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Abstract
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1 Introduction

We establish a general result about algebraic connections
across three perspective views of a 3D scene and demon-
strate its application to visual recognition via alignment.
We show that, in general, any three perspective views of
a scene satisfy a pair of trilinear functions of image co-
ordinates. In the limiting case, when all three views are
orthographic, these functions become linear and reduce
to the form discovered by [34]. Using the trilinear result
one can manipulate views of an object (such as generate
novel views from two model views) without recovering
scene structure (metric or non-metric), camera transfor-
mation, or even the epipolar geometry.
The central results in this paper are contained in The-

orems 1 and 2. The �rst theorem states that the vari-
ety of views  of a �xed 3D object obtained by an un-
calibrated pin-hole camera satisfy a relation of the sort
F ( ;  1;  2) = 0, where  1;  2 are two arbitrary views
of the object, and F has a special trilinear form. The
coe�cients of F can be recovered linearly without es-
tablishing �rst the epipolar geometry, 3D structure of
the object, or camera motion. The auxiliary Lemmas
required for the proof of Theorem 1 may be of interest
on their own as they establish certain regularities across
projective transformations of the plane and introduce
new view invariants (Lemma 4).
Theorem 2 is an obvious corollary of Theorem 1 but

contains a signi�cant practical aspect. It is shown that
if the views  1;  2 are obtained by parallel projection,
then F reduces to a special bilinear form | or, equiva-
lently, that any perspective view  can be obtained by a
rational linear function of two orthographic views. The
reduction to a bilinear form implies that simpler recog-
nition schemes are possible if the two reference views
(model views) stored in memory are orthographic.
These two results may have several applications (dis-

cussed in Section 6), but the one emphasized throughout
this paper is for the task of recognition of 3D objects
via alignment. The alignment approach for recognition
([33, 16], and references therein) is based on the result
that the equivalence class of views of an object (ignor-
ing self occlusions) undergoing 3D rigid, a�ne or pro-
jective transformations can be captured by storing a 3D
model of the object, or simply by storing at least two
arbitrary \model" views of the object | assuming that
the correspondence problem between the model views
can somehow be solved (cf. [25, 5, 29]). During recog-
nition a small number of corresponding points between
the novel input view and the model views of a particular
candidate object are su�cient to \re-project" the model
onto the novel viewing position. Recognition is achieved
if the re-projected image is successfully matched against
the input image. We refer to the problem of predicting
a novel view from a set of model views using a limited
number of corresponding points, as the problem of re-
projection.
The problem of re-projection can in principal be dealt

with via 3D reconstruction of shape and camera motion.
This includes classical structure from motion methods
for recovering rigid camera motion parameters and met-
ric shape [32, 18, 31, 14, 15], and more recent meth-

ods for recovering non-metric structure, i.e., assuming
the objects undergo 3D a�ne or projective transforma-
tions, or equivalently, that the cameras are uncalibrated
[17, 23, 35, 10, 13, 27, 28]. The classic approaches for
perspective views are known to be unstable under errors
in image measurements, narrow �eld of view, and inter-
nal camera calibration [3, 9, 12], and therefore, are un-
likely to be of practical use for purposes of re-projection.
The non-metric approaches, as a general concept, have
not been fully tested on real images, but the methods
proposed so far rely on recovering �rst the epipolar ge-
ometry | a process that is also known to be unstable in
the presence of noise.
It is also known that the epipolar geometry is by itself

su�cient to achieve re-projection by means of intersect-
ing epipolar lines [22, 6, 8, 24, 21, 11]. This, however,
is possible only if the centers of the three cameras are
non-collinear | which can lead to numerical instability
unless the centers are far from collinear | and any ob-
ject point on the tri-focal plane cannot be re-projected
as well. Furthermore, as with the non-metric reconstruc-
tion methods, obtaining the epipolar geometry is at best
a sensitive process even when dozens of corresponding
points are used and with the state of the art methods
(see Section 5 for more details and comparative analysis
with simulated and real images).
For purposes of stability, therefore, it is worthwhile

exploring more direct tools for achieving re-projection.
For instance, instead of reconstruction of shape and in-
variants we would like to establish a direct connection
between views expressed as a functions of image coor-
dinates alone | which we will call \algebraic functions
of views". Such a result was established in the ortho-
graphic case by [34]. There it was shown that any three
orthographic views of an object satisfy a linear function
of the corresponding image coordinates | this we will
show here is simply a limiting case of larger set of al-
gebraic functions, that in general have a trilinear form.
With these functions one can manipulate views of an
object, such as create new views, without the need to
recover shape or camera geometry as an intermediate
step | all what is needed is to appropriately combine
the image coordinates of two reference views. Also, with
these functions, the epipolar geometries are intertwined,
leading not only to absence of singularities, but as we
shall see in the experimental section to more accurate
performance in the presence of errors in image measure-
ments.

2 Notations

We consider object space to be the three-dimensional
projective space P3, and image space to be the two-
dimensional projective space P2. Let � � P3 be a set of
points standing for a 3D object, and let  i � P

2 denote
views (arbitrary), indexed by i, of �. Given two cam-
eras with centers located at O;O0 2 P3, respectively, the
epipoles are de�ned to be at the intersection of the line
OO0 with both image planes. Because the image plane is
�nite, we can assign, without loss of generality, the value
1 as the third homogeneous coordinate to every observed
image point. That is, if (x; y) are the observed image co-
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ordinates of some point (with respect to some arbitrary
origin | say the geometric center of the image), then
p = (x; y; 1) denotes the homogeneous coordinates of
the image plane. Since we will be working with at most
three views at a time, we denote the relevant epipoles
as follows: let v 2  1 and v0 2  2 be the corresponding
epipoles between views  1;  2, and let �v 2  1 and v

00 2
 3 the corresponding epipoles between views  1;  3.
Likewise, corresponding image points across three views
will be denoted by p = (x; y; 1); p0 = (x0; y0; 1) and
p00 = (x00; y00; 1). The term \image coordinates" will de-
note the non-homogeneous coordinate representation of
P2, e.g., (x; y); (x0; y0); (x00; y00) for the three correspond-
ing points.

Planes will be denoted by �i, indexed by i, and just �
if only one plane is discussed. All planes are assumed to
be arbitrary and distinct from one another. The symbol
�= denotes equality up to a scale, GLn stands for the
group of n�n matrices, and PGLn is the group de�ned
up to a scale.

A coordinate representation R of P3 is a tetrad of
coordinates [zo; z1; z2; z3] such that if R0 is any one al-
lowable representation, the whole class R consists of all
those representations that can be obtained from R0 by
the action of the group PGL4. Given a set of views  i,
i = 1; 2; :::, of �, where coordinates on  1 are [x; y; 1] and
R0 is a representation for which (zo; z1; z2) = (x; y; 1),
we will say that the object is undergoing at most 3D
relative a�ne transformations between views if the class
of representations R consists of all those representations
that can be obtained from R0 by the action of an a�ne
subgroup of PGL4. In other words, the object undergoes
some projective transformation and projected onto the
view  1, after which all other transformations applied to
� are a�ne. Note that this de�nition is general and al-
lows full uncalibrated pin-hole camera motion (for more
details on uncalibrated camera motion versus relative
a�ne transformation versus taking pictures of pictures
of the scene, see Appendix of [26]).

3 The Trilinear Form

The central result of this paper is presented in the fol-
lowing theorem. The remaining of the section is devoted
to the proof of this result and its implications.

Theorem 1 (Trilinearity) Let  1;  2;  3 be three ar-
bitrary perspective views of some object, modeled by a set
of points in 3D, undergoing at most a 3D relative a�ne
transformations between views. The image coordinates
(x; y) 2  1, (x0; y0) 2  2 and (x00; y00) 2  3 of three
corresponding points across three views satisfy a pair of
trilinear equations of the following form:

x00(�1x+ �2y + �3) + x00x0(�4x+ �5y + �6)+

x0(�7x+ �8y + �9) + �10x+ �11y + �12 = 0;

and

y00(�1x+ �2y + �3) + y00x0(�4x+ �5y + �6)+

x0(�7x+ �8y + �9) + �10x+ �11y + �12 = 0;

where the coe�cients �j, �j , j = 1; :::; 12, are �xed for
all points, are uniquely de�ned up to an overall scale,
and �j = �j, j = 1; :::; 6.

The following auxiliary propositions are used as part of
the proof.

Lemma 1 (Auxiliary - Existence) Let A 2 PGL3

be the projective mapping (homography)  1 7!  2 due to
some plane �. Let A be scaled to satisfy p0o

�= Apo + v
0,

where po 2  1 and p0o 2  2 are corresponding points
coming from an arbitrary point Po 62 �. Then, for any
corresponding pair p 2  1 and p0 2  2 coming from an
arbitrary point P 2 P3, we have

p0 �= Ap+ kv0:

The coe�cient k is independent of  2, i.e., is invariant
to the choice of the second view.

The lemma, its proof and its theoretical and practical
implications are discussed in detail in [26]. Note that
the particular case where the homography A is a�ne,
and the epipole v0 is on the line at in�nity, corresponds
to the construction of a�ne structure from two ortho-
graphic views [17]. The scalar k is called a relative a�ne
invariant and represents the ratio of the distance of P
from � along the line of sight, and the distance of P
from the camera center of  1, normalized by the ratio
of distances of Po from the plane and the camera center.
This normalized ratio can be computed with the aid of
a second arbitrary view  2.

De�nition 1 Homographies Ai 2 PGL3 from  1 7!  i
due to the same plane �, are said to be scale-compatible
if they are scaled to satisfy Lemma 1, i.e., for any point
P 2 � projecting onto p 2  1 and pi 2  i, there exists a
scalar k that satis�es

pi �= Aip+ kvi;

for any view  i, where v
i 2  i is the epipole with  1

(scaled arbitrarily).

Lemma 2 (Auxiliary | Uniqueness) Let A;A0 2
PGL3 be two homographies of  1 7!  2 due to planes
�1; �2, respectively. Then, there exists a scalar s, that
satis�es the equation:

A� sA0 = [�v0; �v0; v0];

for some coe�cients �; �; .

Proof. Let q 2  1 be any point in the �rst view.
There exists a scalar sq that satis�es v0 �= Aq � sqA

0q.
Let H = A� sqA

0, and we have Hq �= v0. But, as shown
in [27], Av �= v0 for any homography  1 7!  2 due to any
plane. Therefore, Hv �= v0 as well. The mapping of two
distinct points q; v onto the same point v0 could happen
only if Hp �= v0 for all p 2  1, and sq is a �xed scalar s.
This, in turn, implies that H is a matrix whose columns
are multiples of v0.

Lemma 3 (Auxiliary for Lemma 4) Let A;A0 2
PGL3 be homographies from  1 7!  2 due to distinct
planes �1; �2, respectively, and B;B

0 2 PGL3 be homo-
graphies from  1 7!  3 due to �1; �2, respectively. Then,
A0 = AT for some T 2 PGL3, and B = BCTC�1,
where Cv �= �v.
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Proof. Let A = A�1

2
A1, where A1; A2 are homo-

graphies from  1;  2 onto �1, respectively. Similarly
B = B�1

2
B1, where B1; B2 are homographies from 1;  3

onto �1, respectively. Let A1�v = (c1; c2; c3)
T , and let

C �= A�1

1
diag(c1; c2; c3)A1. Then, B1

�= A1C
�1, and

thus, we have B �= B�1

2
A1C

�1. Note that the only dif-
ference between A1 and B1 is due to the di�erent lo-
cation of the epipoles v; �v, which is compensated by C
(Cv �= �v). Let E1 2 PGL3 be the homography from  1
to �2, and E2 2 PGL3 the homography from �2 to �1.
Then with proper scaling of E1 and E2 we have

A0 = A�1

2
E2E1 = AA�1

1
E2E1 = AT;

and with proper scaling of C we have,

B0 = B�1

2
E2E1C

�1 = BCA�1

1
E2E1C

�1 = BCTC�1:

Lemma 4 (Auxiliary | Uniqueness)
For scale-compatible homographies, the scalars s; �; �; 
of Lemma 2 are invariants indexed by  1; �1; �2. That
is, given an arbitrary third view  3, let B;B

0 be the ho-
mographies from  1 7!  3 due to �1; �2, respectively. Let
B be scale-compatible with A, and B0 be scale-compatible
with A0. Then,

B � sB0 = [�v00; �v00; v00]:

Proof. We show �rst that s is invariant, i.e., that B �
sB0 is a matrix whose columns are multiples of v00. From
Lemma 2, and Lemma 3 there exists a matrix H, whose
columns are multiples of v0, a matrix T that satis�es
A0 = AT , and a scalar s such that I�sT = A�1H. After
multiplying both sides by BC, and then pre-multiplying
by C�1 we obtain

B � sBCTC�1 = BCA�1HC�1:

From Lemma 3, we have B0 = BCTC�1. The ma-
trix A�1H has columns which are multiples of v (be-
cause A�1v0 �= v), CA�1H is a matrix whose columns
are multiple of �v, and BCA�1H is a matrix whose
columns are multiples of v00. Pre-multiplying BCA�1H
by C�1 does not change its form because every column
of BCA�1HC�1 is simply a linear combination of the
columns of BCA�1H. As a result, B � sB0 is a matrix
whose columns are multiples of v00.

LetH = A�sA0 and Ĥ = B�sB0. Since the homogra-
phies are scale compatible, we have from Lemma 1 the
existence of invariants k; k0 associated with an arbitrary
p 2  1, where k is due to �1, and k

0 is due to �2: p
0 �=

Ap+ kv0 �= A0p+ k0v0 and p00 �= Bp+ kv00 �= B0p+ k0v00.
Then from Lemma 2 we have Hp = (sk0 � k)v0 and

Ĥp = (sk0 � k)v00. Since p is arbitrary, this could hap-
pen only if the coe�cients of the multiples of v0 in H

and the coe�cients of the multiples of v00 in Ĥ, coincide.

Proof of Theorem: Lemma 1 provides the existence
part of theorem, as follows. Since Lemma 1 holds for
any plane, choose a plane �1 and let A;B be the scale-
compatible homographies 1 7!  2 and  1 7!  3, respec-
tively. Then, for every point p 2  1, with corresponding

points p0 2  2; p
00 2  3, there exists a scalar k that sat-

is�es: p0 �= Ap+kv0, and p00 �= Bp+kv00. We can isolate
k from both equations and obtain:

k =
v
0

1
�x

0
v
0

3

(x0a3�a1)T p
=

v
0

2
�y

0
v
0

3

(y0a3�a2)T p
=

y
0
v
0

1
�x

0
v2

(x0a2�y0a1)T p
; (1)

k =
v
00

1
�x

00
v
00

3

(x00b3�b1)T p
=

v
00

2
�y

00
v
00

3

(y00b3�b2)T p
=

y
00
v
00

1
�x

00
v
00

2

(x00b2�y00b1)T p
; (2)

where b1; b2; b3 and a1;a2;a3 are the row vectors of A
and B and v0 = (v0

1
; v0

2
; v0

3
), v00 = (v00

1
; v00

2
; v00

3
). Because

of the invariance of k we can equate terms of Equation 1
with terms of Equation 2 and obtain trilinear functions
of image coordinates across three views. For example,
by equating the �rst two terms in each of the equations,
we obtain:

x00(v0
1
b3 � v00

3
a1)

Tp+ x00x0(v00
3
a3 � v

0

3
b3)

T p+

x0(v0
3
b1 � v

00

1
a3)

Tp+ (v00
1
a1 � v0

1
b1)

Tp = 0; (3)

In a similar fashion, after equating the �rst term of Equa-
tion 1 with the second term of Equation 2, we obtain:

y00(v0
1
b3 � v00

3
a1)

Tp+ y00x0(v00
3
a3 � v0

3
b3)

Tp+

x0(v0
3
b2 � v

00

2
a3)

Tp+ (v00
2
a1 � v

0

1
b2)

T p = 0: (4)

Both equations are of the desired form, with the �rst six
coe�cients identical across both equations.
The question of uniqueness arises because Lemma 1

holds for any plane. If we choose a di�erent plane, say
�2, with homographies A0; B0, then we must show that
the new homographies give rise to the same coe�cients
(up to an overall scale). The parenthesized terms in
Equations 3 and 4 have the general form: v0jbi � v00i aj,
for some i and j. Thus, we need to show that there exists
a scalar s that satis�es

v00i (aj � sa0j) = v0j(bi � sb0i):

This, however, follows directly from Lemmas 2 and 4.
The direct implication of the theorem is that one can

generate a novel view ( 3) by simply combining two
model views ( 1;  2). The coe�cients �j and �j of the
combination can be recovered together as a solution of
a linear system of 17 equations (24 � 6 � 1) given nine
corresponding points across the three views (more than
nine points can be used for a least-squares solution).
Taken together, Equations 1 and 2 lead to 9 algebraic

functions of three views, six of which are separate for x00

and y00. The other four functions are listed below:

x00(�) + x00y0(�) + y0(�) + (�) = 0;

y00(�) + y00y0(�) + y0(�) + (�) = 0;

x00x0(�) + x00y0(�) + x0(�) + y0(�) = 0;

y00x0(�) + y00y0(�) + x0(�) + y0(�) = 0;

where (�) represent linear polynomials in x; y. The solu-
tion for x00; y00 is unique without constraints on the al-
lowed camera transformations. If we choose Equations 3
and 4, then v0

1
and v0

3
should not vanish simultaneously,

i.e., v0 �= (0; 1; 0) is a singular case. Also v00 �= (0; 1; 0)
and v00 �= (1; 0; 0) give rise to singular cases. One can eas-
ily show that for each singular case there are two other
functions out of the nine available ones that provide a
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unique solution for x00; y00. Note that the singular cases
are pointwise, i.e., only three epipolar directions are ex-
cluded, compared to the more wide-spread singular cases
that occur with epipolar intersection, as described in the
introduction.
In practical terms, the process of generating a novel

view can be easily accomplished without the need to ex-
plicitly recover structure, camera transformation, or just
the epipolar geometry. The process described here is
fundamentally di�erent from intersecting epipolar lines
in the following ways: �rst, we use the three views to-
gether, instead of pairs of views separately; second, there
is no process of line intersection, i.e., the x and y coor-
dinates of  3 are obtained separately as a solution of a
single equation in coordinates of the other two views;
and thirdly, the process is well de�ned in cases where
intersecting epipolar lines becomes singular (e.g., when
the three camera centers are collinear). Furthermore, by
avoiding the need to recover the epipolar geometry we
obtain a signi�cant practical advantage, since the epipo-
lar geometry is the most error-sensitive component when
working with perspective views.
The connection between the general result of trilinear

functions of views to the \linear combination of views"
result [34] for orthographic views, can easily be seen by
setting A and B to be a�ne in P2, and v0

3
= v00

3
= 0.

For example, Equation 3 reduces to

v0
1
x00 � v00

1
x0 + (v00

1
a1 � v

0

1
b1)

T p = 0;

which is of the form

�1x
00 + �2x

0 + �3x+ �4y + �5 = 0:

Thus, in the case where all three views are orthographic,
x00 is expressed as a linear combination of image coordi-
nates of the two other views | as discovered by [34].

4 The Bilinear Form

Consider the case for which the two reference (model)
views of an object are taken orthographically (using a
tele lens would provide a reasonable approximation), but
during recognition any perspective view of the object is
allowed. It can easily be shown that the three views are
then connected via bilinear functions (instead of trilin-
ear):

Theorem 2 (Bilinearity) Within the conditions of
Theorem 1, in case the views  1 and  2 are obtained
by parallel projection, then the pair of trilinear forms of
Theorem 1 reduce to the following pair of bilinear equa-
tions:

x00(�1x+�2y+�3)+�4x
00x0+�5x

0+�6x+�7y+�8 = 0;

and

y00(�1x+�2y+�3)+�4y
00x0+�5x

0+�6x+�7y+�8 = 0;

where �j = �j , j = 1; :::; 4.

Proof. Under these conditions we have from Lemma 1
that A is a�ne in P2 and v0

3
= 0, therefore Equation 3

reduces to:

x00(v0
1
b3�v

00

3
a1)

Tp+v00
3
x00x0�v00

1
x0+(v00

1
a1�v

0

1
b1)

Tp = 0:

Similarly, Equation 4 reduces to:

y00(v0
1
b3�v

00

3
a1)

T p+v00
3
y00x0�v00

2
x0+(v00

2
a1�v

0

1
b2)

Tp = 0:

Both equations are of the desired form, with the �rst
four coe�cients identical across both equations.
A bilinear function of three views has two advantages

over the general trilinear function. First, only six cor-
responding points (instead of nine) across three views
are required for solving for the coe�cients. Second, the
lower the degree of the algebraic function, the less sen-
sitive the solution should be in the presence of errors in
measuring correspondences. In other words, it is likely
(though not necessary) that the higher order terms, such
as the term x00x0x in Equation 3, will have a higher con-
tribution to the overall error sensitivity of the system.
Compared to the case when all views are assumed or-

thographic, this case is much less of an approximation.
Since the model views are taken only once, it is not un-
reasonable to require that they be taken in a special
way, namely, with a tele lens (assuming we are dealing
with object recognition, rather than scene recognition).
If that requirement is satis�ed, then the recognition task
is general since we allow any perspective view to be taken
during the recognition process.

5 Experimental Data

The experiments described in this section were done in
order to evaluate the practical aspect of using the trilin-
ear result for re-projection compared to using epipolar
intersection and the linear combination result of [34] (the
latter we have shown is simply a limiting case of the tri-
linear result).
The epipolar intersection method was implemented in

the following way. Let F13 and F23 be the matrices (\es-
sential" matrices in classical terminology [18], which we
adopt here) that satisfy p00F13p = 0, and p00F23p

0 = 0.
Then, by incidence of p00 with its epipolar line, we have:

p00 �= F13p� F23p
0:

Therefore, given eight corresponding points across the
three views, we can recover the two essential matrices,
and then re-project all other object points onto the third
view. In practice one would use more than eight points
for recovering the essential matrices in a linear or non-
linear squares method. Since linear least squares meth-
ods are still sensitive to image noise, we used the imple-
mentation of a non-linear method described in [19] which
was kindly provided by T. Luong and L. Quan.
The �rst experiment is with simulation data showing

that even when the epipolar geometry is recovered accu-
rately, it is still signi�cantly better to use the trilinear
result which avoids the process of line intersection. The
second experiment is done on a real set of images, com-
paring the performance of the various methods and the
number of corresponding points that are needed in prac-
tice to achieve reasonable re-projection results.

5.1 Computer Simulations

We used an object of 46 points placed randomly with z
coordinates between 100 units and 120 units, and x; y
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Figure 1: Comparing the performance of the epipolar intersection method (the dotted line) and the trilinear functions
method (dashed line) in the presence of image noise. The graph on the left shows the maximal re-projection error
averaged over 200 trials per noise level (bars represent standard deviation). Graph on the right displays the average
re-projection error averaged over all re-projected points averaged over the 200 trials per noise level.

coordinates ranging randomly between -125 and +125.
Focal length was of 50 units and the �rst view was ob-
tained by fx=z; fy=z. The second view ( 2) was gener-
ated by a rotation around the point (0; 0; 100) with axis
(0:14; 0:7; 0:7) and by an angle of 0:3 radians. The third
view ( 3) was generated by a rotation around an axis
(0; 1; 0) with the same translation and angle. Various
amounts of random noise was applied to all points that
were to be re-projected onto a third view, but not to the
eight or nine points that were used for recovering the
parameters (essential matrices, or trilinear coe�cients).
The noise was random, added separately to each coor-
dinate and with varying levels from 0.5 to 2.5 pixel er-
ror. We have done 1000 trials as follows: 20 random
objects were created, and for each degree of error the
simulation was ran 10 times per object. We collected
the maximal re-projection error (in pixels) and the av-
erage re-projection error (averaged of all the points that
were re-projected). These numbers were collected sepa-
rately for each degree of error by averaging over all trials
(200 of them) and recording the standard deviation as
well. Since no error were added to the eight or nine
points that were used to determine the epipolar geom-
etry and the trilinear coe�cients, we simply solved the
associated linear systems of equations required to obtain
the essential matrices or the trilinear coe�cients.

The results are shown in Figure 1. The graph on
the left shows the performance of both algorithms for
each level of image noise by measuring the maximal re-
projection error. We see that under all noise levels, the
trilinear method is signi�cantly better and also has a
smaller standard deviation. Similarly for the average re-
projection error shown in the graph on the right.

This di�erence in performance is expected, as the tri-
linear method takes all three views together, rather than
every pair separately, and thus avoiding line intersec-
tions.

5.2 Experiments On Real Images

Figure 2 shows three views of the object we selected for
the experiment. The object is a sports shoe with added
texture to facilitate the correspondence process. This
object was chosen because of its complexity, i.e., it has a
shape of a natural object and cannot easily be described
parametrically (as a collection of planes or algebraic sur-
faces). Note that the situation depicted here is challeng-
ing because the re-projected view is not in-between the
two model views, i.e., one should expect a larger sensi-
tivity to image noise than in-between situations. A set of
34 points were manually selected on one of the frames,
 1, and their correspondences were automatically ob-
tained along all other frames used in this experiment.
The correspondence process is based on an implementa-
tion of a coarse-to-�ne optical-ow algorithm described
in [7]. To achieve accurate correspondences across dis-
tant views, intermediate in-between frames were taken
and the displacements across consecutive frames were
added. The overall displacement �eld was then used to
push (\warp") the �rst frame towards the target frame
and thus create a synthetic image. Optical-ow was ap-
plied again between the synthetic frame and the target
frame and the resulting displacement was added to the
overall displacement obtained earlier. This process pro-
vides a dense displacement �eld which is then sampled
to obtain the correspondences of the 34 points initially
chosen in the �rst frame. The results of this process are
shown in Figure 2 by displaying squares centered around
the computed locations of the corresponding points. One
can see that the correspondences obtained in this manner
are reasonable, and in most cases to sub-pixel accuracy.
One can readily automate further this process by select-
ing points in the �rst frame for which the Hessian ma-
trix of spatial derivatives is well conditioned | similar
to the con�dence values suggested in the implementa-
tions of [4, 7, 30] | however, the intention here was not
so much as to build a complete system but to test the

5



Figure 2: Top Row: Two model views,  1 on the left and  2 on the right. The overlayed squares illustrate the
corresponding points (34 points). Bottom Row: Third view  3. Note that  3 is not in-between  1 and  2, making
the re-projection problem more challenging (i.e., performance is more sensitive to image noise than in-between
situations).

Figure 3: Re-projection onto  3 using the trilinear result. The re-projected points are marked as crosses, therefore
should be at the center of the squares for accurate re-projection. On the left, the minimal number of points were used
for recovering the trilinear coe�cients (nine points); the average pixel error between the true an estimated locations
is 1.4, and the maximal error is 5.7. On the right 12 points were used in a least squares �t; average error is 0.4 and
maximal error is 1.4.
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Figure 4: Results of re-projection using intersection of epipolar lines. The re-projected points are marked as crosses,
therefore should be at the center of the squares for accurate re-projection. In the lefthand display the ground plane
points were used for recovering the essential matrix (see text), and in the righthand display the essential matrices
were recovered from the implementation of [19] using all 34 points across the three views. Maximum displacement
error in the lefthand display is 25.7 pixels and average error is 7.7 pixels. Maximal error in the righthand display is
43.4 pixels and average error is 9.58 pixels.

performance of the trilinear re-projection method and
compare it to the performance of epipolar intersection
and the linear combination methods.

The trilinear method requires at least nine correspond-
ing points across the three views (we need 17 equation,
and nine points provide 18 equations), whereas epipolar
intersection can be done (in principle) with eight points.
The question we are about to address is what is the
number of points that are required in practice (due to
errors in correspondence, lens distortions and other ef-
fects that are not adequately modeled by the pin-hole
camera model) to achieve reasonable performance?

The trilinear result was �rst applied with the minimal
number of points (nine) for solving for the coe�cients,
and then applied with 12 points using a linear least-
squares solution. The results are shown in Figure 3.
Nine points provide a re-projection with maximal error
of 5.7 pixels and average error of 1.4 pixels. The solution
using 12 points provided a signi�cant improvement with
maximal error of 1.4 and average error of 0.4 pixels. Us-
ing more points did not improve signi�cantly the results;
for example, when all 34 points were used the maximal
error went down to 1.14 pixels and average error stayed
at 0.42 pixels.

Next the epipolar intersection method was applied.
We used two methods for recovering the essential matri-
ces. One method is by using the implementation of [19],
and the other is by taking advantage that four of the cor-
responding points are coming from a plane (the ground
plane). In the former case, much more than eight points
were required in order to achieve reasonable results. For
example, when using all the 34 points, the maximal er-
ror was 43.4 pixels and the average error was 9.58 pixels.
In the latter case, we recovered �rst the homography B
due to the ground plane and then the epipole v00 using
two additional points (those on the �lm cartridges). It

is then known (see [26, 20]) that F13 = [v00]B, where [v00]
is the anti-symmetric matrix of v00. A similar procedure
was used to recover F23. Therefore, only six points were
used for re-projection, but nevertheless, the results were
slightly better: maximal error of 25.7 pixels and average
error of 7.7 pixels. Figure 4 shows these results.

Finally, we tested the performance of re-projection us-
ing the linear combinationmethod. Since the linear com-
bination methods holds only for orthographic views, we
are actually testing the orthographic assumption under
a perspective situation, or in other words, whether the
higher (bilinear and trilinear) order terms of the trilin-
ear equations are signi�cant or not. The linear combina-
tion method requires at least four corresponding points
across the three views. We applied the method with four,
12 (for comparison with the trilinear case shown in Fig-
ure 3), and all 34 points (the latter two using linear least
squares). The results are displayed in Figure 5. The per-
formance in all cases are signi�cantly poorer than when
using the trilinear functions, but better than the epipolar
intersection method.

6 Discussion

We have seen that any view of a �xed 3D object can
be expressed as a trilinear function with two reference
views in the general case, or as a bilinear function when
the reference views are created by means of parallel pro-
jection. These functions provide alternative, much sim-
pler, means for manipulating views of a scene than other
methods. Experimental results show that the trilinear
functions are also useful in practice yielding performance
that is signi�cantly better than epipolar intersection or
the linear combination method.

The application that was emphasized throughout the
paper is visual recognition via alignment. Reasonable
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Figure 5: Results of re-projection using the linear combination of views method proposed by [34] (applicable to
parallel projection). Top Row: In the lefthand display the linear coe�cients were recovered from four corresponding
points; maximal error is 56.7 pixels and average error is 20.3 pixels. In the righthand display the coe�cients were
recovered using 12 points in a linear least squares fashion; maximal error is 24.3 pixels and average error is 6.8 pixels.
Bottom Row: The coe�cients were recovered using all 34 points across the three views. Maximal error is 29.4 pixels
and average error is 5.03 pixels.
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performance was obtained with 12 corresponding points
with the novel view ( 3) | which may be too many if the
image to model matching is done by trying all possible
combinations of point matches. The existence of bilinear
functions in the special case where the model is ortho-
graphic, but the novel view is perspective, is more en-
couraging from the standpoint of counting points. Here
we have the result that only six corresponding points
are required to obtain recognition of perspective views
(provided we can satisfy the requirement that the model
is orthographic). We have not experimented with bilin-
ear functions to see how many points would be needed
in practice, but plan to do that in the future. Because
of their simplicity, one may speculate that these alge-
braic functions will �nd uses in tasks other than visual
recognition | some of those are discussed below.
There may exist other applications where simplicity

is of major importance, whereas the number of points
is less of a concern. Consider for example, the appli-
cation of model-based compression. With the trilinear
functions we need 17 parameters to represent a view as
a function of two reference views in full correspondence.
Assume both the sender and the receiver have the two
reference views and apply the same algorithm for obtain-
ing correspondences between the two views. To send
a third view (ignoring problems of self occlusions that
could be dealt separately) the sender can solve for the
17 parameters using many points, but eventually send
only the 17 parameters. The receiver then simply com-
bines the two reference views in a \trilinear way" given
the received parameters. This is clearly a domain where
the number of points are not a major concern, whereas
simplicity, and robustness (as shown above) due to the
short-cut in the computations, is of great importance.
Related to image coding, an approach of image decom-

position into \layers" was recently proposed by [1, 2]. In
this approach, a sequence of views is divided up into re-
gions, whose motion of each is described approximately
by a 2D a�ne transformation. The sender sends the �rst
image followed only by the six a�ne parameters for each
region for each subsequent frame. The use of algebraic
functions of views can potentially make this approach
more powerful because instead of dividing up the scene
into planes (it would have been planes if the projection
was parallel, in general its not even planes) one can at-
tempt to divide the scene into objects, each carries the
17 parameters describing its displacement onto the sub-
sequent frame.
Another area of application may be in computer

graphics. Re-projection techniques provide a short-cut
for image rendering. Given two fully rendered views
of some 3D object, other views (again ignoring self-
occlusions) can be rendered by simply \combining" the
reference views. Again, the number of corresponding
points is less of a concern here.
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