750,891 research outputs found

    Can God Promise Us a New Past? A Response to Lebens and Goldschmidt

    Get PDF
    Samuel Lebens and Tyron Goldschmidt provided original theodicies, which suggest that at one time God will change the past, either by erasing/substituting the sins of humans or erasing the whole entirety of evils. Both theodicies imply the idea that God can completely change the past without leaving any traces. In this paper, I argue that Lebens’ and Goldschmidt’s preferred model, which they call the scene-changing theory, is problematic. First, its complex metaphysical foundation could be replaced with presentism (roughly, the view in the ontology of time that only present things exist) without losing any substantial heuristics. Second, their theory either implies a controversial theory of truthmaking under presentistic and hyper-presentistic ontology or implies controversial views on the counting of events under presentistic and hyper-presentistic ontology. Thirdly, I will argue that any theory of elimination/substitution of evils of the past implies that there are unnecessary evils, which is inconsistent with God’s goodness

    A counterexample to Thiagarajan's conjecture on regular event structures

    Full text link
    We provide a counterexample to a conjecture by Thiagarajan (1996 and 2002) that regular event structures correspond exactly to event structures obtained as unfoldings of finite 1-safe Petri nets. The same counterexample is used to disprove a closely related conjecture by Badouel, Darondeau, and Raoult (1999) that domains of regular event structures with bounded â™®\natural-cliques are recognizable by finite trace automata. Event structures, trace automata, and Petri nets are fundamental models in concurrency theory. There exist nice interpretations of these structures as combinatorial and geometric objects. Namely, from a graph theoretical point of view, the domains of prime event structures correspond exactly to median graphs; from a geometric point of view, these domains are in bijection with CAT(0) cube complexes. A necessary condition for both conjectures to be true is that domains of regular event structures (with bounded â™®\natural-cliques) admit a regular nice labeling. To disprove these conjectures, we describe a regular event domain (with bounded â™®\natural-cliques) that does not admit a regular nice labeling. Our counterexample is derived from an example by Wise (1996 and 2007) of a nonpositively curved square complex whose universal cover is a CAT(0) square complex containing a particular plane with an aperiodic tiling. We prove that other counterexamples to Thiagarajan's conjecture arise from aperiodic 4-way deterministic tile sets of Kari and Papasoglu (1999) and Lukkarila (2009). On the positive side, using breakthrough results by Agol (2013) and Haglund and Wise (2008, 2012) from geometric group theory, we prove that Thiagarajan's conjecture is true for regular event structures whose domains occur as principal filters of hyperbolic CAT(0) cube complexes which are universal covers of finite nonpositively curved cube complexes

    Switched networks and complementarity

    Get PDF
    A modeling framework is proposed for circuits that are subject both to externally induced switches (time events) and to state events. The framework applies to switched networks with linear and piecewise-linear elements, including diodes. We show that the linear complementarity formulation, which already has proved effective for piecewise-linear networks, can be extended in a natural way to also cover switching circuits. To achieve this, we use a generalization of the linear complementarity problem known as the cone-complementarity problem. We show that the proposed framework is sound in the sense that existence and uniqueness of solutions is guaranteed under a passivity assumption. We prove that only first-order impulses occur and characterize all situations that give rise to a state jump; moreover, we provide rules that determine the jump. Finally, we show that within our framework, energy cannot increase as a result of a jump, and we derive a stability result from this

    Matchings in Random Biregular Bipartite Graphs

    Get PDF
    We study the existence of perfect matchings in suitably chosen induced subgraphs of random biregular bipartite graphs. We prove a result similar to a classical theorem of Erdos and Renyi about perfect matchings in random bipartite graphs. We also present an application to commutative graphs, a class of graphs that are featured in additive number theory.Comment: 30 pages and 3 figures - Latest version has updated introduction and bibliograph
    • …
    corecore