160 research outputs found

    Projective Invariants from Multiple Images: A Direct and Linear Method

    Get PDF

    Geometric and Algebraic Aspects of 3D Affine and Projective Structures from Perspective 2D Views

    Get PDF
    We investigate the differences --- conceptually and algorithmically --- between affine and projective frameworks for the tasks of visual recognition and reconstruction from perspective views. It is shown that an affine invariant exists between any view and a fixed view chosen as a reference view. This implies that for tasks for which a reference view can be chosen, such as in alignment schemes for visual recognition, projective invariants are not really necessary. We then use the affine invariant to derive new algebraic connections between perspective views. It is shown that three perspective views of an object are connected by certain algebraic functions of image coordinates alone (no structure or camera geometry needs to be involved)

    Euclidean Structure from Uncalibrated Images

    Full text link

    Autocalibration with the Minimum Number of Cameras with Known Pixel Shape

    Get PDF
    In 3D reconstruction, the recovery of the calibration parameters of the cameras is paramount since it provides metric information about the observed scene, e.g., measures of angles and ratios of distances. Autocalibration enables the estimation of the camera parameters without using a calibration device, but by enforcing simple constraints on the camera parameters. In the absence of information about the internal camera parameters such as the focal length and the principal point, the knowledge of the camera pixel shape is usually the only available constraint. Given a projective reconstruction of a rigid scene, we address the problem of the autocalibration of a minimal set of cameras with known pixel shape and otherwise arbitrarily varying intrinsic and extrinsic parameters. We propose an algorithm that only requires 5 cameras (the theoretical minimum), thus halving the number of cameras required by previous algorithms based on the same constraint. To this purpose, we introduce as our basic geometric tool the six-line conic variety (SLCV), consisting in the set of planes intersecting six given lines of 3D space in points of a conic. We show that the set of solutions of the Euclidean upgrading problem for three cameras with known pixel shape can be parameterized in a computationally efficient way. This parameterization is then used to solve autocalibration from five or more cameras, reducing the three-dimensional search space to a two-dimensional one. We provide experiments with real images showing the good performance of the technique.Comment: 19 pages, 14 figures, 7 tables, J. Math. Imaging Vi

    A Linear Method to Derive 3D Projective Invariants from 4 Uncalibrated Images

    Get PDF
    A well-known method proposed by Quan to compute projective invariants of 3D points uses six points in three 2D images. The method is nonlinear and complicated. It usually produces three possible solutions. It is noted previously that the problem can be solved directly and linearly using six points in five images. This paper presents a method to compute projective invariants of 3D points from four uncalibrated images directly. For a set of six 3D points in general position, we choose four of them as the reference basis and represent the other two points under this basis. It is known that the cross ratios of the coefficients of these representations are projective invariant. After a series of linear transformations, a system of four bilinear equations in the three unknown projective invariants is derived. Systems of nonlinear multivariable equations are usually hard to solve. We show that this form of equations can be solved linearly and uniquely. This finding is remarkable. It means that the natural configuration of the projective reconstruction problem might be six points and four images. The solutions are given in explicit formulas

    Algebraic Functions For Recognition

    Get PDF
    In the general case, a trilinear relationship between three perspective views is shown to exist. The trilinearity result is shown to be of much practical use in visual recognition by alignment --- yielding a direct method that cuts through the computations of camera transformation, scene structure and epipolar geometry. The proof of the central result may be of further interest as it demonstrates certain regularities across homographies of the plane and introduces new view invariants. Experiments on simulated and real image data were conducted, including a comparative analysis with epipolar intersection and the linear combination methods, with results indicating a greater degree of robustness in practice and a higher level of performance in re-projection tasks

    Automatic visual recognition using parallel machines

    Get PDF
    Invariant features and quick matching algorithms are two major concerns in the area of automatic visual recognition. The former reduces the size of an established model database, and the latter shortens the computation time. This dissertation, will discussed both line invariants under perspective projection and parallel implementation of a dynamic programming technique for shape recognition. The feasibility of using parallel machines can be demonstrated through the dramatically reduced time complexity. In this dissertation, our algorithms are implemented on the AP1000 MIMD parallel machines. For processing an object with a features, the time complexity of the proposed parallel algorithm is O(n), while that of a uniprocessor is O(n2). The two applications, one for shape matching and the other for chain-code extraction, are used in order to demonstrate the usefulness of our methods. Invariants from four general lines under perspective projection are also discussed in here. In contrast to the approach which uses the epipolar geometry, we investigate the invariants under isotropy subgroups. Theoretically speaking, two independent invariants can be found for four general lines in 3D space. In practice, we show how to obtain these two invariants from the projective images of four general lines without the need of camera calibration. A projective invariant recognition system based on a hypothesis-generation-testing scheme is run on the hypercube parallel architecture. Object recognition is achieved by matching the scene projective invariants to the model projective invariants, called transfer. Then a hypothesis-generation-testing scheme is implemented on the hypercube parallel architecture

    Relative Affine Structure: Canonical Model for 3D from 2D Geometry and Applications

    Get PDF
    We propose an affine framework for perspective views, captured by a single extremely simple equation based on a viewer-centered invariant we call "relative affine structure". Via a number of corollaries of our main results we show that our framework unifies previous work --- including Euclidean, projective and affine --- in a natural and simple way, and introduces new, extremely simple, algorithms for the tasks of reconstruction from multiple views, recognition by alignment, and certain image coding applications

    Projective Structure from Two Uncalibrated Images: Structure from Motion and RecRecognition

    Get PDF
    This paper addresses the problem of recovering relative structure, in the form of an invariant, referred to as projective structure, from two views of a 3D scene. The invariant structure is computed without any prior knowledge of camera geometry, or internal calibration, and with the property that perspective and orthographic projections are treated alike, namely, the system makes no assumption regarding the existence of perspective distortions in the input images
    • …
    corecore