11,341 research outputs found

    On the Pauli graphs of N-qudits

    Full text link
    A comprehensive graph theoretical and finite geometrical study of the commutation relations between the generalized Pauli operators of N-qudits is performed in which vertices/points correspond to the operators and edges/lines join commuting pairs of them. As per two-qubits, all basic properties and partitionings of the corresponding Pauli graph are embodied in the geometry of the generalized quadrangle of order two. Here, one identifies the operators with the points of the quadrangle and groups of maximally commuting subsets of the operators with the lines of the quadrangle. The three basic partitionings are (a) a pencil of lines and a cube, (b) a Mermin's array and a bipartite-part and (c) a maximum independent set and the Petersen graph. These factorizations stem naturally from the existence of three distinct geometric hyperplanes of the quadrangle, namely a set of points collinear with a given point, a grid and an ovoid, which answer to three distinguished subsets of the Pauli graph, namely a set of six operators commuting with a given one, a Mermin's square, and set of five mutually non-commuting operators, respectively. The generalized Pauli graph for multiple qubits is found to follow from symplectic polar spaces of order two, where maximal totally isotropic subspaces stand for maximal subsets of mutually commuting operators. The substructure of the (strongly regular) N-qubit Pauli graph is shown to be pseudo-geometric, i. e., isomorphic to a graph of a partial geometry. Finally, the (not strongly regular) Pauli graph of a two-qutrit system is introduced; here it turns out more convenient to deal with its dual in order to see all the parallels with the two-qubit case and its surmised relation with the generalized quadrangle Q(4, 3), the dual ofW(3).Comment: 17 pages. Expanded section on two-qutrits, Quantum Information and Computation (2007) accept\'

    Entangled networks, synchronization, and optimal network topology

    Full text link
    A new family of graphs, {\it entangled networks}, with optimal properties in many respects, is introduced. By definition, their topology is such that optimizes synchronizability for many dynamical processes. These networks are shown to have an extremely homogeneous structure: degree, node-distance, betweenness, and loop distributions are all very narrow. Also, they are characterized by a very interwoven (entangled) structure with short average distances, large loops, and no well-defined community-structure. This family of nets exhibits an excellent performance with respect to other flow properties such as robustness against errors and attacks, minimal first-passage time of random walks, efficient communication, etc. These remarkable features convert entangled networks in a useful concept, optimal or almost-optimal in many senses, and with plenty of potential applications computer science or neuroscience.Comment: Slightly modified version, as accepted in Phys. Rev. Let

    Intriguing sets of partial quadrangles

    Full text link
    The point-line geometry known as a \textit{partial quadrangle} (introduced by Cameron in 1975) has the property that for every point/line non-incident pair (P,â„“)(P,\ell), there is at most one line through PP concurrent with â„“\ell. So in particular, the well-studied objects known as \textit{generalised quadrangles} are each partial quadrangles. An \textit{intriguing set} of a generalised quadrangle is a set of points which induces an equitable partition of size two of the underlying strongly regular graph. We extend the theory of intriguing sets of generalised quadrangles by Bamberg, Law and Penttila to partial quadrangles, which surprisingly gives insight into the structure of hemisystems and other intriguing sets of generalised quadrangles

    Tree Buffers

    Get PDF
    In runtime verification, the central problem is to decide if a given program execution violates a given property. In online runtime verification, a monitor observes a program’s execution as it happens. If the program being observed has hard real-time constraints, then the monitor inherits them. In the presence of hard real-time constraints it becomes a challenge to maintain enough information to produce error traces, should a property violation be observed. In this paper we introduce a data structure, called tree buffer, that solves this problem in the context of automata-based monitors: If the monitor itself respects hard real-time constraints, then enriching it by tree buffers makes it possible to provide error traces, which are essential for diagnosing defects. We show that tree buffers are also useful in other application domains. For example, they can be used to implement functionality of capturing groups in regular expressions. We prove optimal asymptotic bounds for our data structure, and validate them using empirical data from two sources: regular expression searching through Wikipedia, and runtime verification of execution traces obtained from the DaCapo test suite

    "Clumpiness" Mixing in Complex Networks

    Get PDF
    Three measures of clumpiness of complex networks are introduced. The measures quantify how most central nodes of a network are clumped together. The assortativity coefficient defined in a previous study measures a similar characteristic, but accounts only for the clumpiness of the central nodes that are directly connected to each other. The clumpiness coefficient defined in the present paper also takes into account the cases where central nodes are separated by a few links. The definition is based on the node degrees and the distances between pairs of nodes. The clumpiness coefficient together with the assortativity coefficient can define four classes of network. Numerical calculations demonstrate that the classification scheme successfully categorizes 30 real-world networks into the four classes: clumped assortative, clumped disassortative, loose assortative and loose disassortative networks. The clumpiness coefficient also differentiates the Erdos-Renyi model from the Barabasi-Albert model, which the assortativity coefficient could not differentiate. In addition, the bounds of the clumpiness coefficient as well as the relationships between the three measures of clumpiness are discussed.Comment: 47 pages, 11 figure
    • …
    corecore