1,946 research outputs found

    FRM-Based FIR filters with minimum coefficient sensitivities

    Get PDF
    A method for optimizing FRM-based FIR filters with optimum coefficient sensitivity is presented. This technique can be used in conjunction with nonlinear optimization techniques to design very sharp filters that do not only have very sparse coefficient values but also very low coefficient sensitivity

    Digital Filters and Signal Processing

    Get PDF
    Digital filters, together with signal processing, are being employed in the new technologies and information systems, and are implemented in different areas and applications. Digital filters and signal processing are used with no costs and they can be adapted to different cases with great flexibility and reliability. This book presents advanced developments in digital filters and signal process methods covering different cases studies. They present the main essence of the subject, with the principal approaches to the most recent mathematical models that are being employed worldwide

    Design of Computationally Efficient Digital FIR Filters and Filter Banks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Modeling speech intelligibility based on the signal-to-noise envelope power ratio

    Get PDF

    Computationally efficient FIR digital filters

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    An Imaging Survey of Early-Type Barred Galaxies

    Full text link
    This paper presents the results of a high-resolution imaging survey, using both ground-based and Hubble Space Telescope images, of a complete sample of nearby barred S0--Sa galaxies in the field, with a particular emphasis on identifying and measuring central structures within the bars: secondary bars, inner disks, nuclear rings and spirals, and off-plane dust. A discussion of the frequency and statistical properties of the various types of inner structures has already been published. Here, we present the data for the individual galaxies and measurements of their bars and inner structures. We set out the methods we use to find and measure these structures, and how we discriminate between them. In particular, we discuss some of the deficiencies of ellipse fitting of the isophotes, which by itself cannot always distinguish between bars, rings, spirals, and dust, and which can produce erroneous measurements of bar sizes and orientations.Comment: LaTeX, 66 pages (including 42 figures, 36 in color). To appear in The Astrophysical Journal Supplement. Full-resolution and text-only versions available at http://www.iac.es/galeria/erwin/research

    Laminar Cortical Dynamics of Visual Form and Motion Interactions During Coherent Object Motion Perception

    Full text link
    How do visual form and motion processes cooperate to compute object motion when each process separately is insufficient? A 3D FORMOTION model specifies how 3D boundary representations, which separate figures from backgrounds within cortical area V2, capture motion signals at the appropriate depths in MT; how motion signals in MT disambiguate boundaries in V2 via MT-to-Vl-to-V2 feedback; how sparse feature tracking signals are amplified; and how a spatially anisotropic motion grouping process propagates across perceptual space via MT-MST feedback to integrate feature-tracking and ambiguous motion signals to determine a global object motion percept. Simulated data include: the degree of motion coherence of rotating shapes observed through apertures, the coherent vs. element motion percepts separated in depth during the chopsticks illusion, and the rigid vs. non-rigid appearance of rotating ellipses.Air Force Office of Scientific Research (F49620-01-1-0397); National Geospatial-Intelligence Agency (NMA201-01-1-2016); National Science Foundation (BCS-02-35398, SBE-0354378); Office of Naval Research (N00014-95-1-0409, N00014-01-1-0624

    Application of multirate digital signal processing to image compression

    Full text link
    With the increasing emphasis on digital communication and digital processing of images and video, image compression is drawing considerable interest as a means of reducing computer storage and communication channels bandwidth requirements. This thesis presents a method for the compression of grayscale images which is based on the multirate digital signal processing system. The input image spectrum is decomposed into octave wide subbands by critically resampling and filtering the image using separable FIR digital filters. These filters are chosen to satisfy the perfect reconstruction requirement. Simulation results on rectangularly sampled images (including a text image) are presented. Then, the algorithm is applied to the hexagonally resampled images and the results show a slight increase in the compression efficiency. Comparing the results against the standard (JPEG), indicate that this method does not have the blocking effect of JPEG and it preserves the edges even in the presence of high noise level
    corecore