586,681 research outputs found

    Asymptotic power-law tails of massive scalar fields in Reissner-Nordstr\"{o}m background

    Full text link
    We investigate dominant late-time tail behaviors of massive scalar fields in nearly extreme Reissner-Nordstr\"{o}m background. It is shown that the oscillatory tail of the scalar fields has the decay rate of t5/6t^{-5/6} at asymptotically late times. The physical mechanism by which the asymptotic t5/6t^{-5/6} tail yields and the relation between the field mass and the time scale when the tail begins to dominate, are discussed in terms of resonance backscattering due to spacetime curvature.Comment: 18 pages, 1 figure, accepted for publication in Physical Review

    Long-tail Relation Extraction via Knowledge Graph Embeddings and Graph Convolution Networks

    Full text link
    We propose a distance supervised relation extraction approach for long-tailed, imbalanced data which is prevalent in real-world settings. Here, the challenge is to learn accurate "few-shot" models for classes existing at the tail of the class distribution, for which little data is available. Inspired by the rich semantic correlations between classes at the long tail and those at the head, we take advantage of the knowledge from data-rich classes at the head of the distribution to boost the performance of the data-poor classes at the tail. First, we propose to leverage implicit relational knowledge among class labels from knowledge graph embeddings and learn explicit relational knowledge using graph convolution networks. Second, we integrate that relational knowledge into relation extraction model by coarse-to-fine knowledge-aware attention mechanism. We demonstrate our results for a large-scale benchmark dataset which show that our approach significantly outperforms other baselines, especially for long-tail relations.Comment: To be published in NAACL 201

    Time-lapse CCD imagery of plasma-tail motions in Comet Austin

    Get PDF
    The appearance of the bright comet Austin 1989c1 in April-May of 1990 allowed us to test a new imaging instrument at the Joint Observatory for Cometary Research (JOCR). It is a 300mm lens/charge coupled device (CCD) system with interference filters appropriate for cometary emissions. The 13 frames were made into a time-lapse movie showing the evolution of the plasma tail. We were able to follow at least two large-scale waves out through the main tail structure. During the sequence, we saw two new tail rays form and undergo similar wave motion

    Multiscale nature of the dissipation range in gyrokinetic simulations of Alfv\'enic turbulence

    Full text link
    Nonlinear energy transfer and dissipation in Alfv\'en wave turbulence are analyzed in the first gyrokinetic simulation spanning all scales from the tail of the MHD range to the electron gyroradius scale. For typical solar wind parameters at 1 AU, about 30% of the nonlinear energy transfer close to the electron gyroradius scale is mediated by modes in the tail of the MHD cascade. Collisional dissipation occurs across the entire kinetic range kρi1k_\perp\rho_i\gtrsim 1. Both mechanisms thus act on multiple coupled scales, which have to be retained for a comprehensive picture of the dissipation range in Alfv\'enic turbulence.Comment: Made several improvements to figures and text suggested by referee

    Statistics of Weak Gravitational Lensing in Cold Dark Matter Models; Magnification Bias on Quasar Luminosity Functions

    Get PDF
    We compute statistical properties of weak gravitational lensing by large-scale structure in three Cold Dark Matter models. We use a P3^3M NN-body code to simulate the formation and evolution of large-scale structure in the universe. We perform 1.1×1071.1\times10^7 ray-tracing experiments for each model using the multiple lens-plane algorithm. From the results of these experiments, we calculate the probability distribution functions (PDF) of the convergences, shears, and magnifications, and their root-mean-square (rms) values. We find that the rms values of the convergence and shear agree with the predictions of a nonlinear analytical model. We also find that the PDFs of the magnifications μ\mu have a peak at values slightly smaller than μ=1\mu=1, and are strongly skewed toward large magnifications. In particular, for the high-density model, a power-law tail appears in the magnification distribution at large magnifications for sources at redshifts zs>2z_s>2. The rms values of the magnifications essentially agree with the nonlinear analytical predictions for sources at low redshift, but exceed these predictions for high redshift sources, once the power-law tail appears. We study the effect of magnification bias on the luminosity functions of high-redshift quasars, using the calculated PDFs of the magnifications. We show that the magnification bias is moderate in the absence of the power-law tail in the magnification distribution, but depends strongly on the value of the density parameter. In presence of the power-law tail, the bias becomes considerable, especially at the bright end of the luminosity functions.Comment: 24 pages, 9 figures, LaTex using epsfig.sty. Submitted to the The Astrophysical Journa

    Aerodynamic characteristics of a 1/6-scale model of the rotor systems research aircraft with the rotors removed

    Get PDF
    A wind-tunnel investigation was conducted to refine the aerodynamic characteristics of the rotor systems research aircraft. For the investigation, a 1/6-scale model without a main rotor or a tail rotor was used. The model provided the capability for testing different engine nacelle sizes, engine pylon fairings, and tail configurations. The engine thrust effects were modeled by small engine simulators (fans). Data were obtained primarily over an angle-of-attack range from -13 deg to 13 deg at several values of sideslip. Stability characteristics and control effectiveness were investigated. The model with the scaled engine nacelles and the combination T-tail and lower horizontal tail displayed longitudinal and lateral-directional stability. Results show that by reducing the horizontal or vertical-tail span the longitudinal stability is decreased. Reducing the engine nacelle size increases the static stability of the model. Effective dihedral is essentially zero at 0 deg angle of attack and 0 deg wing incidence

    Using Cluster Abundances and Peculiar Velocities to Test the Gaussianity of the Cosmological Density Field

    Get PDF
    (Abridged) By comparing the frequency of typical events with that of unusual events, one can test whether the cosmological density distribution function is consistent with the normally made assumption of Gaussianity. To this end, we compare the consistency of the tail-inferred (from clusters) and measured values (from large-scale flows) of the rms level of mass fluctuations for two distribution functions: a Gaussian, and a texture (positively-skewed) PDF. Averaging the recent large-scale flow measurements, we find that observations of the rms and the tail at the 10 h^-1 Mpc scale disfavor a texture PDF at ~1.5 sigma in all cases. However, taking only the most recent measurement of the rms, that from Willick et al. (1997b), the comparison disfavors textures for low Omega_0=0.3, and disfavors Gaussian models if Omega_0=1 (again at ~1.5 sigma). Predictions for evolution of high temperature clusters can also be made for the models considered, and strongly disfavor Omega_0=1 in Gaussian models and marginally disfavor Omega_0=1 in texture models. Only Omega_0=0.3 Gaussian models are consistent with all the data considered.Comment: 34 pg incl. 8 embedded figures, LaTeX, aaspp4.sty, submitted to Ap

    Low-speed wind-tunnel investigation of a large scale advanced arrow-wing supersonic transport configuration with engines mounted above wing for upper-surface blowing

    Get PDF
    Tests have been conducted in a full scale tunnel to determine the low speed aerodynamic characteristics of a large scale advanced arrow wing supersonic transport configuration with engines mounted above the wing for upper surface blowing. Tests were made over an angle of attack range of -10 deg to 32 deg, sideslip angles of + or - 5 deg, and a Reynolds number range of 3,530,000 to 7,330,000. Configuration variables included trailing edge flap deflection, engine jet nozzle angle, engine thrust coefficient, engine out operation, and asymmetrical trailing edge boundary layer control for providing roll trim. Downwash measurements at the tail were obtained for different thrust coefficients, tail heights, and at two fuselage stations
    corecore