a path.

Bridge-discrete types are worth identifying because they provide an analogue to the
identity extension lemma, a standard lemma in parametricity stating that the relational
interpretation of a closed type is its identity relation. This does not hold in our theory, in
the sense that a homogeneous bridge type BridgeA(M0,M1) is not necessarily isomorphic to
PathA(M0,M1) (take A = U). However, we can instead work by inserting bridge-discreteness
hypotheses where the lemma would be required. For example, in imitation of Abel et al. [1],
we can prove that path equality in a bridge-discrete type is isomorphic to Leibniz equality.

I Proposition 6 ([15, §11.2]). Let A be bridge-discrete. For any a0, a1 : A, PathA(a0, a1) is
isomorphic to (P :A→ U)→ Pa0 → Pa1.

Fortunately, most type constructors preserve bridge-discreteness. We can check that
UBDisc := (X : U)× isBDisc(X) is closed under almost all the type formers, with the obvious
exception of universes.

I Proposition 7. The sub-universe UBDisc is closed under product, function, Path-, and
Bridge-types. It is univalent and relativistic (i.e., closed under V- and Gel-types).

Proof. For the first statement, see [15, Lemma 10.9]. Any sub-universe of a univalent
universe carved out by a proposition is univalent (see [30, Lemma 3.5.1]). For the proof of
relativity, see [15, Theorem 10.12]. J

Per Section 4.1, we also expect that UBDisc is closed under inductive types. Proposition 7
implies that we can also use parametricity in UBDisc: for example, one can repeat the proof
of Theorem 3 to show that bool is isomorphic to (X:U)→ isBDisc(X)→ X → X → X.

Finally, we observe as a simple consequence of Theorem 4 that the excluded middle for
homotopy propositions [30, §3.4] is refuted by internal parametricity. (The excluded middle
for all types is already refuted by univalence [30, Corollary 3.27].)

I Definition 8. Write isProp(A) := (a0, a1:A) → PathA(a0, a1). The excluded middle for
homotopy propositions is LEM := (X:U)→ isProp(X)→ (b : bool)× ifU (b;X,¬X).

I Lemma 9. If A is bridge-discrete, then any function f : U → A is constant.

Proof. For any pair of types X,Y : U , we have a bridge B := λ2x.Gelx(X,Y, . .⊥) between
them, thus a bridge λ2x.f(B@x) : BridgeA(fX, fY ) between their images by f , thus a path
from fX to fY by bridge-discreteness of A. J

I Theorem 10. There is a term of type LEM→ ⊥.

Proof. We refute the weak excluded middle WLEM := (X:U)→ (b : bool)× ifU (b;¬X,¬¬X),
the special case of LEM that decides negated types. (Any negated type is a homotopy
proposition.) Let f : WLEM. Then λX.fst(fX) ∈ U → bool. By Theorem 4 and Lemma 9,
this map is constant. But fst(f⊥) and fst(f>) cannot be equal, so we have a contradiction. J
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4.3 The smash product
We adopt the convention of writing A∗ : U∗ := (X : U)×X for a pointed type, A := fst(A∗)
for its underlying type, and a0 := snd(A∗) for its basepoint. Given A∗, B∗ ∈ U∗, we write
A∗ →∗ B∗ := (f : A→ B)× PathB(fa0, b0) for the type of basepoint-preserving functions
from A∗ to B∗. Given A∗, B∗ : U∗, their smash product is the following HIT.

data A∗ ∧B∗ : U where
| pair(a : A, b : B) : A∗ ∧B∗
| basel : A∗ ∧B∗
| baser : A∗ ∧B∗
| gluel(b : B, x : I) : A∗ ∧B∗ [x = 0 ↪→ basel | x = 1 ↪→ pair(a0, b)]
| gluer(a : A, x : I) : A∗ ∧B∗ [x = 0 ↪→ baser | x = 1 ↪→ pair(a, b0)]

In words, the smash product of A∗ and B∗ is the cartesian product of their underlying types
modulo the relation equating all pairs of the form (a0, b) or (a, b0). The smash product can
itself be made a pointed type A∗ ∧∗ B∗ with basepoint pair(a0, b0).

Our goal is to characterize the polymorphic pointed endofunctions on n-ary smash
products. Here, we will only consider the binary case, and we will only sketch the proof. For
the binary case, we give detailed pen-and-paper proofs of the arguments that use parametricity
directly in [15, Appendix C], and we have formalized the purely cubical arguments in the
redtt cubical proof assistant [29, cool.smash].

I Theorem 11. Any function f∗ : (X∗, Y∗:U∗)→ X∗ ∧∗ Y∗ →∗ X∗ ∧∗ Y∗ is connected by a
path to either the polymorphic identity or the polymorphic constant function.

That we cannot squeeze a complete proof into this space may seem to undermine our
case for parametricity’s usefulness. However, our argument is not that it is easy, but that it
scales. After establishing the above, we will argue that no combinatorial explosion results
from generalizing to n-ary smash products, in contrast to the more direct approaches.

I Definition 12. Given f : A → B, write Grr(A,B, f) := Gelr(A,B, a.b.PathB(fa, b)).
Given f∗ : A∗ →∗ B∗, define Gr∗r(A∗, B∗, f∗) := 〈Grr(A,B, f), gelr(a0, b0, f0)〉 ∈ U∗.

The smash product has an action: from f∗ : A∗ →∗ C∗ and g∗ : B∗ →∗ D, we obtain
f∗ ∧ g∗ ∈ A∗ ∧B∗ → C∗ ∧D∗. The following extracts results from products of Gr-types.

I Lemma 13 (Graph Lemma for ∧). Let pointed types A∗, B∗, C∗, D∗ : U∗ and pointed
functions f∗ : A∗ →∗ C∗, g∗ : B∗ →∗ D∗ be given. For any x, there is a map of type

Gr∗x(A,C, f) ∧ Gr∗x(B,D, g)→ Grx(A∗ ∧B∗, C∗ ∧D∗, f∗ ∧ g∗)

equal to the identity function on A∗ ∧B∗ when x = 0 and on C∗ ∧D∗ when x = 1.

Sketch. This is analogous to Theorem 4; we define the map by smash product induction.
We use extent and ungel to extract relation witnesses in the pair, gluel, and gluer cases. J

I Proposition 14. Any element of bool∗ ∧ bool∗ is either pair(true, true) or pair(false, false).

I Lemma 15. Any f : (X∗, Y∗:U∗)→ X → Y → X∗ ∧ Y∗ is connected by a path to either
1. the pairing function λ〈X,x0〉.λ〈Y, y0〉.λa.λb.pair(a, b), or
2. the constant basepoint function λ〈X,x0〉.λ〈Y, y0〉.λ .λ .pair(x0, y0).
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Proof. Let X∗, Y∗ : U∗, a : X, and b : Y be given. We have a function gX∗ ∈ bool∗ →∗ X∗
taking true to x0 and false to a, likewise gY∗ ∈ bool∗ →∗ Y∗ taking true to y0 and false to b.

Fix a fresh bridge dimension x. By taking the Gel-types for the graphs of the above
functions, we obtain pointed types GX∗ := Gr∗x(bool, X, gX) and GY∗ := Gr∗x(bool, Y, gY ). We
apply f with the elements of GX and GY corresponding to a and b.

f(GX∗ )(GY∗ )(gelx(false, a, λI .a))(gelx(false, b, λI .b)) ∈ GX∗ ∧GY∗

At x = 0, this is equal to f(bool∗)(bool∗)(false)(false) ∈ bool∗ ∧ bool∗; at x = 1, it is equal to
fX∗Y∗ab ∈ X∗ ∧ Y∗. By Lemma 13, we obtain a term in Grx(bool∗ ∧bool∗, X∗ ∧Y∗, gX∗ ∧ gY∗ )
with the same endpoints. Applying ungel, we get a proof that these endpoints are in the
graph of gX∗ ∧ gY∗ , i.e., that (gX∗ ∧ gY∗ )(f(bool∗)(bool∗)(false)(false)) is path-equal to fX∗Y∗ab.
By Proposition 14, f(bool∗)(bool∗)(false)(false) has two possible values. If it is pair(true, true),
then fX∗Y∗ab must be pair(x0, y0); if it is pair(false, false), then fX∗Y∗ab is pair(a, b). J

Sketch of Theorem 11. To characterize f∗ : (X∗, Y∗:U∗)→ X∗ ∧∗ Y∗ →∗ X∗ ∧∗ Y∗, we must
characterize its behavior on each constructor, as well as the proof that it preserves the
basepoint of X∗ ∧∗ Y∗. Given X∗, Y∗, write fX∗Y∗ for the function underlying f∗X∗Y∗.

Write P := (X∗, Y∗:U∗)→ X → Y → X∗ ∧ Y∗. First, we isolate the behavior of f∗ on the
pair constructor: λX∗.λY∗.λa.λb.fX∗Y∗(pair(a, b)) ∈ P . By Lemma 15, this is one of two
functions. We aim to show that this is the only degree of freedom available to f∗.

The values of f on the basel and baser constructors are uniquely determined up to a path
by the fact that f∗X∗Y∗ is basepoint-preserving, as basel and baser are connected to the
basepoint of X∗ ∧∗ Y∗ by gluel(y0,−) and gluer(x0,−) respectively.

For gluel, we consider the term H := λIx.λX∗.λY∗.λa.λb.fX∗Y∗(gluel(b, x)), which is
a path in P from λX∗.λY∗.λa.λb.fX∗Y∗(basel) to λX∗.λY∗.λa.λb.fX∗Y∗(pair(x0, b)). By
Lemma 15, we know that P is isomorphic to bool, which means in particular that it is a
homotopy set: its path types are all homotopy propositions. So H, and therefore the behavior
of f∗ on gluel terms, is uniquely determined (up to a path). The same applies to gluer.

Finally, write f0 : (X∗, Y∗:U∗) → PathX∗∧Y∗(fX∗Y∗(pair(x0, y0)), pair(x0, y0)) for the
proof that f preserves the basepoint of X∗ ∧∗ Y∗. As with gluel, we prove that f0 is uniquely
determined by recasting it as a path in P , namely the path λx.λX∗.λY∗.λa.λb.f0X∗Y∗@x
that connects λX∗.λY∗.λa.λb.fX∗Y∗(pair(x0, y0)) to λX∗.λY∗.λa.λb.pair(x0, y0). J

To prove the n-ary generalization of this theorem, we can proceed by a inductive argument,
showing for each i ≤ n that there are exactly two maps of the following type.

(X1∗, . . . , Xn∗:U∗)→ X1 → · · · → Xn−i → (Xn−i+1∗ ∧∗ · · · ∧∗ Xn∗)→
∧
∗iXi∗

For the base case i = 0, we use an easy generalization of Lemma 15; for the inductive step,
the argument in the proof of Theorem 11. What is key is that we never use an iterated
induction argument on the elements of stacked smash products, so we never find ourselves
dealing with a two-dimensional case like that of gluel(gluel(c, x), y) ∈ X∗ ∧ (Y∗ ∧ Z∗).

To see how we can apply the theorem, consider the case of commutativity. If we have
K : (X∗, Y∗:U) → X∗ ∧∗ Y∗ →∗ Y∗ ∧∗ X∗, then λX∗.λY∗.KX∗,Y∗ ◦KY∗,X∗ is a polymorphic
endofunction on smash products. By Theorem 11, we can show it is the identity simply by
showing it is not constant, which we can do by instantiating X∗, Y∗ with bool∗, bool∗ and
testing it on pair(false, false). If it is indeed non-constant, we see that K is an isomorphism.
Similar techniques show that any non-constant associator is an isomorphism and satisfies
Mac Lane’s pentagon.
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5 Computational meaning of the judgments

We now explain more precisely the meanings of the typing judgments. We follow the work of
Angiuli et al. [3]. The central idea is that well-typed terms need not only evaluate to values,
but evaluate in a way that is coherent with respect to substitution of dimensions.

First, we have an operational semantics, specified by judgments M val and M 7−→M ′.
We write M ⇓ V when M 7−→∗ V and V val. The “closed” types and terms – those to which
the operational semantics applies – are those whose free variables are all dimensions, i.e,
those well-formed in some ΦΨ ctx where Φ = x1 : 2, . . . ,xn : 2 and Ψ = y1 : I, . . . , ym : I. A
type system on this language is a five-place relation τ(Φ,Ψ, A0, A

′
0, ϕ). It specifies, for each

context ΦΨ, those values A0 and A′0 that are equal value types in that context, and associates
to each such pair a partial equivalence relation (PER) ϕ on values in context ΦΨ. To be a
type system, τ is required to satisfy laws ensuring symmetry, transitivity, and so forth. To
interpret the type formers described in Sections 2 and 3, we can define an appropriate τ by a
fixed-point construction populating it with the various constructors.

Two terms A and A′ in context ΦΨ are then equal types when they evaluate to equal
type values in a way that commutes with dimension substitution.

I Definition 16. Given τ , define a five-place relation PTy(τ)(Φ,Ψ, A,A′, α) on context
ΦΨ, terms A,A′, and families (αψ)ψ:Φ′Ψ′→ΦΨ indexed by substitutions into ΦΨ, as follows.
PTy(τ)(Φ,Ψ, A,A′, α) holds when for all ψ1 : Φ1Ψ1 → ΦΨ and ψ2 : Φ2Ψ2 → Φ1Ψ1, we have

Aψ1 ⇓ A1 A1ψ2 ⇓ A2 Aψ1ψ2 ⇓ A12 A′ψ1 ⇓ A′1 A′1ψ2 ⇓ A′2 A′ψ1ψ2 ⇓ A′12

with τ(Φ2,Ψ2, V, V
′, αψ1ψ2) for all V ∈ {A2, A12} and V ′ ∈ {A′2, A′12}.

We write JAK for the α such that PTy(τ)(Φ2,Ψ2, A,A, α) when it exists; the laws
required of type systems ensure its uniqueness. We now say that ΦΨ� A = A′ type when
PTy(τ)(Φ,Ψ, A,A′, α) for some α (satisfying a certain coherence condition). As a special
case, we say that ΦΨ � A type when ΦΨ � A = A type. Element equality is defined
analogously: M and M ′ are equal in A when they coherently evaluate to equal values
in JAK. Finally, the closed judgments are extended to open judgments by functionality:
Γ� A = A′ type holds when ΦΨ� Aγ = A′γ′ type for all ΦΨ� γ = γ′ ∈ Γ.

By definition of ΦΨ�M ∈ bool, we obtain a canonicity theorem.

I Theorem 17 (Canonicity). If ΦΨ�M ∈ bool, then either M 7−→∗ true or M 7−→∗ false.
Additionally, either ΦΨ�M = true ∈ bool or ΦΨ�M = false ∈ bool.

6 Presheaf model

As we have said, the rules presented in Sections 2 and 3 can be used as a formalism for
reasoning in parametric cubical type theory. Following prior work on cubical type theory
[17, 2] and internal parametricity [6], this formalism also supports a presheaf semantics.

The two base categories at play, defined using the notation of Buchholtz and Morehouse
[13], are the BCH cube category �B := C(we,·) and the cartesian cube category �P := C(wec,·).
(Here w, e, and c stand for weakening, exchange, and contraction respectively.) We model
parametric cubical type theory in the category C := Set(�B×�P)op

of presheaves on the product
of the two. We can immediately obtain an interpretation of the standard and cubical type
formers (including the universe) by applying a result of Angiuli et al. [2, Theorem 1]. For
the interval, we take (·, x : I) ∈ �B ×�P; for the generating cofibrations Cof ⊆ Ωdec, we take
finite unions of equations of the form r = s and r = ε. It is straightforward to check that
these choices satisfy the axioms required to apply their theorem.
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On the parametric side, we follow the BCH model. Given a context Γ interpreted as some
JΓK : C, its extension Γ,x : 2 is interpreted as the separated product JΓK⊗ y(x : 2, ·), whose
elements at (Φ,Ψ) ∈ �B ×�P are pairs (γ, r) with r ∈ Φ ∪ {0,1} and γ ∈ JΓK(Φ \ {r},Ψ).
Bridge-types are interpreted à la BCH path types; the inclusion of equations r = ε in Cof
ensures that they support coercion and composition. Gel-types can be interpreted similarly
to BCH G-types (though coercion and composition are much simpler in our case).

One advantage of univalence is that we can obtain a relativistic universe without replacing
sets with I-sets, Bernardy et al. do [6]. In their theory, the isomorphism implemented by
gel and ungel is replaced by an equality Bridgex.Gelx(A,B,R)(M,N) = R〈M,N〉. To ensure
that the interpretations of these types have exactly the same elements, sets are everywhere
replaced with I-sets. In our notation, these would be Φ-sets: for Φ ∈ �B, a Φ-element is a
family indexed by subcontexts Φ′ ⊆ Φ, and a Φ-set is a set of Φ-elements. Interpreting types
as families of I-sets makes it possible to give an interpretation of Gel- and Bridge-types that
validates the above equation. In our work, on the contrary, the equality is replaced by an
isomorphism, obviating the need for I-sets. By exploiting univalence, we can still obtain a
path and so establish the target isomorphism between BridgeU (A,B) and A×B → U .

7 Related and future work

Our parametric cubical type theory is, for the most part, simply the union of Angiuli et al.’s
cartesian cubical type theory [3] and Bernardy et al.’s internally parametric type theory [6].
We work with binary rather than unary parametricity, but as Bernardy et al. remark, this
requires only cosmetic changes. There is little interaction between the two halves of the
theory; we need only to check that coercion and composition can be defined for the new
types. For bridge types, this requires a minor change to the definition of composition, the
addition of r = ε tube equations. As discussed in Section 6, our Gel-types satisfy fewer
equations than the corresponding types in [6]; accordingly, our proof of relativity is novel.

A second approach to internal parametricity has been developed by Nuyts, Vezzosi, and
Devriese [23]. Like ours, their system is based on paths and bridges. Where ours are almost
entirely separate, however, theirs are connected by a modality, which mediates between
variable uses in continuous and parametric positions. Intuitively, their goal is to internalize
the independence of element-level calculation from terms at the type level, whereas ours
is merely to internalize the relational interpretation. The divergence of aims leads to very
different considerations; in particular, their bridge dimensions are structural. In later work
[22], Nuyts and Devriese generalize from paths and bridges to an infinite tower of relations.

Parametric cubical type theory also strongly resembles Riehl and Shulman’s directed
type theory [27]. Where ours has semantics in presheaves on �B ×�P, theirs is aimed at
presheaves on ∆×∆, two copies of the simplex category. In both cases, one half of the base
category is used for equality, while the other endows types with a relational structure. For
directed type theory, the goal is to identify those types for which the relational structure is
actually a category structure, meaning that concatenable bridges have path-unique composites.
Interestingly, their model does not appear to admit a relativistic universe [26, §2].

Stepping outside the realm of internalization, there has been general interest in higher-
dimensional generalizations of parametricity, for example in the work of Atkey et al. [4],
Benton et al. [5], Ghani et al. [19], and Sojakova and Johann [28]. Atkey et al.’s use of reflexive
graphs to construct a parametric model with a discrete universe is to Bernardy-Moulin-style
internal parametricity as the Hofmann-Streicher groupoid model [20] is to cubical type theory.
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One unsolved problem looms large: to what extent do results in parametric type theory
translate into ordinary type theory? Naturally, not all theorems translate – (f :U → bool)→
Pathbool(f>, f⊥) is provable in parametric type theory but refuted in classical cubical sets –
but one reasonable conjecture is that proofs Γ � M ∈ A translate when Γ and A use no
function types. It appears fairly straightforward to obtain results of this kind in semantics,
but syntactic results are much murkier; similar conservativity questions for homotopy and
cubical type theory over ordinary type theory remain open.
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