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Summary 

With the advancement of CMOS technology, finite impulse response (FIR) filters are 

getting increasingly popular in many applications such as speech recognition systems, 

biomedical instrumentations, and read/write channels due to the linear-phase property 

and guaranteed stability. However, the very large scale integration (VLSI) 

implementation cost of an FIR filter is generally higher than that of the infinite impulse 

response (IIR) filters with the same transition bandwidth requirement, especially when 

the required transition-band is very narrow. The main purposes of this research work 

are to develop computationally efficient techniques for the design of FIR filters. 

 

In this thesis, new techniques and methods are proposed to design computationally 

efficient FIR filters. First, a modified frequency-response masking (FRM) approach is 

proposed to decouple the masking filters from the bandedge shaping filter in an FRM 

filter. The proposed structure adds more flexibility in selection of the interpolation 

factors for the bandedge shaping filter and the masking filters. Second, two methods 

are presented to reduce the arithmetic complexity of FRM filters. One of the methods 

utilizes a prefilter-equalizer to replace one masking filter in an FRM based filter. 

Novel multiplication-free prefilters are developed for the design of prefilter-equalizer 

viii 



pairs. The other method incorporates the single filter frequency masking technique into 

the FRM approach. The resulting structures make use of the cascade of the same model 

filter with different interpolation factors to perform the bandedge shaping and the 

masking tasks. With simple modifications, the proposed structures can be used to 

design FIR filters with varying specifications. Third, new masking filter structures are 

developed to design narrowband and wideband IFIR filters. The new masking filters 

are multiplication free. Finally, novel non-uniform linear-phase digital filter banks are 

proposed for digital audio applications. The filter banks have very low hardware cost. 
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Chapter 1 

Introduction 

Digital signal processing (DSP) is one of the most powerful technologies that will 

shape engineering in the twenty-first century. DSP technology has found its 

applications in a broad range of fields such as communication, medical imaging, radar 

& sonar, multimedia systems, high fidelity music reproduction, and oil prospecting, to 

name just a few. In DSP systems, there are basically two types of digital filters, namely, 

finite impulse response (FIR) digital filters and infinite impulse response (IIR) digital 

filters. FIR filters have some very desirable features like guaranteed stability, linear-

phase and low coefficient sensitivity. However, the computational complexity in terms 

of multiplication and addition of an FIR filter is generally higher than that of IIR filters 

when the same magnitude response specification is required. This problem is 

particularly acute in implementation of FIR filters demanding narrow transition bands. 

Thus, it is important to find ways to reduce the computational complexity of FIR filters. 
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1.1 Literature Review 

Let a linear-phase lowpass FIR filter ( )H z  be designed with the following 

specifications, 

( )

( ) [ ]

1 1 ,   for 0,

,   for ,

j

p p p

j

s s s

H e

H e

ω

ω

δ δ ω ω

δ δ ω ω π

 − ≤ ≤ + ∈  

− ≤ ≤ ∈
                                 (1.1) 

where ( )jH e ω  is the frequency response of ( )H z , pω  and sω  refer to the passband 

and stopband cutoff frequencies, respectively, pδ  and sδ  denote the maximum 

passband ripple and the minimum stopband attenuation, respectively. The length, N, of 

a minimax optimum linear-phase lowpass filter satisfying (1.1) can be estimated by [1] 

1
2/)(6.14

13log20 10
+

−

−−
=

πωω

δδ

ps

sp
N .                                      (1.2) 

It is clear from (1.2) that N is inversely proportional to the filter transition-width 

)( ps ωω − . For this reason, if the transition-width is narrow, the length of the filter will 

be quite long. Since the number of multipliers in the direct form implementation of a 

linear-phase FIR filter is approximately half of the length of the impulse response 

sequence, and the number of adders is approximately the same as the impulse response 

length, the hardware implementation of a long FIR filter is costly. 

 

To reduce the arithmetic operations of FIR filters with narrow transition-width, many 

efficient approaches were proposed in the past two decades. In general, there are three 

techniques for the design of computationally efficient FIR filters: 

l  The “prefilter plus equalizer” approach [2–9], 

l  Interpolated finite impulse response (IFIR) technique [10–20], 
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l  The frequency-response masking technique [21–74]. 

1.1.1 “Prefilter Plus Equalizer” Approach  

In [2, 3], a method called "prefilter plus equalizer" was proposed for the design of low 

computational complexity FIR filters. Fig. 1.1 shows a realization structure of the 

“prefilter-equalizer” approach where two FIR sections are cascaded to synthesize an 

FIR filter. In Fig. 1.1, ( )P z  is a prefilter which provides some stopband attenuation 

with minimum number of multipliers and adders, and ( )E z  is an equalizer designed to 

compensate the passband errors and provide the rest of stopband attenuation. The 

prefilter relieves the stopband attenuation requirement for the equalizer, which leads to 

the arithmetic operation reduction of the equalizer. As a result, the overall 

computational complexity of the desired filter is reduced compared with an equivalent 

conventional FIR filter. 

 

)(zP )(zE

 

Figure 1.1 A structure for “prefilter plus equalizer” method. 

 

Some efficient prefilter structures were proposed for the design of prefilters [3–9]. 

Adams and Willson [3] proposed the single and dual recursive running sum (RRS) 

structures which have only shift/adders and provide rather good stopband attenuation. 

The prefilter produces several zeros on the unit circle without any multiplications, 

while the amplitude equalizer is used to make the overall filter meet the specifications. 

The RRS structure proposed in [3] can not be applied to bandpass filters. In [4], an 
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extension to design bandpass filters was introduced with a different design concept 

from the design of lowpass (highpass) filters.  

 

Vaidyanathan and Beiman [5] introduced another prefilter structure which is based on 

the Dolph-Chebyshev functions. The equal-ripple stopband behavior of the Dolph-

Chebyshev function provides the largest possible stopband attenuation for a given 

order, leading to the computational reduction of the prefilter. However, this method is 

still rather complicated because the prefilter consists of substructures involving 

multipliers. Based on cyclotomic polynomials and a mirror-image quadratic 

polynomial, and by adopting the interpolation concept, Kikuchi et al. [6] proposed 

three types of prefiltering for lowpass, highpass and bandpass FIR filter design. These 

prefiltering techniques alleviate the burden on the equalizer leading to the reduction of 

the number of multipliers in implementation. Tai and Lin [7] developed two prefitler 

structures on the basis of the cascade of cosine functions (CCOSs). The CCOSs 

prefilter is multiplication free and suitable for the design of lowpass and highpass FIR 

filters. For the design of bandpass filters, the CCOSs prefilter is modified to bandpsss 

filters (BPCs) which require two multipliers. Both the CCOSs and BPCs can achieve 

some savings in the number of multipliers and adders in FIR filter design. Liu et al. [8] 

proposed an efficient prefilter structure called recursive Hartley filter (RHF) which has 

the ability to design lowpass, bandpass and highpass digital filters simultaneously. 

Another interesting efficient prefilter structure was introduced by Lian [9] which is a 

combination of a 4
th

 order multiplication-free FIR filter. This prefilter is suitable for 

the design of narrowband lowpass filters to some extent.  
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1.1.2 Interpolated Finite Impulse Response Filters   

The “prefilter plus equalizer” technique [2, 3] can achieve moderate savings in the 

number of multipliers and adders over the conventional FIR filters at the expense of a 

small increase in the number of delays. To further reduce the arithmetic operations for 

implementation of FIR filters, Neuvo et al. [10] introduced a technique called 

interpolated finite impulse response (IFIR) filter. The IFIR technique is very suitable 

for narrowband and wideband lowpass (highpass) as well as narrowband bandpass FIR 

filter design. To synthesize an IFIR filter, two cascaded subfilters are required as 

shown in Fig. 1.2. One subfilter is a bandedge shaping filter ( )M

MH z  obtained from a 

model filter ( )
M

H z  by replacing each delay element of ( )
M

H z  with M  delay 

elements. ( )M

MH z  has periodic frequency response. The other one is a masking filter 

(or interpolator) ( )G z  used to remove the unwanted passbands of ( )M

MH z . Since 

( )M

MH z  has a sparse coefficient vector with every thM  coefficient value being 

nonzero and ( )G z  can be designed with only few arithmetic operations, the overall 

implementation of an IFIR filter requires less multipliers and adders compared with an 

equivalent conventional FIR filter.   

 

)( M

M zH )(zG

 

Figure 1.2 An IFIR filter. 

 

In [10], simple interpolator was proposed to design ( )G z  which may not be effective 

for some stringent filter specifications. To solve this problem, Saramäki et al. [11, 12] 
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utilized the Remez multiple exchange algorithm to optimize the interpolation factor M, 

the bandedge shaping filter )( M
M zH  and the interpolator )(zG  simultaneously, 

which leads to considerable savings in the number of multipliers, adders and delays 

over the conventional FIR filters. In their method, further reduction of multipliers and 

adders is possible by using RRS based interpolators [12]. Kikuchi et al. [14] proposed 

a set of efficient and practical interpolators based on the cyclotomic polynomials 

which are multiplication free. The interpolators can be applied to lowpass, highpass 

and bandpass filter design. Similarly, Cabezas and Diniz [15] developed a general 

method to design efficient prefilters in which some interpolated RRS filters are 

cascaded with non-recursive filters. Large stopband attenuation is achieved by 

cascading the prefilters properly. Combining the prefilter-equalizer and IFIR concepts 

together, the cascade of prefilters is followed by an interpolated equalizer to meet the 

overall filter specification. This technique is applicable to the design of bandpass filters.  

 

For the design of moderately wideband FIR filters, Jing and Fam [16] proposed a 

generalized IFIR technique in which the overall filter is decomposed into a set of 

subfilters with much less stringent specifications. This method can achieve some 

savings in the number of multipliers at the cost of increasing the length of the overall 

filter significantly. Gustafsson et al. [17–19] introduced another structure in which 

several identical filters with different interpolation factors are cascaded to design 

narrowband and wideband FIR filters. Since only one model filter is utilized in this 

method, much reduction of multipliers and adders can be achieved at the expense of a 

large number of delay elements.  
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By adopting the IFIR concept, Lian and Lim [20] introduced an efficient structure to 

synthesize FIR filters with narrow and moderately wide transition-width. The proposed 

structure utilizes two prototype filters which are interpolated by even number factors 

and have even and odd number orders. They are arranged in parallel to perform the 

bandedge shaping which can relieve the task of the interpolator. Much reduction in the 

number of multipliers can be achieved, especially, when the desired transition-width is 

very narrow.  

1.1.3 Frequency-Response Masking Approach 

The IFIR method is applicable to FIR filters with narrow or wide passband. It is 

difficult to design FIR filters with arbitrary bandwidths using the IFIR approach. Lim 

[21] proposed an efficient method to design sharp lowpass and highpass FIR filters 

with arbitrary bandwidths. This method is called frequency-response masking (FRM) 

approach. The basic idea behind the FRM technique is to compose a sharp FIR filter 

using several short subfilters as shown in Fig. 1.3. Two sectors are required to 

synthesize a single-stage FRM filter. The first sector uses the delay-complementary 

concept to form the sharp transition-band and arbitrary bandwidth by a pair of 

complementary interpolated bandedge shaping filters, ( )M

aH z  and 
( 1)

2 ( )
M N

M

a
z H z

−−
−  , 

where N is length of ( )H z  and M is an interpolation factor. The second sector removes 

undesired periodic frequency components from the bandedge shaping filters by using 

two masking filters 1( )G z  and 2 ( )G z  to form the overall filter. The FRM technique 

can significantly decrease the required number of multipliers and adders for 

implementation of FIR filters. If the coefficient values of FRM filters are constrained 
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to be the sums of signed-power-of-two (SPT) terms [75–77], the computational 

complexity of FRM filters can be further reduced.  

 

( )M

aH z 1( )G z

2 ( )G z
( 1)

2

M N

z

−
−

 

Figure 1.3 A realization structure of the FRM approach. 

 

Many developments and improvements [22–37] have been made to the FRM technique 

since the inception of this method. A major contribution to the FRM technique was 

introduced by Lim and Lian [23] which generalized the optimum multi-stage FRM 

structures. It was reported in [23] that  

(1) as the number of frequency-response masking stages increases, the impulse 

response  up-sampling ratio approaches e (the base of the natural logarithm). 

(2) the FRM technique is useful when the normalized transition-width is less than 

1/16.   

(3) in K-stage FRM design, the overall complexity is inversely proportional to the 

thK )1( +  root of the transition-width.           

Yang et al. [22] proposed a modified FRM structure to reduce the computational 

complexities of the two masking filters in the narrowband lowpass case. This 

technique uses the IFIR concept to interpolate the two masking filters by a factor of N 

which results in an N factor reduction in the computational complexity of the two 

masking filters. Another technique to improve the masking filter design was proposed 



Chapter 1. Introduction 

 

9 

by Lim and Lian [24] which focused on reducing the implementation costs of the two 

masking filters by factoring a common subfilter from the two original masking filters. 

Besides the improvement [24] to FRM filters, Lian proposed another interesting 

approach to achieve savings in the number of multipliers by designing one of the 

masking filters as a half-band FIR filter [25]. To further reduce the computational 

complexity of FRM filters introduced in [24], Saramäki and Yli-Kaakinen [33] 

proposed an optimization algorithm to design all the subfilters simultaneously.  

 

In [27, 28], an “IFIR-FRM” structure was proposed to reduce the computational 

workload of the bandedge shaping filter, where the bandedge shaping filter is replaced 

by an IFIR filter. Some savings in the number of multipliers can be achieved with a 

slight increase in the number of delays over the original FRM filters. Using the concept 

of prefilter-equalizer, Lian [30, 31] introduced a modified FRM structure in which the 

computational complexity of the bandedge shaping filter or one of the masking filters 

is reduced by designing one of them as a prefilter-equalizer based filter.  

 

Saramäki and Lim [26] introduced a technique to improve the design algorithm of the 

original FRM filters [21]. In their method, the Remez algorithm was utilized to design 

FRM filters resulting in a time-saving procedure better than the linear programming 

approach. In [29], Saramäki and Johansson proposed an improved design technique for 

FRM filters, in which subfilters are optimized simultaneously. This method reduces the 

arithmetic complexity of the original FRM filter. Other optimization approaches for 

the design of FRM filters can be found in [34–37]. 
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There are many literatures dealing with the employment of the FRM technique. 

Saramaki et al. [38] modified the original FRM structure to design half-band FIR 

filters with narrow transition-widths. The approach achieves considerable savings in 

terms of multiplication. Lian [39] used the multi-stage FRM approach to optimize the 

design of half-band FIR filters. The design of bandpass and bandstop filters based on 

the FRM technique can be found in [40–42]. The FRM technique is also suitable for 

the synthesis of multi-rate filters [43–46], filter banks [47–54], two-dimensional filters 

[55–58], IIR filters [59–68], filters with short delay [69, 70], long FIR filters [71] and 

discrete valued coefficient FIR filters [72]. Efficient methods for the implementation 

of FRM filters can be found in [73, 74]. 

1.2 Research Objectives 

The above three main approaches and their corresponding extensions for the design of 

FIR filters with narrow transition-width can achieve computational efficiency under 

certain conditions. However, there is still room for the improvement and development 

in the design of sharp FIR filters. The main research objective is to find ways to reduce 

the computational complexity of sharp FIR filters further.  

1.3 Outline 

The thesis consists of the following parts:  

1. Chapter one is a review of some efficient methods for FIR filter design with 

low computational complexity.   

2. In Chapter two, the IFIR-FRM approach is generalized to develop a novel 

structure to synthesize very sharp FIR filters. The proposed structure decouples 
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the masking filters from the bandedge shaping filter. With the introduction of 

an additional decoupling stage, the computational complexity of the overall 

filter can be greatly reduced. Examples show that more than 40% savings in the 

number of multipliers and adders can be achieved compared with the original 

FRM approach. 

3. In Chapter three, by using the concept of FRM technique, two classes of new 

structures for the design of sharp lowpass and highpass FIR filters are presented. 

The proposed structures utilize a prefilter-equalizer to replace one masking 

filter in FRM-based filters. Novel prefilters are developed to design the 

prefilter-equalizer. Design examples show that the new method can yield 

considerable savings in the number of multipliers and adders while keeping the 

group delay of the overall filter in check, compared with other computationally 

efficient methods.  

4. In Chapter four, the single filter frequency masking filter structure is extended 

to design arbitrary bandwidth sharp filters using the FRM technique. The 

presented structures make use of one identical model filter (except for the 

periods) repeatedly to perform the bandedge shaping and the masking purposes, 

which reduces the computational complexity significantly. Based on the 

proposed structures, new single filter design structures are developed which 

have much flexibility to design FIR filters with different specifications.  

5. In Chapter five, a new type of masking filters for the design of narrowband and 

wideband lowpass/highpass IFIR filters as well as narrowband bandpass IFIR 

filters are proposed. The proposed structures are multiplication free. It is shown, 

by means of examples, that great savings in the number of multipliers and 

adders are achieved when the new masking filters are adopted in the IFIR 
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technique. Another advantage of this method is that the total number of delay 

elements of the designed filter is less than those of other equivalent 

computationally efficient filters.  

6. In Chapter six, the design of linear-phase digital filter banks based on the FRM 

approach for digital audio systems is proposed. The proposed structures can be 

used to synthesize non-uniform filter bank with very narrow transition-bands. 

Equalization for each subband can be easily achieved. The implementation of 

the new filter banks is simple.  

7. In Chapter seven, conclusions are presented for the thesis along with some 

ideas for future research works. 

1.4 Major Contributions of the Thesis 

The following is claimed to be the contributions of the thesis. 

1. A new FRM structure is developed that decouples the dependency between the 

bandedge shaping filter and the two masking filters (Chapter 2). 

2. Two novel structures based on the FRM approach to design computationally 

efficient sharp FIR filters are introduced. (Chapter 3). 

3. An extension of the single filter frequency masking filter for the design of 

arbitrary bandwidth sharp FIR filters using the FRM technique is presented 

(Chapter 4). 

4. Three new masking filter structures are proposed for the design of narrowband 

and wideband sharp lowpass and highpass FIR filters as well as narrowband 

bandpass filters (Chapter 5). 
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5. New linear-phase digital filter banks for digital audio applications are 

proposed (Chapter 6). 
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Part of the research works reported in this thesis is published or to be submitted for 

publication as follows. 

 

[1] Y. Lian and C. Z. Yang,  “Complexity reduction by decoupling the masking filters 

from bandedge shaping filter in the frequency-response masking technique,” 

Journal of Circuits, Systems, Signal processing, vol. 22, No. 2, pp. 115–135, 2003. 

[2] C. Z. Yang and Yong Lian, “A new digital filter bank for digital audio 

applications,” in Proc. 7
th  

Int. Symp. Signal Processing Its Applications, vol. 2, pp. 

267–270, Paris, France, July 1-4, 2003. 

[3] C. Z. Yang and Y. Lian, “Reduce the complexity of frequency-response masking 

filter using multiplication free filter,” in Proc. IEEE Int. Symp. Circuits Syst., 

ISCAS 2003, vol. 4, pp. 181–184, Bangkok, Thailand, May 25-28, 2003. 

[4] C. Z. Yang and Y. Lian, “Efficient prefilter structure for narrow-band bandpass 

FIR filter design,” in Proc. IEEE TENCON’02, Vol. 2, pp. 893–896, Beijing, 

China, Oct. 29- Nov. 01, 2002. 

[5] C. Z. Yang and Y. Lian, “A modified structure for the design of sharp FIR filters 

using frequency-response masking technique,” in Proc. IEEE Int. Symp. Circuits 

Syst., ISCAS 2002, vol. 3, pp. 237–240, Phoenix, USA, May, 2002.  

[6] Y. Lian and C. Z. Yang, “A new structure for design narrow band lowpass FIR 

filters,” in Proc. IEEE TENCON’01, Vol. 1, pp. 274–277, Singapore, Aug. 2001.  



Chapter 1. Introduction 

 

14 

[7] Y. Lian and C. Z. Yang, “The design of computationally efficient narrowband 

sharp FIR filters,” to be submitted to IEEE Trans. on Signal Processing.  

 

 



15 

 

 

 

Chapter 2 

Decoupling the Masking Filters from the 

Bandedge Shaping Filter in the FRM Technique 

2.1 Introduction 

The FRM technique [21] is very efficient for the design of arbitrary bandwidth FIR 

filters with narrow transition-width. It is a well-known fact that the lengths of   

subfilters in the FRM approach depend largely on the interpolation factor M. This is 

because the sum of the transition-widths of both masking filters 1( )G z  and 2 ( )G z  is 

inversely proportional to M. When M is very large, 1( )G z  and 2 ( )G z  themselves 

become sharp filters. The IFIR-FRM approach [27, 28] was proposed to reduce the 

complexities of the bandedge shaping filter and one of the masking filters by replacing 

the bandedge shaping filter with an interpolated finite impulse response (IFIR) filter 

[10]. The drawback is that the filter length of the other masking filter becomes 

excessively long due to the fact that the transition-band of this masking filter has the 

same width as the highly compressed passband of the IFIR filter. To address this 

problem, two improvements are made to the IFIR-FRM technique in this chapter. First, 
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the IFIR-based bandedge shaping filter is generalized to an IFIR alike filter. Second, 

an additional filtering stage is inserted between the bandedge shaping filter and the 

masking filters to decouple the masking filters from the bandedge shaping filter. Hence, 

the complexity of the overall filter is reduced significantly.  

 

This chapter is organized as follows. The FRM and the IFIR-FRM approach are 

introduced in Section 2.2. A new structure to decouple the masking filters from the 

bandedge shaping filter is presented in Section 2.3. Following that design equations are 

given in Section 2.4. The optimization of interpolation factors and the design 

procedure are discussed in Section 2.5 and 2.6, respectively. Section 2.7 is dedicated to 

examples. A summary is given in Section 2.8. 

2.2 Backgrounds of the FRM and the IFIR-FRM 

Techniques 

2.2.1 The Frequency-Response Masking Approach 

To illustrate the FRM technique, let us consider the design of a lowpass FIR filter. 

Three subfilters are required in a single-stage FRM approach, i.e., a model filter ( )aH z , 

two masking filters 1( )G z  and 2 ( )G z . The frequency responses of the three subfilters 

are shown in Fig. 2.1. ( )aH z  is an odd length symmetric lowpass filter with passband 

and stopband edges at aθ  and aφ , respectively, as shown in Fig. 2.1(a). ( )cH z  is a 

complementary filter of ( )aH z , i.e., ( ) ( ) 1j j

a c
H e H eω ω+ = , where ( )j

a
H e

ω  and 

( )j

c
H e

ω  are the frequency responses of ( )aH z  and ( )cH z , respectively. If ( )aH z  is 
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interpolated by a factor of M, i.e., replacing each delay element of ( )aH z  by M delay 

elements, the frequency response of ( )M

a
H z  becomes a compressed version of ( )

a
H z  

with a period of 
2

M

π
 as shown in Fig. 2.1(b). The complementary filter of ( )M

a
H z  

becomes ( )M

c
H z . Each band of ( )M

a
H z  is a replica of ( )

a
H z  scaled by a factor of 

1

M
 at the frequency axis. Though the transition-width of each band of ( )M

a
H z  is 

1

M
 

of the transition-width of ( )
a

H z , the complexity of ( )M

a
H z  in terms of multiplication 

and addition is the same as that of ( )
a

H z . Let the passband and stopband edges of the 

desired filter ( )H z  be 
p

ω  and 
s

ω , respectively. The FRM technique requires that one 

of the transition-bands of ( )M

a
H z  or ( )M

c
H z  falls on 

p
ω  and 

s
ω , as shown in Figs. 

2.1(d) or 2.1(f), respectively. This can be done by properly selecting the bandedges of 

( )
a

H z  and the interpolation factor. To form the arbitrary bandwidth, two masking 

filters 1( )G z  and 2 ( )G z  are cascaded to ( )M

a
H z  and ( )M

c
H z , respectively, to remove 

the undesired bands as shown in Figs. 2.1(c) or 2.1(e), respectively. The outputs of 

1( )G z  and 2 ( )G z  are added together to form the overall filter. 

 

Fig. 2.2 shows a typical realization structure of the FRM approach. The z-transform 

transfer function of an FRM filter is constructed as follows: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 1 1 21 2, ,M M

G G a G G c
H z D N N H z G z D N N H z G z= +          (2.1) 

where ( )M

c
H z  is given by  

 ( )
( )

( )
1

2 .
aM N

M M

c a
H z z H z

−
−

= −  (2.2) 
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a
N  is the filter length of ( )

a
H z  and it must be odd. 

1G
N  and 

2G
N  are the filter lengths 

of 1( )G z  and 2 ( )G z , respectively. 1 2( ,  )D L L  is defined as 

( )
1 2

2
1 2 1 2

1 2

1 2

  ,  and  are either even or odd.,

1                                                                

L L

z L L L LD L L

L L

−
− ≥= 

 <

         (2.3) 
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Figure 2.1 Frequency responses for the design of a lowpass FRM filter. 
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Figure 2.2 A realization structure of the FRM technique. 

        

The equation (2.3) makes sure that the group delays in the two masking branches in Fig. 

2.2 are the same.  

2.2.2 The IFIR-FRM Approach 

In the FRM approach, the transition-bands of the two masking filters are mainly 

determined by M and the passband and stopband edges of ( )
a

H z . The sum of the 

transition-widths of the two masking filters equals to 
2

M

π
 [23].  It is this constraint that 

makes it difficult for the FRM approach to increase M while keeping the complexity of 

the masking filters in check. One alternative way to solve this problem is to use an 

IFIR filter to replace the original bandedge shaping filter in order to form a so-called 

IFIR-FRM approach [27, 28].  The structure of an IFIR-FRM filter is shown in Fig. 

2.3, where k and l are two integers and ( ) ( )l

a gH z H z  forms an IFIR filter. The transfer 

function of an IFIR-FRM filter is given by 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 1 1 21 2, ,kl k k

G G a g G G c
H z D N N H z H z G z D N N H z G z= +  (2.4) 

where ( )k

cH z  is written as  

 ( )
( ) ( )

( ) ( )
11

2 2

ga
N kN kl

k kl k

c a gH z z H z H z

−−
− −

= −  (2.5) 
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where gN  is the length of ( )gH z . It was shown in [28] that the replacement of ( )aH z  

by an IFIR filter is possible if a large k is selected that guarantees ( )aH z  to be a 

narrowband filter. 

 

( )kl

aH z 1( )G z

2 ( )G z
( 1)( 1)

2 2

ga
N kN kl

z

−−
− −

( )k

gH z

 

Figure 2.3 The IFIR-FRM approach. 

 

 

The efficiency of the IFIR-FRM approach is close to a two-stage FRM structure in 

some cases and its design procedure is simpler than that of a two-stage FRM filter. The 

benefit of an IFIR-FRM structure comes from the large interpolation factor kl  and an 

interpolated masking filter ( )k

gH z  which lower the complexity of the bandedge 

shaping filter and one of the masking filters. The negative impact is an increase in 

complexity of the other masking filter whose transition-width is about the same as the 

passband of the highly compressed bandedge shaping filter. It was shown in example 

of [28] that one of the masking filters is four times longer than that of the other 

masking filter. To solve this problem, a new structure is proposed in the next section.  

2.3 A New Structure 

From the structure point of view, the IFIR-FRM technique is not an optimal solution. 

This is because the minimum complexity is achieved only when the transition-widths 



Chapter 2. Decoupling Masking Filters from Bandedge Shaping Filter                      21 

(or complexities) of the two masking filters are equal according to [23]. By using the 

IFIR-based bandedge shaping filter, it forces one of the masking filters to be a sharp 

filter and creates an unbalanced pair of masking filters. The complexity reduction in 

the IFIR-FRM approach is not a result of a structural optimization. Rather it is due to 

the computational efficiency of an IFIR filter. Actually, the IFIR-FRM approach can 

be considered as a special case of the two-stage FRM approach where the second stage 

becomes a narrowband filter with the help of a large interpolation factor. This results 

in the omission of the complementary branch in the FRM approach. It is reasonable to 

believe that the overall complexity can be further reduced when the transition-widths 

of the two masking filters are brought as close to each other as possible. To this end, a 

modified FRM structure is proposed which inserts an additional subfilter ( )cM z  

between the bandedge shaping filter and the masking filters in the original FRM 

structure. The modified FRM structure is shown in Fig. 2.4, where ( )aH z  and ( )aM z  

form a bandedge shaping filter,  ( )cM z  is a decoupling filter with its role explained 

late, and ( )CG z  and ( )DG z  are the two masking filters. The z-transform transfer 

function of the overall filter is given by 

( ) ( ) ( ) ( ) ( )C DH z C z G z D z G z= +                                          (2.6) 

where 

        ( )
( ) ( )

( ) ( ) ( )
1 1

2

a H M Ma a

a CM

L N L N

L LL

a a cC z z H z M z M z

− − − − 
 = −
 
 

,                     (2.7) 

    

( ) ( ) ( )

( )
1 1 1

2( )

a H M M C Ma a c
L N L N L N

D z z C z

− − − − − −

= −                                  (2.8) 

where 
a

L , 
M

L , and 
C

L  are integers, whereas 
aHN , 

aMN , and 
cMN  are the lengths of 

( )aH z , ( )aM z  and ( )cM z , respectively. 
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Figure 2.4 A modified FRM structure. 

 

To understand the role of each subfilter in Fig. 2.4, the frequency responses of all 

subfilters are sketched as shown in Figs. 2.5 and 2.6.  In Fig. 2.4, ( )aH z  and ( )aM z  

will form an IFIR filter if  aL  is a multiple of ML , as shown in Figs. 2.5(b) and 2.5(c). 

In this case, the role of ( )aH z  and ( )aM z  are exactly the same as the one in the IFIR-

FRM approach. It is obvious that restricting aL  to be a multiple of ML  will narrow the 

selection of aL  and ML  to a small set of values. Hence, the selected interpolation 

factors may not lead to a design with minimum complexity. This prompts us to loose 

the restriction on the selection of aL  and ML , i.e., let ( )aH z  and ( )aM z  to form a 

non-IFIR (or aperiodic) filter. The question is whether a non-IFIR filter performs 

comparably with an IFIR filter.  According to ripple analysis described in [21], the role 

played by the bandedge shaping filter is to form the sharp transition-band of the overall 

filter and to contribute to the ripple compensation effect in the vicinity of the 

transition-band. This requirement can be easily satisfied if at least one period of 

( )aL

aH z  is kept undistorted when it is masked by ( )ML

aM z , as indicated by the shaded 

areas in Figs. 2.5(c) and 2.6(a). To simplify the notation, let us denote the cascade 

combination of ( )aL

aH z  and ( )ML

aM z  by ( )A z  and its complement by B(z), as shown 
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in Figs. 2.5(c), 2.5(d), 2.6(b), and 2.6(c). It is clear that the relaxation on aL  and ML  

will create extra ripples in the passband and stopband of ( )A z  and ( )B z . These extra 

ripples will be corrected by the two masking filters if a proper design procedure is 

adopted as will be presented in Section 2.6.  

 

With the generalization of the IFIR-FRM approach, it gives designers more freedom to 

choose aL  and ML , which in turn may achieve additional savings in terms of 

arithmetic operations. But the savings will not be significant if the problem related to 

the unbalanced complexity in the two masking filters is not addressed. In fact, the 

design may worsen if a much larger La is adopted as a result of relaxation of La and LM. 

Moreover, a pair of unbalanced masking filters will increase the implementation cost 

as a large number of D flip-flops have to be inserted into a short filter to equalize the 

group delays. It is these two drawbacks that motivate the introduction of a so-called 

decoupling filter ( )cL

cM z , as shown in Fig. 2.4. The decoupling filter is expected to 

play the following two roles. First, it minimizes the impact of the bandedge shaping 

filter on the masking filters such that the masking filters have less dependency on aL . 

Second, it balances the complexity of the two masking filters. To fulfill the first role, 

the decoupling filter ( )cL

cM z  is employed to mask ( )B z  so that the transition-band of 

( )B z  is preserved to form the sharp transition-band of the overall filter. As the 

passband of ( )B z  is very narrow, it is necessary to interpolate ( )cM z  by a factor of 

CL  in order to reduce its complexity. Let the output of ( )CL

cM z  be ( )C z  and its 

complement be ( )D z . It is clear from Figs. 2.5(e-f) and 2.6(d-e) that ( )D z  becomes a 

new bandedge shaping filter. Since ( )D z  is the bandedge shaping filter, the masking 
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filters ( )CG z  and ( )DG z  will only depend on ( )D z , i.e., the masking filters are 

decoupled from ( )A z . To balance the complexity of the masking filters as the second 

role performed by the decoupling filter, the passband and stopband widths of ( )CL

cM z  

should be chosen as close to each other as possible to produce an overall filter with the 

minimum complexity. Until now, a new FRM approach has been introduced that 

allows the designer to choose the interpolation factors freely and brings the complexity 

of two masking filters close to each other. To synthesize a filter using the proposed 

structure, the bandedges of each subfilter are required. This will be presented in the 

following section.  
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Figure 2.5 Frequency responses of the subfilters. 
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Figure 2.6 Frequency responses of the subfilters for a non-IFIR case. 

 

2.4 Design Equations for Subfilters 

In this section, design equations are derived for lowpass filters. The procedure can also 

be easily applied to the design of highpass filters as well. Let us consider a lowpass 

filter with passband and stopband edges at pω  and sω , respectively. In the FRM 

approach, the transition-band of the overall filter can be determined by either ( )aL

aH z  

or its complement. Let us denote the case of Fig. 2.5(g) by Case A, where the 

transition-band of the overall filter is determined by ( )aL

aH z , and the case of Fig. 2.5(h) 

by Case B, where the transition-band of the overall filter is determined by the 
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complement of ( )aL

aH z . Let us denote θ and φ as the passband and stopband edges for 

each subfilter, respectively, i.e., 
aHθ  and 

aHφ  will represent the passband and stopband 

edges of ( )
a

H z , respectively. Similar notations are applied to the subfilters ( )aM z , 

( )cM z , ( )CG z , and ( )DG z .  

 

For Case A, it can be shown [21] that  

               
2

aH

p

a

m

L

π θ
ω

+
=                                                           (2.9) 

           
2

aH

s

a

m

L

π φ
ω

+
=                                                        (2.10) 

where aL  is the interpolation factor for ( )aH z  and m is an integer less than aL , as 

shown in Figs. 2.5(b) and 2.6(a). To ensure that (2.9) and (2.10) yield a practical 

solution with 0
a aH Hθ φ π< < < , we have 

2

p aL
m

ω

π

 
=  
 

                                                         (2.11) 

2
aH p aL mθ ω π= −                                                     (2.12) 

 2
aH s aL mφ ω π= −                                                     (2.13) 

where  x  denotes the largest integer less than or equal to x. 

 

For Case B, a similar set of equations can be found [21], that is, 

2

s aL
m

ω

π

 
=   

                                                         (2.14)  

2
aH s a

m Lθ π ω= −                                                     (2.15) 

2
aH p a

m Lφ π ω= −                                                    (2.16) 
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where  x  denotes the smallest integer larger than or equal to x. The same method can 

be applied to obtain the passband and stopband edges of ( )
a

M z  and ( )
c

M z  as shown 

in  Fig 2.5.  

 

For Case A, we have 

2

p M

a

L
m

ω

π

 
=  
 

                                                (2.17)  

2
aM p M a

L mθ ω π= −                                            (2.18)  

( )2 1
2

a

a

H M

M a

a

m L
m

L

π φ
φ π

 + − = −                             (2.19) 

2

s C
c

L
m

ω

π

 
=   

                                                 (2.20) 

2
cM c s C

m Lθ π ω= −                                             (2.21) 

( )2
2

a

c

H C

M c

a

m L
m

L

π θ
φ π

−
= −                                   (2.22) 

where 
a

m  and 
c

m  are integers less than 
M

L  and 
C

L , respectively, as shown on Figs. 

2.5(b), 2.5(d), 2.6(a), and 2.6(c). 

 

Using the same method for Case A, for Case B, we have 

2

s M
a

L
m

ω

π

 
=   

                                                  (2.23) 

2
aM a s Mm Lθ π ω= −                                               (2.24) 

( )2 1
2 a

a

H M

M a

a

m L
m

L

π φ
φ π

 − + = −                                (2.25) 
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2

p C

c

L
m

ω

π

 
=  
 

                                                 (2.26) 

2
cM p C c

L mθ ω π= −                                                (2.27) 

( )2
2

a

c

H M

M c

a

m L
m

L

π θ
φ π

+
= −                                      (2.28) 

 

To find the passband and stopband edges of ( )
C

G z  and ( )
D

G z , two additional 

frequency points P1 and P2  are found on ( )jB e ω  and  )( cLj

c
eM

ω , respectively, as 

shown in Figs. 2.5(d) and 2.6(c), respectively.  For Case A, P1 and P2 are located at 

( )
( )

( )
1

2 1
if  is a multiple of 

2 1
   if  is not a multiple of 

a

a

a M

s p a M

M

a M

a M

M

m
L L

L
P

m
L L

L

π θ
ω ω

π φ

+ −
− −


= 

+ −



            (2.29) 

2

2
cc M

C

m
P

L

π θ+
=                                                  (2.30) 

With the help of P1 and P2, the passband and stopband edges of ( )CG z  and ( )DG z  are 

given by 

( )2 1
c

C

c M

G

C

m

L

π φ
θ

− +
=                                             (2.31) 

CG s
φ ω=                                                          (2.32) 

 
DG p

θ ω=                                                          (2.33)    

2 2 1

1 2 1

if 

if DG

P P P

P P P
φ

≤
= 

>
                                             (2.34) 

Similarly, for Case B, P1 and P2 are located at 
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( )
( )

1

2 1
if  is a multiple of 

2( 1)
   if  is not a multiple of 

a

a

a M

s p a M

M

a M

a M

M

m
L L

L
P

m
L L

L

π θ
ω ω

π φ

 − +
+ −


= 

− +



                 (2.35) 

2

2
cc M

C

m
P

L

π θ−
=                                                        (2.36) 

With the help of P1 and P2, the passband and stopband edges of ( )
C

G z  and ( )
D

G z  are 

given by 

  
CG p

θ ω=                                                              (2.37) 

( )2 1
c

C

c M

G

C

m

L

π φ
φ

+ −
=                                                   (2.38) 

1 2 1

2 2 1

if 

if DG

P P P

P P P
θ

≤
= 

>
                                                  (2.39) 

      
DG s

φ ω=                                                             (2.40)    

The above design equations provide detailed information on each subfilter. The 

designer has to decide the optimal interpolation factors 
a

L , 
M

L  and 
C

L  for given 

specifications before the filter can be synthesized. The discussion on how to find 
a

L , 

M
L  and 

C
L  that achieve the minimum overall complexity will be provided in next 

section, and the specifications of the ripples for each subfilter will be determined in 

Section 2.6. 

2.5 Optimization of aL , ML  and CL  

Before synthesizing each subfilter, 
a

L , 
M

L  and 
C

L  must be determined. Unfortunately, 

there are no known closed-form analytic expressions to find the values of 
a

L , 
M

L  and 



Chapter 2. Decoupling Masking Filters from Bandedge Shaping Filter                      31 

C
L  that will guarantee the global optimum. However, a search for the best values for 

a
L , 

M
L  and 

C
L  can be done with the help of a simple program. It is well-known that 

the filter length is mainly determined by the transition-width of the filter when the 

passband and stopband ripples are fixed, and is inversely proportional to the transition-

width.  A cost function C(∆) is defined to measure the overall complexity of  the filter 

as follows: 

( )
1 1 1 1 1

a a c C DH M M G G

C ∆ = + + + +
∆ ∆ ∆ ∆ ∆

                                    (2.41) 

where 
a a aH H H

φ θ∆ = −  is the transition-width of ( )
a

H z . Similar definitions are applied 

to the transition-widths of other subfilters. The transition-widths subfilters can be 

easily calculated using the corresponding design equations in Section 2.4. A simple 

searching program can be written to find the values of 
a

L , 
M

L  and 
C

L  that minimize 

the cost function C(∆). Fig. 2.7 shows the flowchart of such a search program, where 

ω∆  denotes the transition-width of the filter under design. ( )C best is the minimum 

value calculated using (2.41) among all the values of 
a

L . From our experience, the 

maximum value of 
a

L  will not go beyond 50 if the required normalized transition-

width is greater than 0.001. 

 



Chapter 2. Decoupling Masking Filters from Bandedge Shaping Filter                      32 

 

Figure 2.7 Flowchart for the searching program. 

 

2.6 Design Procedure 

To synthesize a filter using the proposed structure, five subfilters must be designed so 

that the overall filter ( )H z  meets the design specifications. To achieve the global 

optimization, the five subfilters have to be designed simultaneously. Unfortunately, 
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this is a non-linear problem, and is difficult to solve. An iterated design approach is 

adopted that uses a sub-optimization technique to optimize one subfilter at a time such 

that the remaining subfilters are used as prefilters. To develop a useful design 

procedure, it is desirable to know how each subfilter affects the passband and stopband 

ripples of ( )H z . To analyze the ripple effects of each subfilter, let ( )H ω  denote the 

zero-phase frequency response of the overall filter ( )H z . Similar definitions are 

applied to other subfilters. According to Fig. 2.4 the zero-phase frequency response of 

( )H z  is given by 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1
D c C C D a a a M

H G M L G G H L M Lω ω ω ω ω ω ω   = + − −    . (2.42)                       

Let ( )F ω  and ( )δ ω  denote the gain and deviation of ( )H z . Let ' ( )
aH

F ω  and ' ( )
aH

δ ω  

represent the gain and deviation of ( )
a a

H L ω .  Similar representations are used for 

( )
a M

M L ω , ( )
c C

M L ω , ( )
C

G ω , and ( )
D

G ω . Substituting the gain and deviation of each 

subfilter into (2.42), we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ){ }
' '

' ' ' '( ) 1 .

D D c c C C

D D a a a a

G G M M G G

G G H H M M

F F F F

F F F

ω δ ω ω δ ω ω δ ω ω δ ω

ω δ ω ω δ ω ω δ ω

  + = + + + + −  

   − − + +    

 (2.43) 

The case in Fig. 2.5 is used to examine the ripple effects of the subfilters on the 

frequency response of ( )H z  in the following 4 frequency ranges. Similar results can 

be expected for other cases.  

Frequency range 1: 
2( 1)

0 cc M

C

m

L

π φ
ω

− +
≤ <  for Case A and 

2
0 cc M

C

m

L

π θ
ω

−
≤ <  for 

Case B.  
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In this frequency range, ( ) ( ) ( ) 1
C DG G

F F Fω ω ω= = = , thereby, (2.43) is simplified  to 

the following form: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ }
' '

' ' ' '1

D c c C D

a a a a

G M M G G

H H M M

F

F F

δ ω δ ω ω δ ω δ ω δ ω

ω δ ω ω δ ω

   = + + − ×   

   − + +   

                      (2.44) 

Ignoring the second order terms, the following relations are obtained: 

When ' ( ) 1
cM

F ω = ,  

( ) ( ) ,
DGδ ω δ ω≈          for ( ) ( )' ' 1

a aH MF Fω ω= = .                             (2.45) 

( ) ( ) ,
CGδ ω δ ω≈           for ( ) ( )' ' 0

a aH MF Fω ω× = .                             (2.46) 

When ' ( ) 0
cM

F ω = ,   

( ) ( )
DGδ ω δ ω≈ .                                                      (2.47) 

When '0 ( ) 1
cM

F ω< < ,   

( ) ( )
CGδ ω δ ω≈ .                                                      (2.48) 

 

Frequency range 2:  
2( 1)

cc M

p

C

m

L

π φ
ω ω

− +
≤ <  for Case A and 

2
cc M

p

C

m

L

π θ
ω ω

−
≤ <  

for Case B. 

 

Under Case A, ( ) ( ) 1
DG

F Fω ω= =  and ( )
CG

F ω  decreases from unity to zero as ω 

increases. In this case, (2.43) is simplified to 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ }
' '

' ' ' '

1

1 .

D c c C D C

a a a a

G M M G G G

H H M M

F F

F F

δ ω δ ω ω δ ω δ ω δ ω ω

ω δ ω ω δ ω

   = + + − + − ×   

   − + +   

         (2.49) 

Ignoring the second order terms, the following relations are obtained: 
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When ' ( ) 0
cM

F ω = ,  

( ) ( ) ,
DGδ ω δ ω≈      for ( ) ( )' ' 1

a aH MF Fω ω= = .                         (2.50) 

( ) ( ) ( )' ,
D cG M

δ ω δ ω δ ω≤ +       for ( ) ( )' ' 0
a aH MF Fω ω× = .               (2.51) 

When '0 ( ) 1
cM

F ω< ≤  and ' '( ) ( ) 1
a aH M

F Fω ω= = ,  

( ) ( ) ( ) ( )' 'D a aG M H
δ ω δ ω δ ω δ ω≤ + +                                      (2.52) 

Under case B, we have '( ) ( ) ( ) 1
C cG M

F F Fω ω ω= = = , and ( )
DG

F ω  decreases from 

unity to zero as ω increases. In this case, (2.43) is simplified to  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ){ }
'

' ' ' '

1 1

(1 1 .

D D D C D c

D a a a a

G G G G G M

G H H M M

F F

F F F

δ ω ω δ ω ω δ ω δ ω δ ω

ω ω δ ω ω δ ω

+ = + + − + − + ×

   − − + +    

  (2.53) 

Ignoring the second order terms, the following relations are obtained: 

When ' ( ) 0
aM

F ω = ,   

( ) ( ) ( ) ( )' 'C a cG M M
δ ω δ ω δ ω δ ω≤ + + .                                    (2.54) 

When ' ( ) 1
aH

F ω = ,   

( ) ( ) ( ) ( ) ( )'' 'C a c a
G H M M

δ ω δ ω δ ω δ ω δ ω≤ + + + .                           (2.55) 

 

Frequency range 3: 
2

cc M

s

C

m

L

π θ
ω ω

+
≤ <  for Case A and 

2( 1)
cc M

s

C

m

L

π φ
ω ω

+ −
≤ <  

for Case B.  

 

In this frequency range, ( ) ( ) 0
CGF Fω ω= = , 0 ( ) 1

DGF ω< < , ' ( ) 1
cMF ω = , and 

' '( ) ( ) 0
a aH MF Fω ω× =  for Case A. In this case, (2.43) is simplified to 
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ }
'

' ' ' '

( )

1 .

D D C D D D c

a a a a

G G G G G G M

H H M M

F F F

F F

δ ω ω δ ω δ ω ω δ ω ω δ ω

ω δ ω ω δ ω

 = + + − − − × 

   − + +   

  (2.56) 

Ignoring the second order terms, we have 

( ) ( ) ( ) ( ) ( )' ' 'C a c aG M M Hδ ω δ ω δ ω δ ω δ ω≤ + + + .                         (2.57) 

Under case B, we have ( ) ( ) 0
DGF Fω ω= =  and 0 ( ) 1

CGF ω< < . In this case, (2.43) is 

simplified to 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ }
' '

' ' ' '1 .

D c c C C D

a a a a

G M M G G G

H H M M

F F

F F

δ ω δ ω ω δ ω ω δ ω δ ω

ω δ ω ω δ ω

   = + + + − ×   

   − + +   

           (2.58) 

Ignoring the second order terms, the following relations are obtained: 

When ' ( ) 0
cMF ω =  and ' '( ) ( ) 0

a aH MF Fω ω× = ,   

( ) ( ) ( )'D cG Mδ ω δ ω δ ω≤ + .                                            (2.59) 

When '0 ( ) 1
cMF ω< <  and ' '( ) ( ) 1

a aH MF Fω ω= = ,  

( ) ( ) ( ) ( ) ( )' ' 'D c a aG M H Mδ ω δ ω δ ω δ ω δ ω≤ + + + .                      (2.60) 

 

Frequency range 4: 
2

cc M

C

m

L

π θ
ω π

+
≤ ≤  for Case A and 

2( 1)
cc M

C

m

L

π φ
ω π

+ −
≤ ≤  for 

Case B.  

 

In this frequency range, ( ) ( ) ( ) 0
D CG GF F Fω ω ω= = = . Hence, (2.43) is simplified to 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ }
' '

' ' ' '1 .

D c c C D

a a a a

G M M G G

H H M M

F

F F

δ ω δ ω ω δ ω δ ω δ ω

ω δ ω ω δ ω

   = + + − ×   

   − + +   

              (2.61) 

Ignoring the second order terms, the following relations are obtained: 
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When ' ( ) 1
cMF ω = ,   

( ) ( ) ,
DGδ ω δ ω≈                  for ( ) ( )' ' 1

a aH MF Fω ω= = .                     (2.62) 

( ) ( ) ,
CGδ ω δ ω≈                  for ( ) ( )' ' 0

a aH MF Fω ω× = .                     (2.63) 

When ' ( ) 0
cMF ω = , 

( ) ( )
DGδ ω δ ω≈ .                                                  (2.64) 

The above analysis provides a very useful insight for designing the overall filter. It can 

be seen from (2.45)–(2.48) and (2.62)–(2.64) that in the frequency ranges 1 and 4 the 

deviation of the overall filter is determined mainly by the two masking filters, i.e., the 

two additional filters ( )aM z  and ( )cM z  do not contribute to these two ranges 

significantly. This is the same as the original FRM approach.  In frequency range 2 for 

Case A, the subfilters ( )DG z , ( )aM z , ( )cM z , and ( )aH z  determine the passband 

ripple according to (2.50)–(2.52). Similarly, the subfilters ( )CG z , ( )aM z , ( )cM z , and 

( )aH z  determine the stopband attenuation in frequency range 3 for Case A according 

to (2.57). Similar conclusions can be drawn for Case B based on (2.54), (2.55), (2.59) 

and (2.60). Since the ripples of these subfilters compensate for each other in the 

frequency range 2 and 3, the following iterated design procedure is employed:  

Step 1.  Find a set of values for aL , ML  and CL  using the search program discussed in 

Section 2.5. 

Step 2.  Design ( )CG z  and ( )DG z  according to design equations discussed in Section 

2.4 for Case A or Case B, respectively. Set the ripple of each subfilter to 85% of 

( )H z [21]. 

Step 3.  Design ( )aM z  and ( )cM z
 
according to (2.17)–(2.22) for Case A and (2.23)–

(2.28) for Case B. Set the ripple of each filter to 90% of H(z). 
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Step 4.  Design ( )aH z  in the frequency ranges 2 and 3 by taking ( )aM z , ( )cM z , 

( )CG z  and ( )DG z  as  prefilters. The zero-phase frequency response of ( )aL

aH z  can be 

written as 

          ( ) ( ) ( )trig ,a a a

i

H L h n L iω ω=∑                                  (2.65) 

where trig( , )aL iω  is a proper trigonometric function depending on the type of filter 

under consideration, ( )ah n  is the impulse response of ( )aH z . Similar definitions are 

applied to other subfilters. Substituting (2.65) into (2.42) , we have 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )1 trig , .

D c C C D

a M a a

i

H G M L G G

M L h n L i

ω ω ω ω ω

ω ω

 = + − × 

  
−  

  
∑

                  (2.66) 

By evaluating (2.66) on a dense grid of frequencies, a set of inequalities are produced 

as shown in (2.67) and (2.68). In the frequency range 2, ( )aH z  has to satisfy  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ trig , ]p D C c C a M a a p

i

G G M L M L h n L iδ ω ω ω ω ω ω δ ω− + ≤ − ≤  ∑  (2.67)  

where            

( ) ( ) ( ) ( ) ( ) ( )1 1
p p D c C C c C

G M L G M Lδ ω δ ω ω ω ω ω−  = − − − −   

and 

( ) ( ) ( ) ( ) ( ) ( )1 1
p p D c C C c C

G M L G M Lδ ω δ ω ω ω ω ω+  = + − − −  . 

Here, ( )
p

δ ω  is the required passband ripple. In the frequency range 3, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )trig ,
s D C c C a M a a s

i

G G M L M L h n L iδ ω ω ω ω ω ω δ ω− + 
 ≤ − ≤  

 
∑  (2.68) 

where 

( ) ( ) ( ) ( ) ( ) ( )1
s s D c C C c C

G M L G M Lδ ω δ ω ω ω ω ω−  = − − − −   
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and 

( ) ( ) ( ) ( ) ( ) ( )1
s s D c C C c C

G M L G M Lδ ω δ ω ω ω ω ω+  = − − −  . 

Here, ( )
s

δ ω  is the required stopband ripple. Linear programming [78] or any other 

suitable techniques may be used to optimize (2.67) and (2.68). 

Step 5.  Design ( )
a

M z  again in the frequency ranges 2 and 3 by using ( )
a

H z , ( )
c

M z , 

( )
c

G z , and ( )
D

G z  as prefilters.  

Step 6.  Repeat Step 5 by picking one of subfilters from: ( )
c

M z , ( )
c

G z , ( )
D

G z , or 

( )
a

H z , swapping it with ( )
a

M z  in step 5, and using the remaining subfilters as 

prefilters  until no further improvement is achieved. 

2.7 Examples and Comparisons 

Example 1 

To illustrate the new approach, an example is taken from [28]. The passband edge is at 

0.3 2
p

ω π= ×  and stopband edge is at 0.301 2
s

ω π= × . The maximum allowable 

passband ripple and the minimum stopband attenuation are 0.1 dB and 80 dB, 

respectively. To design such a filter by a conventional method, the estimated filter 

length is 3177. If designed by the original single-stage FRM technique with 14M = , 

the minimal lengths for ( )
a

H z , 1( )G z , and 2 ( )G z  are 235, 80, and 112, respectively. 

For this design, 214 multipliers are needed. If designed using the synthesis scheme 

described in [28], the optimal lengths for ( )
a

H z , ( )
g

H z , 1( )G z , and 2 ( )G z  are 157, 

29, 31, and 117, respectively. The interpolation factors for ( )
a

H z  and ( )
g

H z  are 21 

and 7, respectively. In this case, 169 multipliers are required. Using the proposed 
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method, the interpolation factors are 39
a

L = , 13
M

L = , and 4
C

L = . The lengths for 

( )
a

H z , ( )
a

M z , ( )
c

M z , ( )
c

G z , and ( )
D

G z  are 83, 21, 57, 56, and 24, respectively. 

This filter requires 122 multipliers which yields 43% savings in the number of 

multipliers compared to the original FRM approach [21] and 27.8% savings compared 

to the IFIR-FRM approach [28]. If the filter is synthesized by the two-stage FRM 

approach, the optimal interpolation factors are 1 2 6M M= =  and the total number of 

multipliers is 131. A three-stage FRM approach with 1 2 3 4M M M= = =  will require 

126 multipliers [28]. Figs. 2.8–2.13 show the magnitude responses of the subfilters and 

the overall filter designed using the proposed approach. 
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Figure 2.8 Magnitude responses of ( )aL

a
H z  (solid line) and ( )ML

a
M z  (dashed line) 

in example 1. 
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Figure 2.9 Magnitude responses of ( )B z  (solid line) and ( )CL

c
M z  (dashed line) in 

example 1. 
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Figure 2.10 Magnitude responses of ( )C z  (solid line) and ( )
C

G z (dashed line) in 

example 1. 
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Figure 2.11 Magnitude responses of ( )D z (solid line) and ( )
D

G z (dashed line) in 

example 1. 
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Figure 2.12 Magnitude response of the passband of the overall filter in example 1. 
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Figure 2.13 Magnitude response of the overall filter in example 1.  

 

Example 2 

In this example a sharp FIR filter is designed such that 
a

L  is not a multiple of 
M

L . The 

passband edge is at 0.27 2
p

ω π= ×  and the stopband edge is at 0.271 2
s

ω π= × . The 

passband deviation is at most 0.01 and the stopband attenuation is at least 60 dB. The 

set of interpolation factors for ( )
a

H z , ( )
a

M z  and ( )
c

M z  are 42
a

L = , 8
M

L = , and 

3
C

L = , respectively. The lengths for ( )
a

H z , ( )
a

M z , ( )
c

M z , ( )
C

G z  and ( )
D

G z  are 

63, 51, 53, 37, and 19, respectively. The resulting overall filter requires 114 multipliers. 

If this filter is designed by the original single-stage FRM with 14M = , the lengths for 

( )
a

H z , 1( )G z , and 2 ( )G z  are 183, 85, and 65, respectively. The two-stage FRM 

approach will lead to a design with 1 10M =  and 2 6M = , the lengths of ( )
a

H z , 

(1)

1 ( )G z , (1)

2 ( )G z , (2)

1 ( )G z  and (2)

2 ( )G z  (where the superscript “(1)” or “(2)” denotes the 

first or second masking stage, respectively) are 47, 35, 35, 69, and 59, respectively. In 
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this case, 125 multipliers are required. Figs. 2.14–2.19 show the magnitude responses 

of the subfilters and the overall filter designed by the proposed method. 
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Figure 2.14 Magnitude responses of ( )aL

a
H z  (solid line) and ( )ML

a
M z  (dashed line) 

in example 2. 
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Figure 2.15 Magnitude responses of ( )B z  (solid line) and ( )CL

c
M z (dashed line) in 

example 2. 
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Figure 2.16 Magnitude responses of ( )C z  (solid line) and ( )
C

G z  (dashed line) in  

example 2.   
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Figure 2.17 Magnitude responses of ( )D z  (solid line) and ( )
D

G z  (dashed line) in 

example 2. 
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Figure 2.18 Magnitude response of the passband of the overall filter in example 2. 
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Figure 2.19 Magnitude response of the overall filter in example 2. 

 

Comparisons with other FRM approaches 

The comparisons with other FRM approaches for both examples are listed in Tables 

2.1 and 2.2. It is interesting to compare the proposed structure with the original two-

stage FRM approach as both approaches employ 5 subfilters. It is found that the 

proposed structure yields more savings in both addition and multiplication at the cost 

of slightly longer group delays.  In example 1, the proposed filter not only outperforms 

the original two-stage FRM design but also the three-stage FRM with less group delay 

as well. Moreover, it is noticed in example 2 that the proposed structure produces 

about 9% more savings in both multipliers and adders with less than 1% increase in 

group delay compared with the two-stage FRM approach. In conclusion, the proposed 

filter will yield more savings in terms of arithmetic operations than the ones designed 

by the two-stage FRM or the IFIR-FRM approach. 
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Table 2.1 Comparison of different design methods for example 1. 

Design Multipliers Adders Group Delay 

Minimax 1589 3176 1588 

1-stage FRM 214 426 1693.5 

2-stage FRM 131 256 1771 

3-stage FRM 126 246 2134.5 

IFIR-FRM [28] 169 332 1794 

Proposed 122 239 1868.5 

 

 

 

 

Table 2.2 Comparison of different design methods for example 2. 

Design Multipliers Adders Group Delay 

Minimax 1268 2534 1267.5 

1-stage FRM 168 332 1316 

2-stage FRM 125 244 1584 

Proposed 114 221 1598 

 

2.8 Summary 

In this chapter, a new structure that reduces the complexity for the design of sharp FIR 

filters using frequency-response masking technique has been introduced. The success 

of the proposed method is based on a newly introduced decoupling stage between the 

bandedge shaping and the masking filters in the FRM approach. This method can 

achieve considerable savings in terms of arithmetic operations compared with the 

original FRM and the IFIR-FRM approach.  
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Chapter 3 

Modified FRM Filters Using New Prefilter-

Equalizer Structures  

3.1 Introduction 

 In order to improve the design of FRM filters, let us examine the role of each subfilter 

in the FRM technique. The bandedge shaping filter and its complement are used to 

form the arbitrary bandwidth and the transition-band for the overall filter. The two 

masking filters remove the passband replicas of both the bandedge shaping filter and 

its complement such that the overall stopband attenuation is satisfied. The interpolation 

factor determines the complexity of the two masking filters, i.e., a large interpolation 

factor leads to high complexity of masking filters. According to the ripple 

compensation effect [21] in the FRM approach, it is possible to use an additional 

filter/filters to remove the passband replicas in the vicinity of the transition-band of the 

overall filter to reduce the complexity of the masking filters, as demonstrated in the 

IFIR-FRM method [27, 28] and the interpolated masking-filters approach  [22]. The 

methods proposed by [22], [27] and [28] share a common feature that additional 
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interpolated masking filter/filters are introduced to relieve the tasks of the original 

masking filters. The problem is whether other simple multiplication-free prefilters can 

be employed to replace the additional interpolated masking filter. In this chapter, new 

structures using multiplication-free prefilters will be developed to reduce the workload 

of the masking filters. 

  

The rest of the chapter is organized as follows. In Section 3.2, two modified FRM 

structures are presented. New prefilter structures for the design of the modified FRM 

filters are proposed in Section 3.3. Design equations and procedures are introduced in 

Section 3.4. In Section 3.5 some examples and comparisons of different design 

methods are given to illustrate the proposed method. A summary is presented in 

Section 3.6.  

3.2 Modified FRM Structures 

A modified FRM structure is shown in Fig. 3.1, where ( )M

s
F z  is the bandedge 

shaping filter, ( ) ( )1rH z F z  forms a prefilter-equalizer filter ( )pH z , and ( )2F z  is a 

masking filter. Two modifications have been made to the original FRM structure. First, 

the upper masking branch was removed by pushing one of the masking filter ( )1F z  to 

the bandedge shaping branch. By moving ( )1F z  to bandedge shaping branch, ( )1F z  

and ( )rH z  can form a prefilter-equalizer pair to reduce the overall filter complexity; 

Second, the masking filter ( )2F z  may be designed using the FRM technique as shown 

in Fig. 3.2 if the transition-width of ( )2F z  is narrow. The z-transform transfer function 

of the proposed filter is given by  
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( ) ( ) ( ) ( ) ( )1 2

GD M

s r
H z z F z H z F z F z

− = −                                     (3.1) 

where GD is the total number of group delay of ( ) ( ) ( )1

M

s rF z H z F z . If the structure 

of Fig. 3.2 is used, 2 ( )F z  is expressed as  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1

2 1 1 22 1 2, , ,M GD M

G G s G G sF z D N N G z G z D N N z G z G z
− = + −    (3.2) 

assuming 1GD  is the group delay of ( )1M

sG z , 
1G

N  and 
2G

N  are the filter lengths of 

( )1G z and ( )2G z , respectively, ( )
1 2
,G GD N N  is defined by (2.3). The frequency 

responses of subfilters in Fig. 3.1 are shown in Fig. 3.3.  

 

GD
z

−

)( M

s zF )(zHr
)(1 zF

)(2 zF

)(zA

)(zC

( )pH z

 

Figure 3.1 A modified FRM structure. 

 

 

 

GD
z

−

)(
M

s zF )(zHr
)(1 zF 1( )M

sG z
)(zA

)(zC

1GD
z

−

1
( )G z

2 ( )G z

( )pH z

 

Figure 3.2 A modified FRM structure with ( )2F z  replaced by an FRM filter. 
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Figure 3.3 Magnitude responses of subfilters in Fig. 3.1. 

 

The design starts with a prototype model filter ( )sF z  with passband and stopband 

edges located at 
sFθ  and 

sFφ , respectively, as shown in Fig. 3.3(a). The frequency 

responses of ( )1F z  and ( )rH z  are sketched in Fig. 3.3(b). ( )1F z  and ( )rH z  forms a 

prefilter-equalizer ( )pH z , as shown in Fig. 3.3(c). Substituting each delay element of 

( )sF z  by M delay elements, the frequency response of ( )sF z  is compressed by a 

factor of M and sharp transition-bands are formed, as shown in Fig. 3.3(c). Cascading 

( )M

sF z  with ( )pH z , a pair of new complementary bandedge shaping filters ( )A z  
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and ( )C z  are formed, as shown in Figs. 3.3(d) and (e), where ( )A z  has much wider 

stopband width than that of ( )M

sF z . In Fig. 3.3(d), the shaded area is called the 

bandedge shaping (BS) tooth which is essential to form the transition band of the 

overall filter. The corresponding frequency responses of ( )2F z  and the overall filter 

( )H z  are shown in Figs. 3.3(e) and 3.3(f). In Fig. 3.3, the transition-band of ( )H z  is 

determined by ( )C z . The structure for the case where the final transition-band is 

determined by ( )A z  is shown in Fig. 3.4 where 
2F

GD is the number of group delay of 

( )2F z . It should be noted that ( )2F z  in Fig. 3.4 can be replaced by an FRM filter to 

reduce the complexity further. The z-transform transfer function for this case is given 

by: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2

1 1 2 ,FGD M GD M

s r s rH z z F z H z F z z F z H z F z F z
− − = + −          (3.3) 

where 
2F

GD  is the group delay of ( )2F z . The frequency responses of subfilters in Fig. 

3.4 are sketched in Fig. 3.5.  
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z
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z

−

( )pH z

 

Figure 3.4 A modified FRM structure for a different case. 

 

Before embarking on the design procedure, new prefilter structures for ( )pH z  are 

proposed in the following section.  
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Figure 3.5 Frequency responses of subfilters in Fig. 3.4. 

3.3 New Prefilter Structures 

There are many multiplication-free prefilters reported in [3, 5–9, 14]. In [9], a 4
th

-order 

multiplication-free FIR filter was proposed which is attractive for the design of 

( )pH z . The transfer function and the magnitude response of the prefilter are given by 

 ( ) ( ) ( )
2

1 2

4

1
1 1

8
L

P z z z
− −= + +                                       (3.4)  

and 
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                                               ( ) ( )2

4

1
cos cos .

2

j

L
P e

ω ω ω= +                                       (3.5)            

( )4LP z  provides about 18 dB stopband attenuation, which is not enough for most of 

FRM filter designs. There are two ways to increase the stopband attenuation. The first 

way is to cascade L numbers of ( )4

N

LP z  with different interpolation factor N as in [9] 

which is suitable for the design of narrowband FIR filters. The second is to utilize the 

“sharpening technique” [80] by cascading L sections of identical ( )4

N

LP z . In this 

chapter, the second way is chosen as it provides more flexibility to meet the design 

requirement. Therefore, the z-transform transfer function and the magnitude response 

of a new prefilter ( )4 , ,rP N L z  are given by  

 

( ) ( )( )
2

2

4

1
, , 1 1

8

L

N N

r
P N L z z z− − 

= + +  
                                       (3.6) 

and 

( ) ( ) ( )2

4

1
cos cos

2

L
j

r L
P e N N

ω ω ω = +                                      (3.7) 

where N is an interpolation factor and L is the number of ( )4LP z  used. As the 

coefficients of ( )4 , ,rP N L z  do not involve any multiplication, ( )4 , ,rP N L z  is a 

multiplication-free filter except for the scaling factor. Fig. 3.6 shows the frequency 

response of ( )4 8,4,rP z . ( )4 , ,rP N L z  has periodic frequency response with main lobes 

centered at 
2n

N

π
, where 0,  1, ..., 1n N= − , and it produces about 18L dB stopband 

attenuation. 
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As discussed in [2], the role of prefilter in a prefilter-equalizer approach is to provide 

sufficient stopband attenuation. It is desirable to increase the stopband attenuation 

further for the proposed prefilter. Let us consider a second order multiplication-free 

FIR filter with the transfer function and the magnitude response given by 

( ) ( )1 2

2

1
1

3
L

P z z z
− −= + +                                                  (3.8) 

and 

( ) ( )2

1
1 2cos .

3

j

L
P e

ω ω= +                                              (3.9) 
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Figure 3.6 Magnitude response of 4 (8, 4, )
r

P z . 

 

It is easy to show from (3.5) and (3.9) that ( )2LP z  has a null occurring at 
2

3

π
 which 

coincides with the peak of the side lobe of ( )4LP z . The cascade of ( )2LP z  and ( )4LP z  
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creates a prefilter that provides about 36 dB stopband attenuation, as shown in Fig. 3.7. 

The interpolated version of ( ) ( )4 2L LP z P z  is expressed as 

( ) ( ) ( ) ( )
1

2
2 2

1 1

1 1
, , 1 1 1

8 3

L K

N N N N

r
H L K z z z z z− − − −   

= + + + +      
                 (3.10) 

and its magnitude response is written as 

( ) ( ) ( ) ( )
1

1

2

1

1 1
cos cos 2cos 1

2 3

L Kj

r L K
H e N N N

ω ω ω ω = + +                   (3.11) 

where 1L  and K are called sharpening factors for the purpose of providing enough 

stopband attenuation. The magnitude response of ( )1rH z , for 1 1L = , 1K = , and 

6N = , is plotted in Fig. 3.8. By selecting different values of 1L  and K, desired 

stopband attenuations are obtained.  
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Figure 3.7 Magnitude  responses of ( )4LP z  (dotted line), ( )2LP z  (dashed line) and 

( ) ( )4 2L LP z P z  (solid line). 
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Figure 3.8 Magnitude response of ( )1rH z  for 6N = , 1K = , and 1 1L = . 

 

( )1rH z  has periodic frequency response with main lobes centered at 
2 n

N

π
 

( 0,  1,  ...,  1n N= − ). Fig. 3.9 shows the magnitude response of ( )1rH z  (solid line) for 

7N = , 1 2L =  and 1K = . The dashed line in Fig. 3.9 is the magnitude response of 

( )4 7,3,rP z . It is interested to note that ( )1rH z  and ( )4 , ,rP N L z  have almost the same 

magnitude response except that ( )1rH z  has additional nulls generated by the 

interpolated version of ( )2LP z . However, the complexity of ( )1rH z  is lower than that 

of ( )4 , ,rP N L z  if they have the same stopband attenuations. Furthermore, the group 

delay of ( )1rH z  is shorter than that of ( )4 , ,rP N L z . Table 3.1 summarizes the 

implementation costs and group delays of ( )1rH z  and ( )4 , ,rP N L z  for different L, L1 

and K. It is reasonable to believe that replacing ( )rH z  by ( )1rH z , in Fig. 3.1 or Fig. 

3.4, additional arithmetic savings can be achieved when designing the overall filter.   
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Figure 3.9 Magnitude responses of ( )1rH z  (solid line) ( 7N = , 2L =  and 1K =  ) 

and ( )4 7,3,rP z  (dashed line). 

 

Table 3.1 Comparison of ( )1rH z  and ( )4 , ,rP N L z . 

( )1rH z  ( )4 , ,rP N L z  

 Attenuation 

(dB) 

adders Group 

delay 

 Attenuation 

(dB) 

adders Group 

delay 

1 1L =  

1K =  
35.89 5 3N 2L =  36.12 6 4N 

1 2L =  

1K =  
56.53 8 5N 3L =  54.18 9 6N 

1 2L =  

2K =  
71.79 10 6N 4L =  72.24 12 8N 

1 3L =  

1K =  
76.19 11 7N 5L =  90.31 15 10N 

1 3L =  

2K =  
92.80 13 8N 6L =  108.37 18 12N 
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Let oω  be the center frequency of one of the main lobes of ( )1rH z . If oω  is near the 

center of the BS tooth, the main lobe corresponding to oω  can be used to “mask” the 

BS tooth as shown in Figs. 3.3(b)–(d). For a given N, ( )1rH z  has main lobes centered 

at 
2 n

N

π
 ( 0,  1,  ...,  1n N= − ), from which one main lobe is selected to “mask” the BS 

tooth.  To provide more choices, a highpass version of the prefilter structure is given 

by  

( ) ( )( ) ( )
1

1

2
2 1 2

2

1 1
1 1 1

8 3

L K
N N

r L K
H z z z z z− − − −   = + − − +   

.                 (3.12) 

The magnitude response of 2 ( )rH z  is given by 

   ( ) ( ) ( ) ( )
1

1

2

2

1 1
cos cos 1 2cos

2 3

L Kj

r L K
H e N N N

ω ω ω ω = − −    .             (3.13) 

The magnitude response of ( )2rH z  for 7N = , 1 2L =  and 1K =  is shown in Fig. 3.10. 

( )2rH z  has periodic frequency response with main lobes centered at 
( )2 0.5 n

N

π +
, 

where 0,  1,  ...,  1n N= − . Comparing Fig. 3.9 with Fig. 3.10, ( )2rH z  may be 

considered as a “complementary part” of ( )1rH z  in terms of the location of main lobes. 

Hence, ( )2rH z  is another good candidate for the replacement of ( )rH z . To employ 

the new prefilters in the proposed structure, a set of N, 1L  and K must be determined. 

This will be discussed in the following sections.    
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Figure 3.10 Magnitude response of ( )2rH z  for 7N = , 1 2L =  and 1K = . 

3.4 Filter Design 

3.4.1 Design Equations 

In this section, design equations are derived for lowpass filters using prefilter ( )1rH z . 

Similar equations can be obtained if ( )2rH z  is employed as prefilter. Meanwhile, the 

similar procedure can be applied to derive design equations for highpass filters. Let us 

denote the structure of Fig. 3.1 as Case A and the structure of Fig. 3.4 as Case B. Let 

the passband and stopband edges of the desired lowpass filter be ωp and ωs, 

respectively. Assume that θ and φ are used to denote the passband and stopband edges 

of a subfilter such that the passband and stopband edges of ( )sF z  are 
sF

θ  and 
sF

φ , 

respectively. Similar definitions are applied to other subfilters. To determine the 

bandedges of ( )sF z ,  it can be shown that [21]  
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2
(for Case A)

2
(for Case B)

s

s

F

p

F

m

M

m

M

π φ

ω
π θ

−


= 
+



                                       (3.14) 

and 

2
(for Case A)

2
(for Case B)

s

s

F

s

F

m

M

m

M

π θ

ω
π φ

−


= 
+



                                     (3.15)      

where m is an integer. To ensure that (3.14) and (3.15) yield a solution with 

0
s sF Fθ φ π< < < , two sets of equations are derived for Case A and B, respectively. 

 

For Case A, we have 

2

sMm
ω

π

 
=  
 

                                                         (3.16) 

Mm sFs
ωπθ −= 2                                                    (3.17) 

Mm pFs
ωπφ −= 2                                                     (3.18) 

where  x  denotes the smallest integer larger than or equal to x. For Case B, we have 

2

pM
m

ω

π

 
=  
 

                                                        (3.19) 

πωθ mMpFs
2−=                                                   (3.20) 

πωφ mMsFs
2−=                                                   (3.21) 

where x    denotes the largest integer less than or equal to x. To determine the 

bandedges of ( )2F z , let us examine Figs. 3.3(e) and 3.5(e). It is clear that the 

bandedges of ( )2F z  are not affected by ( )rH z . For Case A, we have  
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pF ωθ =
2

                                                           (3.22) 

2

2
sF

F

m

M

π θ
φ

+
=                                                     (3.23) 

For Case B, we have 

  
2

2
sF

F

m

M

π θ
θ

−
=                                                     (3.24) 

sF ωφ =
2

                                                          (3.25) 

 

As shown in Figs. 3.3(c), 3.3(d), 3.5(c) and 3.5(d), the role of ( )pH z  is to create 

( )A z  from ( )M

sF z  in two ways that  

a) ( )pH z  should introduce the least deviation to the frequency-response of the 

BS tooth,  

b) and ( )pH z  removes the unwanted passbands of ( )M

sF z . 

 For this reason, ( )pH z  is in fact a bandpass alike filter with the bandedges given by 

the following equations. For Case A, we have 

1

2

2

p

s

p

H s

F

H

m

M

θ ω

π θ
θ

=

 +

=


                                               (3.26) 

where 
1pHθ  and 

2pHθ  are the passband edges of ( )pH z , and 

2( 1)
s

p

F

H

m

M

π φ
φ

− +
=                                            (3.27) 
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where 
pHφ  are the stopband edge of ( )pH z . Another stopband edge of ( )pH z  is not 

cared because only the passbands to the left of the BS tooth need to be removed, as 

shown in Fig. 3.3(c).  Similarly, for Case B, we have 

1

2

2
s

p

p

F

H

H p

m

M

π θ
θ

θ ω

−
=


 =

                                               (3.28) 

2( 1)
s

p

F

H

m

M

π φ
φ

+ −
=                                             (3.29) 

3.4.2 Determination of M, N, L1 and K 

Before the overall filter ( )H z  is synthesized, the values of M , N , 1L , and K for 

( )1rH z  must be determined. Unfortunately, there are no known closed-form 

expressions for M , N , 1L , and K. Nevertheless, there are conditions that N, 1L  and K 

should meet for a set of given specifications. These conditions are helpful to find the 

values of  N, 1L  and K.  

 

As shown in Figs. 3.3 and 3.5, one main lobe of the prefilter is used to mask the BS 

tooth for generating the overall transition-band. Let us denote such a main lobe as the 

bandedge shaping (BS) lobe. The center frequency ωo of the BS lobe should be located 

inside the BS tooth, and the width of the BS lobe should be wider than that of the BS 

tooth, as shown in Figs. 3.3(b) and 3.5(b). This constraint leads to  

2 22
s sF F

o

m mk

M N M

N M

π θ π θπ
ω

− +
< = <


 <

                                  (3.30) 
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where k is an integer less than N. From (3.11), the peak of the first side-lobe of  

( )1rH z  occurs at 

2
0.284

br
N

π
ω ≈ × .                                                      (3.31) 

To remove the unwanted passbands to the left of the BS tooth, substituting 
br

ω  into 

(3.11), for Case A, we get 

( ) ( ) ( )
1

1

21
cos cos 2cos 1

2 3

L K

br br br pL K
ω ω ω δ + + <   ⋅

.                    (3.32) 

For Case B, we have 

( ) ( ) ( )
1

1

21
cos cos 2cos 1

2 3

L K

br br br sL K
ω ω ω δ + + <   ⋅

                    (3.33) 

where 
p

δ  and 
s

δ  are the required passband and stopband ripples, respectively. 

 

For a given M, a set of N,  1L  and K  can be found that satisfy (3.30)–(3.33). It should 

be noted that smaller values of N, 1L  and K will lead to shorter group delays and less 

adders. To further narrow the selection of N,  1L  and K , two more facts should be 

considered: 

(a) Let 1P  denote the stopband edge next to the BS tooth as shown in Figs. 3.3(c), 

and 3.5(b), respectively. The null near the BS lobe of ( )1rH z  should be 

located as close to 1P  as possible. 

(b) The passband degradation of ( )1rH z  can be compensated by ( )M

s
F z  and 

( )1F z . However, the total compensation is limited within a few dB. Therefore, 

a good choice of N, L1 and K should lead to a ( )1rH z  with less passband 

degradation.  
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So far several guidelines are presented for the selection of N, L1 and K. An exhaustive 

search can be adopted to find a set of optimal values for M, N, L1 and K. A cost 

function ( )C ∆  is defined to measure the overall complexity of the filter as 

( )
2

1 1

sF F

C ∆ = +
∆ ∆

                                            (3.34) 

where 
s s sF F Fφ θ∆ = −  is the transition-width of ( )sF z  . Similar definition is applied to 

( )2F z . In (3.34), the complexity of ( )1F z  is not considered, because its length is 

much shorter than those of ( )sF z  and ( )2F z . For a given M, ( )C ∆  can be easily 

calculated using the above design equations. The exhaustive search program is to find 

the values of M, N, 1L , and K that satisfy (3.30)–(3.33) and minimize (3.34).  

3.4.3 Ripple Analysis of Subfilters 

It is useful to analyze the ripple effect of each subfilter on the overall filter. The ripple 

analysis is performed for Case A. Similar results can be obtained from Case B. Let 

( )G ω  and ( )δ ω  denote the gain and deviation of ( )jH e ω . Let ( )'sFG ω  and ( )'sFδ ω  

represent the gain and deviation of ( )jM

sF e ω . Similar expressions are used for 

( )2

jF e ω  and ( )j

pH e ω , where  

( ) ( ) ( )1

j j j

p r
H e H e F eω ω ω= .                                                 (3.35) 

We have 

( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( )
2 2' '1

s s p pF F H H F F
G G G Gω δ ω ω δ ω ω δ ω ω δ ω    + = − + + +     . (3.36) 

The ripple effects of the subfilters on the overall filter are examined in the following 4 

frequency ranges.  
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Frequency range 1: 
( )2 1

0 sF
m

M

π φ
ω

− +
≤ < . 

In this frequency range, ( ) 0
pH

G ω =  and ( ) ( )
2

1.FG Gω ω= =  Thereby, (3.36) is 

simplified to the following form: 

( ) ( ) ( ) ( ) ( ) ( )
2 2' ' 1 .

s s pF F F H F
Gδ ω δ ω ω δ ω δ ω δ ω   = − + +                     (3.37) 

Ignoring the second order terms, the following relations are obtained. 

When ( )' 1
sFG ω = ,  

( ) ( ) ( )
2

.
pF H

δ ω δ ω δ ω≈ −                                                 (3.38) 

When ( )' 0
sFG ω = ,   

( ) ( )
2

.Fδ ω δ ω≈                                                          (3.39) 

When ( )'0 1
sFG ω< < ,   

( ) ( ) ( )
2

.
pF H

δ ω δ ω δ ω≤ +                                             (3.40) 

 

Frequency range 2:  
( )2 1

sF

p

m

M

π φ
ω ω

− +
≤ ≤ .  

In this frequency range, ( ) ( )
2

1,FG Gω ω= =  ( )' 0
sFG ω =  and ( )

pH
G ω  increases from 

zero to unity as ω increases. In this case,  (3.36) is simplified to 

( ) ( ) ( ) ( ) ( ) ( )
2 2' 1 .

s p pF F H H F
Gδ ω δ ω δ ω ω δ ω δ ω   = − + +                        (3.41) 

Ignoring the second order terms, the following relations are obtained: 

( ) ( ) ( )
2 ' .

sF F
δ ω δ ω δ ω≤ +                                                  (3.42) 

Frequency range 3: 
2

sF

s

m

M

π θ
ω ω

+
≤ < .  
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In this frequency range, ( ) 0G ω = , ( ) ( )' 1
p sH F

G Gω ω= =  and ( )
2FG ω  decreases from 

unity to zero as ω increases. In this case, (3.36) becomes 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2'1 1 .

s pF F F H F F
G Gδ ω ω δ ω δ ω δ ω ω δ ω    = + − + + +          (3.43) 

Ignoring the second order terms, we have 

( ) ( ) ( )' .
s pF H

δ ω δ ω δ ω≤ +                                       (3.44) 

 

Frequency range 4: 
2

sF
m

M

π θ
ω π

+
≤ ≤ .  

In this frequency range, ( ) ( ) ( )
2

0.
pF H

G G Gω ω ω= = =  Hence, (3.36) is simplified to 

( ) ( ) ( ) ( ) ( ) ( )
2 2' ' .

s s pF F F H F
Gδ ω δ ω ω δ ω δ ω δ ω = − +                           (3.45) 

Ignoring the second order terms, the following relation is obtained. 

                                                    ( ) ( )
2

.Fδ ω δ ω≈                                                     (3.46) 

It can be seen from (3.38)–(3.40) and (3.46) that in the frequency ranges 1 and 4 the 

deviation of the overall filter is determined mainly by ( )pH z  and ( )2F z . In frequency 

range 2, ( )M

s
F z  and ( )2F z  determine the passband ripple according to (3.42). 

Similarly, the subfilters ( )M

s
F z  and ( )pH z  determine the stopband attenuation in 

frequency 3 according to (3.44).  Similar conclusions can be drawn for Case B.  

3.4.4 Design Procedures 

Since the ripples of these subfilters compensate for each other in different frequency 

ranges, an iterated design procedure is employed to optimize one subfilter at a time 
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while using the other subfilters as prefilters. The following steps for Case A are 

proposed, which is applicable to Case B except for some minor modifications. 

Step 1.  Find a set of appropriate values of M , N , 1L , and K  for ( )1rH z . 

Step 2.  Determine ( ) ( ) ( )1 1p rH z H z F z= . The bandedges of ( )pH z  are given by 

(3.26) and (3.27). Set the stopband ripple of ( )pH z  to 85% of the passband ripple of 

( )H z  [21]. From our experience, the passband ripple is set to less than 10 dB. Using 

( )1rH z  as a prefilter, ( )1F z  can be designed using any standard design technique for 

prefilter-equalizer based filters. 

Step 3.  Design ( )2F z  using the bandedges given by (3.22) and (3.23). Set the ripples 

of ( )2F z  to 85% of ( )H z . 

Step 4.  Design ( )sF z  in the frequency range 2 and 3. Let the zero-phase frequency 

response of ( )sF z  be written as [88] 

    ( ) ( ) ( )trig ,
s s

i

F f n iω ω=∑                                               (3.47)  

where ( )trig , iω  is a proper trigonometric function depending on the type of the filter 

under design and ( )sf n  is the impulse response of ( )sF z . Similar notations are 

applied to the other subfilters. In frequency range 2, ( )sF z  needs to satisfy the 

following,   

( ) ( ) ( ) ( ) ( ) ( )2 2 21 trig , 1
p p s p

i

F F H f n M i Fδ ω ω ω ω δ ω
 

− − ≤ − ≤ + − 
 
∑ .      (3.48) 

In frequency range 3, we have  

( ) ( ) ( ) ( ) ( ) ( )2 2 2trig ,
s p s s

i

F F H f n M i Fδ ω ω ω ω δ ω
 

− − ≤ − ≤ − 
 
∑ .         (3.49) 
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Linear programming or any other optimization techniques may be used to optimize 

(3.48) and (3.49). 

Step 5.  Design ( )2F z  again by using the rest of subfilters, i.e., ( )sF z  and ( )pH z  as 

prefilters. The design equations can be derived similar to those in Step 4. 

Repeat Step 4 by replacing ( )sF z  with ( )1F z  or ( )2F z  and using the other subfilters 

as prefilters, till there is no further improvement observed. 

3.5 Examples and Comparisons 

In this section, two examples are presented to demonstrate the advantages of the 

proposed structures for the design of lowpass FIR filters with narrow transition-width.  

 

Example 1 

A lowpass filter is designed with passband edge at 0.346 2
p

ω π= ×  and stopband edge 

at 0.347 2
s

ω π= × . The passband ripple is at most 0.01 and the stopband attenuation is 

at least 40 dB. Using the proposed method, the values of M, N, L1 and K are found as 

follows, 28M = , 7N = , 1 2L =  and 1K = .  For 28M = , the prefilter ( )2rH z  is 

selected. To meet the overall specifications, the lengths for ( )sF z , ( )1F z  and ( )2F z  

are 69, 23 and 71, respectively, where ( )2F z  is designed by the FRM approach with 

the interpolation factor to be 5. The magnitude responses of the subfilters and the 

overall filter using the proposed method are shown in Figs. 3.11–3.14.  
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Figure 3.11 Magnitude responses of  ( )M

s
F z  (solid line) and ( )pH z  (dashed line ) 

in example 1. 
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Figure 3.12 Magnitude responses of ( )C z  (solid line) and ( )2F z  (dashed line) in 

example 1. 
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Figure 3.13 Magnitude response of the passband of the overall filter in example 1. 
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Figure 3.14 Magnitude response of the overall filter in example 1. 
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For comparison, the filter is also designed using other computationally efficient 

approaches. Using the single-stage FRM technique, the optimal interpolation factor M 

is 18, and the lengths for ( )sF z , ( )1F z  and ( )2F z  are 109, 69 and 75, respectively. 

To design such a filter with the IFIR-FRM approach, the total lengths for all subfilters 

are 202, and the two interpolation factors for the IFIR pair are 9 and 3, respectively. 

The two-stage FRM approach achieves a more efficient design with a total length of 

179 for all subfilters. The two interpolation factors are 8 and 5 for the first and second 

stage, respectively. Using conventional design method, the estimated filter length is 

1851. For clarity, the required number of multipliers, adders, and group delay of the 

overall filter using different design methods is summarized in Table 3.2. As indicated 

in Table 3.2, to implement the filter, 128 multipliers and 252 adders are required using 

the single-stage FRM approach, while using the proposed method only 84 multipliers 

and 169 adders are required which achieves more than 34% and 32% savings 

compared with the single-stage FRM technique. It is also clear that the proposed 

approach achieves more savings in the number of arithmetic operations than the IFIR-

FRM approach which requires 103 multipliers and 200 adders, respectively, while the 

proposed filter has shorter group delay. The proposed method even outperforms the 

two-stage FRM approach in terms of hardware cost.  
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Table 3.2 Comparison of different design methods of example 1. 

Design Multipliers Adders Group delay 

Conventional 925 1850 925 

1-stage FRM 128 252 1009 

2-stage FRM 92 178 1149 

IFIR-FRM 103 200 1120 

Proposed 84 169 1065 

 

Example 2 

In this example, ( )1rH z  is used to design a sharp lowpass filter with the specification 

given by 

0.3 2
p

ω π= × ,   0.301 2
s

ω π= ×   (passband and stopband edges) 

Maximum passband ripple: 0.01.  

Minimum stopband attenuation: 40 dB. 

Using the proposed method, the optimum values for M, N, L1 and K are found to be 21, 

7, 2 and 1, respectively. For 21M = , the structure of Case B is adopted. The lengths 

for ( )sF z , ( )1F z  and ( )2F z  are 93, 15 and 71, respectively. Figs. 3.15–3.18 show the 

magnitude responses of the subfilters and the overall filter using the proposed method.  

 

The computational cost of different design methods for this example is summarized in 

Table 3.3. If the single-stage FRM technique is used, the optimum lengths for ( )sF z , 

( )1F z  and ( )2F z  are 139, 49 and 69, respectively, with 14M = . The filter requires 

130 multipliers. If the IFIR-FRM method is adopted, 104 multipliers are required with 

two interpolation factors of 7 and 3 for the IFIR pair. The two-stage FRM approach 
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produces a more efficient design which needs 92 multipliers with interpolation factor 

of 6 for both stages. Clearly, the proposed method achieves considerable reduction in 

the number of arithmetic operations compared with the original FRM and IFIR-FRM 

approach. Moreover, the proposed method even outperforms the two-stage FRM 

technique in terms of design complexity and group delay. If ( )2F z  is replaced by an 

FRM filter, the required number of arithmetic operations will be decreased further. It is 

interesting to compare the proposed method with the decoupling method in chapter 2. 

As shown in Table 3.3, the decoupling technique can achieve more arithmetic savings 

than the proposed method. However, the required delay elements are increased and the 

design complexity is also increased since 5 subfilters need to be designed in the 

decoupling technique.  

Table 3.3 Comparison of different design methods of example 2. 

Design Multipliers Adders Group delay 

Conventional 925 1850 925 

1-stage FRM 130 256 1000 

2-stage FRM 92 177 1105 

IFIR-FRM 104 202 1084 

Decoupling technique in chapter 2 88 169 1144 

Proposed 91 186 1043 
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Figure 3.15 Magnitude responses of ( )M

s
F z  (solid line) and ( )pH z  (dashed line) 

in the example 2. 
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Figure 3.16 Magnitude responses of ( )C z  (solid line) and ( )2F z  (dashed line) in 

example 2. 
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Figure 3.17 Magnitude response of the passband of the overall filter in example 2. 
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Figure 3.18 Magnitude response of the overall filter in example 2. 
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3.6 Summary 

In this chapter, two modified FRM structures were introduced to reduce the 

computational complexity of FRM filters. The proposed structures utilize a prefilter-

equalizer cascaded with the bandedge shaping filter. The cascade of the bandedge 

shaping filter and the prefilter-equalizer performs both the bandedge shaping and the 

masking tasks. New multiplication-free prefilters were developed for the design of the 

prefilter-equalizer. Results show that the proposed method achieves considerable 

savings in terms of arithmetic operations compared with the single-stage FRM, two-

stage FRM and IFIR-FRM techniques. Furthermore, the group delays of the overall 

filters are shorter than those of the IFIR-FRM and two-stage FRM filters.   
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Chapter 4 

FRM Filters Using Single Filter Frequency 

Masking Approach  

4.1 Introduction 

The FRM technique provides one of the most computationally efficient realizations for 

arbitrary bandwidth sharp FIR filters. The computational complexity of an FRM filter 

is determined by the model filter and the masking filters. Further improvements [22, 27, 

28, 30–32] have been made to reduce the arithmetic complexity of FRM filters by 

realizing the bandedge shaping filter or masking filters using efficient FIR filter design 

methods. In this chapter, new structures to reduce the arithmetic complexity of FRM 

filters are proposed which employ a technique called single filter frequency masking 

(SFFM) filter [17–19].  The basic idea behind SFFM filters is to design IFIR filters 

using an identical model filter (with different periods) repeatedly to perform both the 

bandedge shaping and the masking tasks. The resulting filter has the form of  
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( ) ( )
1

r

k
M

r

H z F z
=

= ∏                                               (4.1) 

where 1 2 ...
k

M M M> > > . By cascading interpolated subfilters ( )rM
F z  ( 2r ≥ ) with 

( )1M
F z , the unwanted passbands generated by ( )1M

F z  can be removed completely. A 

realization structure of lowpass SFFM filters is shown in Fig. 4.1. By mapping 

identical subfilters into a single hardware structure using folding transformation [81], 

the SFFM approach can achieve considerable savings in the number of multipliers and 

adders at the cost of increasing the number of delay elements.  

 

1( )
M

F z 2( )M
F z ( )kM

F z
 

Figure 4.1 A realization of lowpass SFFM filters. 

 

The SFFM technique is suitable for the design of FIR filters with narrow or wide 

passband. In this chapter, the SFFM and the FRM concepts are combined together to 

form new single frequency-response masking filter structures for the design of arbitrary 

bandwidth FIR filters. The proposed structures are extended to implement filters with 

varying specifications. Design examples show that the proposed approach achieves 

significant savings in terms of arithmetic operations at the price of increasing the delay 

elements. 

 

The organization of this chapter is as follows. In Section 4.2, new structures are 

introduced for the design of lowpass filters. Design equations and procedures are 

discussed in Section 4.3. In Section 4.4, the structures are extended to design filters 
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with different specifications. Section 4.5 is dedicated to design examples. Conclusions 

are given in Section 4.6. 

4.2 New Structures  

Let a lowpass filter ( )H z  be designed using the FRM approach. The passband and 

stopband edges of ( )H z  are 
p

ω  and sω , respectively. As discussed in Chapter 3, the 

transition-band of ( )H z  is formed by one of the “teeth” of the bandedge shaping filter, 

as shown by the shaded areas in Figs. 3.3 and 3.5.  If the same model filter with a 

reduced interpolation factor is cascaded to the bandedge shaping filter, those undesired 

frequency bands beyond 
s

ω  may be removed while keeping the bandedge shaping (BS) 

tooth undistorted. For this reason, a modified FRM structure incorporating the SFFM 

technique is obtained as shown in Fig. 4.2 where GD is the total number of group delay 

of ( )
1

r

k
M

a

i

H z
=

∏  and 
cG

GD  is the number of group delay of ( )
c

G z .   

1( )
M

a
H z 2( )

M

a
H z ( )kM

a
H z

GDz− ( )
c

G z

Gc
GD

z
−( )A z

( )C z

 

Figure 4.2 A realization structure for the proposed filter. 

Fig. 4.3 illustrates the frequency responses of subfilters in Fig. 4.2. The design starts 

with a model filter ( )aH z  as shown in Fig. 4.3(a), ( )c

aH z  is the complement of 

( )aH z . A new bandedge shaping filter ( )A z  is formed by cascading the same model 

filter (with different interpolation factors) repeatedly, with ( )1M

a
H z , as shown in Fig. 

4.3(b)–(d). ( )C z  is the complement of ( )A z . If ( )C z  is cascaded with another 
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masking filter ( )cG z , and the outputs of ( )A z  and ( )cG z  are added, we get the 

overall filter ( )H z , as shown in Figs. 4.3(e) and 4.3(f). By mapping all the identical 

subfilters into a single hardware structure, the required number of multipliers and 

adders for implementation of ( )H z  can be greatly decreased. In some cases, the 

complementary filter of ( )rM

a
H z  ( 2r ≥ ), denoted as ( )rMc

a
H z , instead of ( )rM

a
H z  

itself, may be used to cascade with ( )1M

a
H z  to remove the undesired passbands. 

( )rMc

a
H z  can be easily obtained from the implementation of ( )rM

a
H z  as shown in 

Fig. 4.4, where the filter is of even order. ( )c
y n  is the complementary output.  

2( )
jM

aH e
ω

)(
ωj

eA

( )j

cG e ω

)( ωj
eC

)( ωjeH

1( )
jM

aH e
ω

ωπ

ωπ

pω

( )j

aH e ω

aθ aφ

sω

1

12

M

m π

ωπ

ωπ

ωπ

ωπ

( )j

aH e ω

( )
c j

aH e
ω

1

1

2 am

M

π θ−

 

Figure 4.3 Frequency responses of subfilters and the overall filter in the new 

structure. 
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Figure 4.4 Implementation of an FIR filter with complementary output. 

 

As a result, the transfer function of the overall filter is expressed as 

    ( ) ( ) ( ) ( )
1 1

Gc

k k
GD GD

r r c

r r

H z z H z z H z G z
− −

= =

 
= + − 

 
∏ ∏                               (4.2) 

where ( )1H z  is ( )1M

a
H z , ( )rH z  ( 2r ≥ ) is either ( )rM

aH z  or ( )rMc

aH z  

( )1 2 ... kM M M> > > , GD  and 
cGGD  are the numbers of group delay of ( )

1

k

r

r

H z
=

∏  

and ( )cG z , respectively. 

 

The structure in Fig. 4.2 is suitable for designing filters whose bandedges are 

determined by ( )1M

aH z . This case is denoted as Case A. The case where the 

transition-band is determined by ( )1Mc

aH z  is denoted as Case B and its realization 

structure is shown in Fig. 4.5. The transfer function for Case B is given by  

( ) ( ) ( )
1

k
GD

r c

r

H z z H z G z
−

=

 
= − 
 

∏                                         (4.3) 

The frequency responses of subfilters in Fig. 4.5 are sketched in Fig. 4.6. In Case B, the 

unwanted passbands to left of the BS tooth are removed by cascading  ( )rH z  ( 2r ≥ ) 

to ( )1M

aH z , as shown in Figs. 4.5, 4.6(b) and 4.6(c). The resulting filter is denoted as 
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( )A z , as shown in Fig. 4.6(d). A new bandedge shaping filter ( )C z  is formed by taking 

the complement of ( )A z , as shown in Figs. 4.5 and 4.6(e). The overall filter ( )H z  is 

obtained by cascading a masking filter ( )cG z  to ( )C z , as shown in Figs 4.5 and 4.6(f).  

 

1( )H z 2 ( )H z ( )
k

H z

GD
z

−

( )cG z
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Figure 4.5 A realization structure for Case B. 
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Figure 4.6 Frequency responses for Case B. 
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It should be noted that for a given 1M , under certain circumstances, the undesired 

passbands may not be removed completely by ( )
2

k

r

r

H z
=

∏ , i.e., there is still unwanted 

frequency components left in the stopband (or the passband) for Case A (or Case B). In 

this case, a simple extra masking filter ( )eH z  is required to remove the rest undesired 

frequency components. Fig. 4.7 and Fig. 4.8 show the resulting realization structures of 

( )H z  for Case A and Case B, respectively.  

 

1
( )H z 2 ( )H z ( )kH z

GD
z

−

( )
e

H z

( )
c

G z

Gc
GD

z
−

 

Figure 4.7 Filter structure with an extra masking filter for Case A. 
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Figure 4.8 Filter structure with an extra masking filter for Case B. 

 

4.3 Filter Design 

4.3.1 Design Equations 

To synthesize ( )H z , lowpass or highpass model filters can be used to perform the 

bandedge shaping. In this section, equations for the design of a lowpass filter using 

lowpass model filters with the structures in Fig. 4.2 and 4.5 are derived. The same 
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procedure can be easily applied to structures in Fig. 4.7 and 4.8.  

 

Let the passband and stopband edges of ( )aH z  be 
a

θ  and 
a

φ , respectively. Let the 

bandedges of ( )cG z  be 
cGθ  and 

cGφ , respectively. To determine the bandedges of 

( )aH z , it can be shown that [21] 

1

1

2
,  for Case A

2
,  for Case B 

a

p

a

m

M

m

M

π θ

ω
π φ

+


= 
−



                                           (4.4) 

and 

1

1

2
,  for Case A

2
,  for Case B 

a

s

a

m

M

m

M

π φ

ω
π θ

+


= 
−



                                          (4.5)  

where 1m  is an integer. To ensure that (4.4) and (4.5) yield a solution with 

0
a a

θ φ π< < < , two sets of equations are given for Case A and Case B, respectively. 

For Case A, we have 

1

1
2

p
M

m
ω

π

 
=  
 

                                                         (4.6) 

1 12
a p

M mθ ω π= −                                                      (4.7) 

1 12
a s

M mφ ω π= −                                                       (4.8) 

where  x  denotes the largest integer less than or equal to x. For Case B, we have  

1
2

sMm
ω

π

 
=   

                                                       (4.9) 

1 12a sm Mθ π ω= −                                                   (4.10) 
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    1 12a pm Mφ π ω= −                                                 (4.11) 

where  x  denotes the smallest integer larger than or equal to x. The bandedges of 

( )cG z  for Case A, as shown in Fig. 4.3(e), are given by  

              1

1

2
c

a
G

m

M

π θ
θ

−
=                                                   (4.12) 

cG s
φ ω=                                                         (4.13) 

For Case B, as shown in Fig. 4.6(d), we have 

cG p
θ ω=                                                        (4.14) 

1

1

2
c

a
G

m

M

π θ
φ

+
=                                                  (4.15) 

4.3.2 Determination of iM  

The computational complexity of the overall filter is determined by ( )aH z , ( )cG z  

and ( )eH z . A cost function ( )C ∆  is defined to evaluate the complexity of the overall 

filter: 

 ( )

1 1
,  for structures in Fig. (4.2) and (4.5)

 
1 1 1

, for structures in Fig. (4.7) and (4.8)

a c

a c e

H G
C

H G H


+∆ ∆

∆ = 
 + +
∆ ∆ ∆

 (4.16) 

where 
a

H∆ , 
c

G∆  and 
e

H∆  denote the transition-widths of ( )aH z , ( )cG z  and ( )eH z , 

respectively. For a given 1M , 
a

H∆  and 
c

G∆  are determined by (4.6)–(4.11) and (4.12)

–(4.15), respectively. 
e

H∆  can be evaluated for a set of rM  (the conditions for 

searching rM  ( 2r ≥ ) will be derived later). Therefore, an exhaustive search can be 

made to obtain the optimal set of rM  which minimizes (4.16).  



Chapter 4. FRM Filters Using Single Filter Frequency Masking Approach 88 

For a given 1M , the conditions for the determination of rM  ( 2r ≥ ) are proposed 

follows.  

Case A conditions 

To keep the bandedge shaping tooth undistorted and to remove the first unwanted 

passband beyond 
s

ω  , there must be a “masking band” to perform the tasks as shown 

in Fig. 4.9, where ( )1M

a
H z  is cascaded with ( )2M

a
H z , and as shown in Fig. 4.10, 

where ( )1M

a
H z  is cascaded with ( )2Mc

a
H z . The bandedges of the masking band must 

satisfy certain conditions. Five frequency points, 1P  to 5P , as indicated in Figs. 4.9 and 

4.10, are helpful in deriving the conditions. The superscript (2) for (2)

1P  denotes that 1P  

is on ( )2jM

a
H e

ω
 (or ( )2jMc

a
H e

ω
). The same denotation is applied to other points, i.e., 

( )i

n
P  is on ( )ijM

a
H e

ω
 (or ( )ijMc

a
H e ). In Fig. 4.9, 

( )i
n

P  ( 1,  2,  ...,  5n = , 1,  2i = ) are 

defined as follows. 
( )2

1P  and 
( )2

2P  are the left and right passband edges of the masking 

band of ( )2jM

a
H e

ω
, respectively. 

( )2

3P  is the right stopband edge of the masking band. 

( )1

4P  is the first stopband edge beyond 
s

ω . 
( )2

5P  is the left stopband edge of the band 

next to the masking band. 
( )2

4P  is the first stopband edge beyond 
s

ω  for the cascade of 

( )1M

a
H z  and ( )2M

a
H z . Similar denotations are also applied to other 

( )i
n

P  in the 

following discussion. 

 



Chapter 4. FRM Filters Using Single Filter Frequency Masking Approach 89 

2( )
jM

a
H e

ω 1( )
jM

aH e
ω

(2)

2
P

ωπ

ωπpω

(2)

1
P

sω

1

12

M

m π
(2)

3P3( )
jM

aH e
ω

(2)

4
P

(1)

4
P

(2)

5
P

 

Figure 4.9 Frequency points satisfying conditions for the cascade of ( )1M

a
H z  

and ( )2M

a
H z . 
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Figure 4.10 Illustration of the cascade of ( )1M

a
H z  and ( )2Mc

a
H z . 

 From Figs. 4.9(a) and 4.10(b), it is easy to show that 

( )2 1
1

1

2
a

m
P

M

π θ−
≤                                                        (4.17) 

and 

( )2

2p Pω ≤  .                                                           (4.18) 

If 
( )2

1P  and 
( )2

2P  are on the first passband of ( )2jM

a
H e

ω
, 

( )2

1P  in (4.17) is set to 0. In 

this case, (4.17) is always true. Otherwise, 
( )2

1P  is given by 
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( )

( )

( )

2

2

2

2 2

1

2

2

2
, for , 

2
, for .

Ma
a

Mca
a

m
H z

M
P

m
H z

M

π θ

π φ

−



= 
+



                                    (4.19) 

where m2 is a non-negative integer. (2)

2P  in (4.18) is written as  

( )

( )

( )
( )

2

2

2

22

2

2

2

2
,  for ,

2 1
,  for .

Ma
a

a Mc

a

m
H z

M
P

m
H z

M

π θ

π φ

+



= 
+ −



                            (4.20) 

To remove the first unwanted passband, as shown in Fig. 4.9(a), we have 

( ) ( )2 1

3 4s
P Pω ≤ ≤ .                                                (4.21) 

(2)

3P  is given by 

( )

( )

( )
( )

2

2

2

22

3

2

2

2
, for , 

2 1
,  for . 

Ma
a

a Mc

a

m
H z

M
P

m
H z

M

π φ

π θ

+



= 
+ −



                         (4.22) 

(1)

4P  is given by 

( ) ( )1 1

4

1

2 1
a

m
P

M

π φ+ −
= .                                          (4.23) 

2M  is selected to satisfy (4.17), (4.18), and (4.21).  

 

For 
r

M  ( 2r > ), (4.17) ,  (4.18) and  (4.21) are generalized as 

( )

( )

1
1

1

2

2r a

r

p

m
P

M

P

π θ

ω

−
≤


 ≥

                                                  (4.24) 

and  
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( ) ( )1

3 4 .
r r

s
P Pω −

≤ ≤                                                   (4.25) 

r
M  ( 2r > ) are selected to satisfy (4.24) and (4.25). 

( )
1

r
P , 

( )
2

r
P , 

( )
3

r
P  and 

( )1

4

r
P

−
 ( 2r > ) 

in (4.24) and (4.25) are derived as follows.  

 

 
( )

1

r
P  equals to 0,  if 

( )
1

r
P  is on the first passband of ( )rjM

a
H e

ω
; otherwise, 

( )
1

r
P  is 

given by 

( )

( )

( )
1

2
,  for ,

2
, for .

r

r

Mi a
a

ir

Mci a
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i
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H z

M
P

m
H z

M

π θ

π φ

−



= 
+



                                   (4.26) 

 where im  is a non-negative integer. 
( )

2

r
P  is expressed as 

( )

( )

( )
( )

2

2
, for ,

2 1
, for .

r

r

Mi a
a

ir

i a Mc
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H z

M
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M

π θ
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+


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+ −



                            (4.27) 

 
( )

3

r
P  is given by 

( )

( )

( )
( )

3

2
, for , 

2 1
, for .

r

r

Mi a
a

ir

i a Mc

a

i

m
H z

M
P

m
H z

M

π φ

π θ

+



= 
+ −



                            (4.28) 

The value of 
( )1

4

r
P

−
 ( 2r > ) depends on the location of 

( )1

5

r
P

−
, as shown in Figs. 4.9(b) 

and 4.11(b). (2)

4P  is derived as follows. 
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Figure 4.11 Illustration of the cascade of ( )1M

a
H z  and ( )2M

a
H z  when 

( )2

5P  

occurs at the passband of ( )1M

a
H z . 

 

For the case where ( )1M

a
H z  is cascaded with ( )rM

aH z  ( 2r > ), if 
( )2

5P  falls into the 

stopband of ( )1M

a
H z , as shown in Fig. 4.9(b), we get 

( ) ( ) ( )21 1 1 1

5

1 1

2 2 1
a a

m t m t
P

M M

π φ π φ+ + + + −
≤ ≤  .                        (4.29) 

where 1t  is a non-negative integer. If the masking band is the last band of 2( )M

aH z  or 

2 1M = , 
( )2

5P  is set to π . Otherwise,  
( )2

5P  is given by 

( ) ( )2 2

5

2

2 1
a

m
P

M

π φ+ −
= .                                          (4.30) 

Therefore, 
( )2

5P  can be expressed as 

( ) ( )2 2

5

2

2 1
min ,

a
m

P
M

π φ
π

+ − 
=  

 
.                                 (4.31) 

where 1 2min[ , ]x x  denotes the minimum value among 1x  and 2x . In this case, 
( )2

4P  is 

given by 
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( )

( ) ( )

( )

1 1 1 1

2 1 1

4

1 1

1

2 1 2 1
,  for ,

2 1
,                                  for .  

a a

a

m t m t

M M
P

m t

M

π φ π φ
π

π φ
π π

+ + − + + −
= <


= 
+ + − >



              (4.32) 

According to (4.32), 
( )2

4P  can be expressed as 

( ) ( )2 1 1

4

1

2 1
min ,

am t
P

M

π φ
π

+ + − 
=  

 
.                              (4.33) 

If 
( )2

5P  occurs at the passband or the transition-band of ( )1M

a
H z , as shown in Fig. 

4.11(a), we have 

( ) ( )2 2(2)

4 5

2

2 1
min ,

a
m

P P
M

π φ
π

+ − 
= =  

 
.                        (4.34) 

 

Similarly, for the case where ( )2Mc

a
H z  is cascaded with ( )1M

a
H z , when 

( )2

5P  falls into 

the stopband of ( )1M

a
H z , as shown in Fig. 4.10(b), 

( )2

4P  is given by (4.33). Otherwise, 

we have 

( ) ( ) ( )2 2 2

4 5

2

2 1
min ,

a
m

P P
M

π θ
π

+ + 
= =  

 
.                         (4.35) 

For generalization,  

a)  when ( )rM

a
H z  ( 2r > ) is cascaded with ( )1M

a
H z , If 

( )1

5

r
P

−
 falls into  

stopbands of ( )uM

a
H z  ( [ ]1,  2, ..., 1u i∈ − ) or ( )uMc

a
H z  ( [ ]2, 3, ..., r 1u ∈ − ), 

we have 
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( ) ( ) ( )

( ) [ ]

( ) ( ) ( )

( ) [ ]

1

5

1

5

2 2 1
min , , 

for ,  u 1,  2, ...,  1

or

2 2
min ,  

for ,  u 2, 3, ...,  1

u

u

ru u a u u a

u u

M

a

ru u a u u a

u u

Mc

a

m t m t
P

M M

H z r

m t m t
P

M M

H z r

π φ π φ
π

π θ π θ
π

−

−

 + + + + − 
≤ ≤  

 


∈ −




+ − + +  ≤ ≤    

 ∈ −


                (4.36) 

where 
( ) ( )1

5

2 1
min ,

r r a

r

m
P

M

π φ
π− + − 

=  
 

, 
u

m  and 
u

t  are non-negative integers. 

Let U  be a real set of the upper bounds in (4.36). We have 

( ) ( )

[ ]( )

2 1 2
min , or min ,  

u 1,  2, ...,  1 .

u u a u u a

u u

m t m t
U

M M

r

π φ π θ
π π

  + + − + +   
=       
      

∈ −

    (4.37) 

( )1

4

r
P

−
 is given by 

( ) [ ]1

4 max
r

P U
−

=                                                            (4.38) 

where 1 2max[ , ,..., ]
i

x x x  denotes the maximum value among 1x , 2x , …, 
i

x .  

Otherwise, we have 

( ) ( ) ( )1 1

4 5

2 1
min ,

r r r a

r

m
P P

M

π φ
π− − + − 

= =  
 

.                               (4.39) 

b) when ( )rMc

a
H z  ( 2r > ) is cascaded with ( )1M

a
H z , if  

( )1

5

r
P

−
 satisfies  (4.36), 

( )1

4

r
P

−
 is given by (4.39). Otherwise, we get 

( ) ( ) ( )1 1

4 4

2 1
min ,

r r r a

r

m
P P

M

π θ
π− − + + 

= =  
 

.                              (4.40) 

 

Case B conditions  
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For case B, similar conditions can be derived as follows. If ( )2M

a
H z  is cascaded with 

( )1M

a
H z , as shown in Fig. 4.6(b), we have  

( )

( )

2

1

2 2
1

2

2

s

a

P

m
P

M

ω

π θ

 ≤


−
=



                                                    (4.41) 

where 2m  is a non-negative integer,  and 

( )2 1
2

1

2
a

m
P

M

π θ+
≥ .                                                       (4.42) 

If 
( )2

2P  is on the last passband (in the range of [ ]0,  π ) of ( )2jM

a
H e

ω
 and 2M  is even,    

( )2

2P  is set to π  . Otherwise, we have 

  
( )2 2

2

2

2
a

m
P

M

π θ+
= .                                                     (4.43) 

To remove the unwanted passbands at the frequency lower than 
p

ω , we have  

( ) ( )

( ) ( )

( )

2 1

3 4

1 1

4

1

2 2
3

2

2 1

2
.

p

a

a

P P

m
P

M

m
P

M

ω

π φ

π φ


 ≥ ≥

 − +

=

 −

=


                                            (4.44) 

For the case where ( )2Mc

a
H z  is cascaded with ( )1M

a
H z , as shown in Fig. 4.12(b), we 

have 

( )

( )

2

1

2 2
1

2

2

s

a

P

m
P

M

ω

π φ

 ≤


+
=



                                                   (4.45) 

and 
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( )

( ) ( )

2 1
2

1

2 2

2

2

2

2 1

a

a

m
P

M

m
P

M

π θ

π φ

+
≥




+ − =


                                           (4.46) 

where 
( )2

2P π= , if 
( )2

2P  is on the last passband of ( )2jMc

a
H e

ω
 and 2M  is odd. To 

remove the unwanted passband located to the left of 
p

ω , we get 

( ) ( )

( ) ( )

( )

2 1

3 4

1 1

4

1

2 2
3

2

2 1

2
.

p

a

a

P P

m
P

M

m
P

M

ω

π φ

π θ


 ≥ ≥

 − +

=

 +

=


.                                            (4.47) 

2M  is selected to satisfy (4.41), (4.42) and (4.44) (or (4.45), (4.46) and (4.47)). 

 

2( )
jMc

aH e
ω

2

2

2 am

M

π θ+

(2)

2P

ωπ

(2)

1P

(2)

3P

2( )
jM

aH e
ω2( )

jMc

aH e
ω

ωπ
1( )

jM

aH e
ω

2

2

2m

M

π

(1)

4P
(2)

5P
 

Figure 4.12 Illustration of the cascade of ( )2Mc

a
H z  and ( )1M

a
H z  for Case B. 

 

To determine 
r

M  ( 2r > ), by generalizing (4.41)–(4.47), we get 

( )
1

r

s
P ω≤ ,                                                              (4.48) 

( ) 1
2

1

2r a
m

P
M

π θ+
≥                                                       (4.49) 

and  
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( ) ( )1

3 4

r r

p P Pω −
≥ ≥ .                                                    (4.50) 

r
M  ( 2r > ) are selected to satisfy (4.48), (4.49) and (4.50). 

( )
1

r
P  in (4.48) is given by 

( )

( )

( )
1

2
, for , 

2
, for 

r

r

Mr a
a

r r

Mcr a
a

r

m
H z

M
P

m
H z

M

π θ

π φ

−



= 
+



                                      (4.51) 

where rm  is a non-negative integer. 
( )

2

r
P  in (4.49) equals to π , if it is on the last 

passband (in the range of [ ]0,  π ) of ( )rjM

a
H e

ω
 (or ( )rjMc

a
H e

ω
) when 

r
M  is even (or 

odd). Otherwise, we have 

( )

( )

( )
( )

2

2
, for , 

2 1
, for . 

r

r

Mr a
a

rr

r a Mc

a

r

m
H z

M
P

m
H z

M

π θ

π φ

+



= 
+ −



                             (4.52) 

( )
3

r
P  in (4.50) is given by 

( )

( )

( )
3

2
, for ,

2
, for .

r

r

Mr a
a

i r

Mcr a
a

r

m
H z

M
P

m
H z

M

π φ

π θ

−



= 
+



                                     (4.53) 

( )1

4

r
P

−
 in (4.50) is determined by the location of ( )1

5

r
P

−
. If  ( )1

5

r
P

−
 falls into stopbands of 

( )uM

a
H z  ( [ ]1,  2, ..., 2u r∈ − ) or ( )uMc

a
H z  ( [ ]2, 3, ..., 2u r∈ − ) as shown in Figs. 

4.6(b) or 4.12 (b), respectively, we have  
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( ) ( ) ( )

( ) [ ]

( ) ( ) ( )

( ) [ ]

1

5

1

5

2 1 2
, 

for ,  1,  2, ..., 1  

or

2 2
max 0,  , 

for ,  2, 3, ..., 1  

u

u

ru u a u u a

u u

M

a

ru u a u u a

u u

Mc

a

m t m t
P

M M

H z u r

m t m t
P

M M

H z u r

π φ π φ

π θ π θ

−

−

 − − + − −
≤ ≤




∈ −




− − − +  ≤ ≤   

 ∈ −

              (4.54) 

where 
u

t  is a non-negative integer. ( )1

5

r
P

−
 is given by  

 ( )

( )
( )

( )

1

5

2 1
, for , 

2
max 0,   , for .

r

r

r a M

a

rr

Mcr a

a

r

m
H z

M
P

m
H z

M

π φ

π θ

−

 − +



= 
 −
   

                    (4.55) 

Let U denote a real set of the lower bounds in (4.54) . We get  

( ) ( )
[ ]( )

2 1 2
or max 0,  1,  2, ...,  1

u u a u u a

u u

m t m t
U u r

M M

π φ π θ  − − − − − 
= ∈ −    
    

. (4.56) 

( )1

4

r
P

−
 is given by 

( ) [ ]1

4 min
r

P U
−

= .                                                 (4.57) 

Otherwise, we have 

( ) ( )

( )
( )

( )

1

1

1

11 1

4 5

1

1

2 1
, for , 

2
max 0,  , for . 

r

r

r a M

a

rr r

Mcr a

a

r

m
H z

M
P P

m
H z

M

π φ

π θ

−

−

−

−− −

−

−

 − +



= = 
 −
   

                  (4.58) 

From the above discussion, for a given 
1

M , 
r

M  ( 2,  3,  ...,  r k= ) can be found to 

satisfy corresponding conditions. If 
( )

4

k
P  equals to π  (or 0) for Case A (or B), the 

unwanted frequency components can be removed successfully. Otherwise, another 
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masking filter ( )eH z  is required. The passband and stopband edges of ( )eH z  is given 

by 

 
, for Case A

, for Case Be

p

H

s

ω
θ

ω


= 


  (4.59) 

and 

 
( )

4 , for Case A and B 
e

k

H Pφ = .                                   (4.60) 

4.3.3 Ripple Analysis of Subfilters 

Before embarking on the detailed design procedure, it is useful to analyze the ripple 

effect of each subfilter on the overall filter. The structures in Figs. 4.2 and 4.5 are 

analyzed. Let ( )F ω  and ( )δ ω  denote the gain and deviation of ( )jH e ω . And the 

gain and deviation of ( )j

c
G e ω  are ( )cF ω  and ( )cδ ω , respectively. Let us consider the 

case where k = 3 and assume that only ( )rM

a
H z  (no ( )rMc

a
H z  ) are adopted for Case 

A design. For Case B design, it is assumed that the 3 identical subfilters are ( )1M

a
H z , 

( )2M

a
H z  and ( )3Mc

a
H z . The same analysis can be applied to cases where k > 3. Let 

( )a rF M ω  and ( )a rMδ ω  denote the gain and deviation of ( )rjM

aH e
ω  (or ( )rjMc

aH e
ω ). 

The ripple effects of Case A and Case B are analyzed separately.   

 

A.  Case A Filter Design  

From (4.2), we have 
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( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( )

3

1

1

.

a r a r c c

r

c c

F F M M F

F

ω δ ω ω δ ω ω δ ω

ω δ ω

=

 
   + = + − + +    

 

+

∏
       (4.61) 

The ripple effects of the subfilters on the overall filter are examined in the following 3 

frequency ranges as shown in Fig. 4.3.  

 

Frequency range 1: 1

1

2
0 a

m

M

π θ
ω

−
≤ < .  

In this frequency range, ( ) ( ) 1.cF Fω ω= =  (4.61) is simplified to the following form: 

( ) ( ) ( ) ( ) ( )
3

1

a r a r c c

r

F M Mδ ω ω δ ω δ ω δ ω
=

 
   = + − +    

 
∏ .                     (4.62) 

Ignoring the second order terms, we have  

( ) ( ) ( ) ( )
3

1

c a r c

r

F Mδ ω δ ω ω δ ω
=

= − +∏ .                                      (4.63) 

Depending on the value of ( )a rF M ω , the following relations are obtained. 

When ( ) 0a rF M ω =  or ( )
3

1

0 1a r

r

F M ω
=

< <∏ , 

( ) ( )c
δ ω δ ω≤ .                                                    (4.64) 

When ( )
3

1

1a r

r

F M ω
=

=∏ ,   

( ) 0δ ω ≈ .                                                       (4.65) 

 

Frequency range 2: 1

1

2
a

p

m

M

π θ
ω ω

−
≤ ≤ .  
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In this frequency range, ( ) ( ) 1a rF F Mω ω= = . Ignoring the second order terms,  (4.61) 

is simplified to  

 ( ) ( ) ( )
3

1

1 c a r

r

F Mδ ω ω δ ω
=

 = − ⋅  ∑ .                                       (4.66) 

Since ( )cF ω  decreases from unity to zero as ω increases, we have 

( ) ( )
3

1

a r

r

Mδ ω δ ω
=

≤∑ .                                                 (4.67) 

 

Frequency range 3: .
s

ω ω π≤ ≤   

In this frequency range, ( ) ( ) 0cF Fω ω= =  and ( )
3

1

0.a r

r

F M ω
=

=∏  Ignoring the second 

order terms, (4.61) is simplified to 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 2 3 2 3 1

3 1 2 .

a a a a a a

a a a c

F M F M M F M F M M

F M F M M

δ ω ω ω δ ω ω ω δ ω

ω ω δ ω δ ω

= +

+ +
      (4.68) 

Let ( ) ( ) ( ) ( )i a i a j a v
F M F M Mδ ω ω ω δ ω=  ( [ ],  ,  1,  2, 3i j v ∈  and i j v≠ ≠  ). When 

( ) ( ) 1
a i a j

F M F Mω ω = , we have 

( ) ( )i a vMδ ω δ ω= .                                         (4.69) 

When ( ) ( ) 0
a i a j

F M F Mω ω = , we get 

( ) 0iδ ω = .                                               (4.70) 

When ( ) ( )1 0
a i a j

F M F Mω ω< < , 

( ) ( )i a v
Mδ ω δ ω≤ .                                      (4.71) 

(4.68) can be evaluated based on (4.69)–(4.71). For example, when 

( ) ( )1 2 1a aF M F Mω ω =  and ( )3 0aF M ω = , (4.68) becomes 
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( ) ( ) ( )3 .a cMδ ω δ ω δ ω= +                                 (4.72) 

 

B. Case B Filter Design 

 From (4.3), we have 

( ) ( ) ( ) ( ) ( ) ( )
3

1

1
a r a r c c

r

F F M M Fω δ ω ω δ ω ω δ ω
=

 
   + = − + +    

 
∏ .               (4.73) 

The ripple effects of the subfilters on the overall filter are examined in the following 3 

frequency ranges, as shown in Fig. 4.6.  

 

Frequency range 1: 0
p

ω ω≤ ≤ .  

In this frequency range, ( ) ( ) 1.cF Fω ω= =  Manipulating (4.73), we get: 

( ) ( ) ( ) ( ) ( )
3

1

1
c a r a r c

r

F M Mδ ω δ ω ω δ ω δ ω
=

 
   = − + +    

 
∏ .                     (4.74) 

Since ( )
3

1

0a r

r

F M ω
=

=∏ , ignoring the second order terms, the following relation is 

obtained: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
1 2 3 2 3 1

3 1 2 .

c a a a a a a

a a a

F M F M M F M F M M

F M F M M

δ ω δ ω ω ω δ ω ω ω δ ω

ω ω δ ω

= − −

−
   (4.75) 

  Let ( ) ( ) ( ) ( )i a i a j a v
F M F M Mδ ω ω ω δ ω=  ( ,  ,  [1,  2, 3]i j v ∈ and i j v≠ ≠ ). When 

( ) ( ) 1
a i a j

F M F Mω ω = , we have 

( ) ( )i a vMδ ω δ ω= .                                         (4.76) 

When ( ) ( ) 0
a i a j

F M F Mω ω = , we get 

( ) 0iδ ω = .                                               (4.77) 
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When ( ) ( )0 1
a i a j

F M F Mω ω< < , we have 

( ) ( )i a v
Mδ ω δ ω≤ .                                        (4.78) 

(4.75) can be evaluated based on (4.76)–(4.78), e.g., when ( ) ( )1 20 1a aF M F Mω ω< <  

and ( )3 0aF M ω = , (4.75) becomes 

( ) ( ) ( )3 .
a c

Mδ ω δ ω δ ω≤ +                                   (4.79) 

 

Frequency range 2: 1

1

2
a

s

m

M

π θ
ω ω

+
≤ < .  

In this frequency range, ( ) 0F ω =  and ( ) 1a rF M ω = . By ignoring the second order 

terms,  (4.73) is simplified to 

( ) ( ) ( )
3

1

a r c

r

M Fδ ω δ ω ω
=

 
= −  

 
∑ .                             (4.80) 

Since ( )cF ω  decreases from unity to zero as ω increases, we have 

( ) ( )
3

1

a r

r

Mδ ω δ ω
=

≤∑ .                                      (4.81) 

 

Frequency range 3: 1

1

2
a

m

M

π θ
ω π

+
< ≤ .  

In this frequency range, ( ) ( ) 0cF Fω ω= = . Ignoring the second order terms, (4.73) is 

simplified to 

( ) ( ) ( ) ( )
3

1

c a r c

r

F Mδ ω δ ω ω δ ω
=

 
= −  

 
∏ .                           (4.82) 

When ( ) 0a rF M ω =  or ( )
3

1

0 1a r

r

F M ω
=

< <∏ , 
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( ) ( )c
δ ω δ ω≤ .                                             (4.83) 

When ( )
3

1

1a r

r

F M ω
=

=∏ , 

( ) 0δ ω ≈ .                                                  (4.84) 

 

The above analysis provides a useful insight for the design of the overall filter. For 

Case A, it can be seen from (4.64) that in the frequency range 1, the deviation of the 

overall filter is determined mainly by ( )cG z . This corresponds to the situation in 

frequency range 3 for case B. In frequency range 2, ( )iM

a
H z  determines the passband 

ripple for Case A  and the stopband ripple for Case B, according to (4.67) and (4.81), 

respectively. Similarly, subfilters ( )iM

a
H z  and ( )cG z  are responsible for the 

deviation of the overall filter in the frequency ranges 3 and 1 for Case A and Case B, 

respectively.  

4.3.4 Design Procedures 

The following design steps are recommended for the cases discussed in the previous 

section where 3 identical subfilters are utilized. Similar procedure can be easily applied 

to other cases. 

Step 1.  Find a set of appropriate values for 
r

M . 

Step 2. Design ( )aH z  using (4.6)–(4.8) or (4.9)–(4.11) for Case A or Case B, 

respectively.  For Case A, according to (4.67), set the passband ripple 
ap

δ  of ( )aH z  to 
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be 0.9 /
p

kδ , where 10% margin is kept for the ripple compensation of ( )cG z . The 

stopband ripple 
as

δ  is set to be 0.9
s

δ . For Case B, from (4.81), we have 

2 0.9
ap as s

δ δ δ+ =                                                     (4.85) 

and  

max ,  0.9
ap as p

δ δ δ  ≈  .                                            (4.86) 

Besides satisfying (4.85) and (4.86), we should maximize the value of 
ap as

δ δ  to 

minimize the order of ( )aH z , e.g., if 
p s

δ δ= , we may set 
ap

δ  and 
as

δ  to 0.9 / 4
p

δ  and 

0.9 / 2
p

δ , respectively. 

Step 3.  Design ( )cG z  using ( )
3

1

rM

a

r

H z
=

∏  as a prefilter. The zero-phase frequency 

response of ( )cG z  can be written as 

          ( ) ( ) ( )trig ,
c c

i

G G n iω ω=∑                                          (4.87) 

where ( )trig , iω  is a proper trigonometric function depending on the type of filter 

under consideration, ( )cG n  is the impulse response of ( )cG z . Similar definitions are 

applied to other subfilters. For Case A, in the passband, ( )cG z  has to satisfy the 

following:  

( ) ( ) ( ) ( )

( )

3 3

1

3

1 trig , 1

1 .

p a r c a r

i r r

p a r

i r

H M G n i H M

H M

δ ω ω ω

δ ω

= =

=

 
− − ≤ − ≤    

 

+ −

∏ ∏

∏
           (4.88) 

In the stopband, we have  

( ) ( ) ( ) ( ) ( )
3 3 3

1 1 1

trig , 1
s a r c a r s a r

r r r

H M G n i H M H Mδ ω ω ω δ ω
= = =

 
− − ≤ − ≤ −    

 
∏ ∏ ∏ .  (4.89) 
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For Case B, in the passband, ( )cG z  has to satisfy 

( ) ( ) ( )
3

1

1 trig , 1 1
p c a r p

r

G n i H Mδ ω ω δ
=

 
− ≤ − ≤ +    

 
∏ .                       (4.90) 

 In the stopband, we have  

( ) ( ) ( )
3

1

trig , 1
s c a r s

r

G n i H Mδ ω ω δ
=

 
− ≤ − ≤    

 
∏ .                          (4.91) 

Linear programming or any other suitable techniques may be used to minimize 
p

δ  

and 
s

δ  in  (4.90) and (4.91), respectively. 

Step 4.  Repeat Step 2 and 3 by slightly adjusting the ripple margins of ( )aH z  until no 

improvements are obtained. 

4.4 Implementation Issue 

In [17], the implementation of a filter ( )
a

H z  consists of two parts: arithmetic 

operations and delay (storage) elements, as shown in Fig. 4.13, where 
a

S  denotes the 

arithmetic operations of ( )
a

H z  and D denotes the delay elements or memory elements. 

Using the structure in Fig. 4.13 as a basic building block and applying folding 

transformation [81] to all identical subfilters, a structure for implementation of the 

cascade of identical subfilters was introduced [17], as shown in Fig. 4.14, where T is a 

latch used to store the internal signals. Fig. 4.15 illustrates an implementation structure 

for the cascade of ( ) ( )1 2M M

a a
H z H z  based on the structure in Fig. 4.14, where the 

length of ( )aH z  is 3. Therefore, all identical subfitlers can share adders and 

multipliers. The structure in Fig. 4.15 can be easily applied to implement filters in Fig. 
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4.2 or Fig. 4.5. Let 
aH

N  and 
cG

N  be the orders of ( )aH z  and ( )cG z , respectively, the 

total memory elements required is 

1

1
a c

k

H r G

r

N M N
=

+ +∑                                               (4.92) 

 

 

 

aS

D

( )x n ( )u n

 

Figure 4.13 A filter is composed of the delay (storage) elements and arithmetic 

operations. 

 

 

 

kM D

1M D
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Figure 4.14 An implementation structure of the cascade of identical subfilters. 
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Figure 4.15 An implementation structure of ( ) ( )1 2M M

a a
H z H z . 

 

4.5 FIR Filters with Varying Specifications  

( )1M

a
H z  is a multi-band filter, as shown Fig. 4.3(b). In Figs. 4.3(b) and 4.6(b), only 

one band is used to perform the bandedge shaping for one filter. By selecting different 

combinations of identical subfilters with different periods, it is interesting to note that 

filters with different passband and stopband cutoff frequencies can be designed by 

using the same model filter. Fig. 4.16 illustrates the frequency responses of ( )1M

a
H z  

cascaded with different identical subfilters separately. “Band1”, “Band2” and “Band3” 

in Fig. 4.16 can be employed to design different FIR filters. Hence, if L number of 

masking filters ( )
icG z  ( 1,  2, ..., i L= ) are introduced, an FRM-based FIR filter can be 

designed in a single structure which has the flexibility to meet different specifications. 

The realization structures for Case A and Case B are illustrated in Fig. 4.17 and Fig. 

4.18, respectively, where 
iC

D  ( 1,  2, ..., i L= ) are the group delays of 
ic

G , and '

1
S , 

'

2
S  , …, '

L
S  are switches to control which filter is to be realized. In Fig. 4.17 and Fig. 
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4.18, ( )
1

k

r

r

H z
=

∏  has different outputs by selecting different combinations of delay 

elements. A realization structure for ( )
1

k

r

r

H z
=

∏  is shown in Fig. 4.19, where by 

controlling “on” or “off” of different switches (s1, s2, …, sk), different delay elements 

from 1M D  to 
k

M D  are selected.   

 

...

ωπ
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1( )jM

a
H e

ω
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Figure 4.16 Illustration of designing different filters using one model filter. 
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Figure 4.17 A structure for designing a FIR filter with different specifications for 

Case A. 
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Figure 4.18 A structure for designing a FIR filter with different specifications for 

Case B. 
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Figure 4.19 A realization structure for ( )
1

k

r

r

H z
=

∏ . 
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4.6 Examples and Comparisons  

Example 1 

To illustrate the new design approach, a lowpass filter is designed with passband edge 

at ωp = 0.3×2π and stopband edge at ωs = 0.301×2π. The passband ripple is at most 

0.01 and the stopband attenuation is at least 40 dB. Using the proposed method, for 

1 31M = , the remaining 
r

M  are found to be 11, and 1. The lengths of ( )H z  and 

( )cG z  are 75 and 95, respectively. The implementation uses the structure for Case A 

which requires 86 multipliers, 170 adders and 3277 delay elements. If the structure for 

Case B is utilized, 
r

M  are found to be 27, 14, 3, and 1. A highpass model filter is 

required with a length of 95. The length for ( )cG z  is 71. For implementation, 84 

multipliers, 165 adders and 4301 delay elements are required. Figs. 4.20–4.22 show the 

magnitude responses of subfilters and the overall filter for 1 31M = . If ( )cG z  is 

designed by the FRM approach, further reduction in the number of multipliers can be 

achieved. For clarity, the complexity of the overall filter is summarized in Table 4.1 in 

terms of multipliers, adders, and the number of delay elements using different design 

methods. As indicated in Table 4.1, 130 multipliers and 256 adders are required using 

the single-stage FRM approach. If ( )cG z  is designed using the FRM technique, more 

than 42% savings in the number of multipliers and adders can be achieved compared 

with the single-stage FRM technique. Indicated in Table 4.1, the proposed method also 

outperforms the IFIR-FRM approach and the two-stage FRM technique in terms of the 

required multipliers and adders.  
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Figure 4.20 Magnitude response of ( )
3

1

iM

a

i

H z
=

∏  in example 1 for 
1

31M = . 

 

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

Normalized frequency

M
ag

n
it

u
d

e 
(d

B
)

 

Figure 4.21 Magnitude responses of  ( )C z  (solid line) and ( )cG z  (dashed line) 

in example 1 for 
1

31M = . 
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Figure 4.22 Magnitude response of the overall filter in example 1 for 
1

31M = . 

 

Table 4.1 Comparison of different design methods of example 1. 

Design Multipliers Adders delays 

Conventional 925 1850 1850 

1-stage FRM 130 256 2000 

2-stage FRM 92 177 2210 

IFIR-FRM 104 202 2168 

Proposed 1 (
r

M : 31, 11, 1) 86 170 3277 

Proposed 2 (
r

M : 31, 11, 1) 

( )cG z  designed by the FRM approach 

74 144 3309 

Proposed 3 (
r

M : 27, 14, 3, 1) 84 165 4301 
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Example 2 

Using the structure in Fig. 4.17, the lowpass model filter in example 1 can be utilized 

to design filters with different passband and stopband edges having a transition-width 

of 0.001 2π× . For 1 31M = , θ  and φ  are 0.3 2π×  and 0.331 2π× , respectively. Table 

4.2 shows the bandedges of filters that can be designed by selecting appropriate 
r

M , 

where 
p

f  and 
s

f  denote the normalized passband and stopband edges, respectively. It 

should be noted that if the constraint of the transition-width ( 0.001 2π× ) is relaxed, the 

proposed structure can be used to design much more filters than those indicated in 

Table 4.2. In general, the transition-width may range from 0.001 2π×  to 0.331 2π× . 

Table 4.2 Filters designed using the lowpass model filter in example 1. 

i
M  p

f  
s

f  

31, 7, 4, 2, 1 0.0419 0.042 

31, 4, 2, 1 0.0742 0.0743 

31, 6, 2, 1 0.1065 0.1075 

31, 9, 2, 1 0.1387 0.1397 

31, 13, 7, 3, 1 0.1710 0.172 

31, 8, 3, 1 0.2032 0.2042 

31, 7, 5, 1 0.2355 0.2455 

31, 12, 6, 1 0.2677 0.2777 

31, 11, 1 0.3000 0.301 

31, 5, 2 0.3323 0.3333 

31, 9, 6, 4 0.3645 0.3655 

31, 18, 4 0.3968 0.3978 

31, 10, 6 0.429 0.430 

31, 10 0.4613 0.4713 
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4.7 Summary 

In this chapter, two FRM-based structures are proposed for the design of arbitrary 

bandwidth sharp FIR filters. The proposed approach combines the SFFM technique 

and the FRM method. One identical model filter (with different interpolation factors)  

is repeatedly cascaded with itself.  The cascade of identical model filters with different 

interpolation factors performs both the bandedge shaping and the masking tasks. With 

the help of only one masking filter, the overall filter is synthesized. Arithmetic 

operations are greatly reduced using the proposed structures at the price of increasing 

delays. With simple modifications, the proposed structures can be extended to design 

FIR filters with varying specifications. This provides significant flexibility for the 

design and implementation of sharp FIR filters.  
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Chapter 5 

Design of Computationally Efficient 

Narrowband and Wideband Sharp FIR Filters 

5.1 Introduction 

Interpolated finite impulse response (IFIR) technique [10] is one of the most 

computationally efficient approaches to realize narrowband and wideband FIR filters. 

The frequency responses for a lowpass IFIR filter are shown in Fig. 5.1. The design starts 

with a lowpass model filter )(zH M  shown in Fig. 5.1(a). By replacing each delay 

element of )(zH M  with M delay elements, a bandedge shaping filter )( M
M zH  is 

formed which has periodic frequency response with a period of  
2

M

π
,  as shown in Fig. 

5.1(b). To synthesize the overall filter )(zH ,  a masking filter )(zG  is required to 

remove the undesired frequency components in the stopband, as shown in Figs. 5.1(b) 
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and 5.1(c). ( )H z  has a narrow transition-width which is 
1

M
 of )(zH M . The transfer 

function of ( )H z  is written as 

( ) ( ) ( ).M

M
H z H z G z=                                            (5.1) 

 

)(
ωjM

M eH

π

)( ωj
M eH

( )jH e ω

π

π
| ( ) |jG e ω

2
M
π

ω

ω

ω
 

Figure 5.1 Frequency responses for a lowpass IFIR filter. 

 

A wideband highpass (lowpass) filter is a complement of the corresponding narrowband 

lowpass (highpass) IFIR filter. A realization structure for wideband IFIR filters is shown 

in Fig. 5.2 and the corresponding z-transform transfer function is given by 

      ( ) ( ) ( )GD M

M
H z z H z G z−= −                                       (5.2)                               

where GD is the total number of group delay of ( )M

M
H z  and ( )G z . The frequency 

response of each subfilter for a lowpass (highpass) wideband filter is illustrated in Fig. 

5.3. To design a narrowband highpass or a wideband lowpass filter using a lowpass 

model filter, M must be even to include π  in the passband, as shown in Figs. 5.3(b) and 
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5.3(d). Otherwise, M must be odd as shown in Fig. 5.3(e), if a highpass model filter is 

used.  

 

( )M

MH z ( )G z( )u n

( )y n

GD
z

−

+
-

 

Figure 5.2 Wideband IFIR filters. 

 

The complexities of )(zH M  and )(zG  are interrelated: increasing the value of M will 

reduce the complexity of )(zH M  while increasing the order of  )(zG . With an 

appropriate choice of M, the number of the overall orders of )(zH M  and )(zG  can be 

reduced significantly. Therefore, there exists an optimal decomposition of an IFIR filter 

which usually leads to multi-stage IFIR filters when a large M is adopted [12]. The 

drawbacks of multi-stage IFIR filters are the relatively high complexity associated with 

the design of each subfilter and the increased number of delay elements.  
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Figure 5.3 Frequency responses of subfilters in the IFIR technique. M is even in (b) and 

odd in (e). 

 

Several improvements to the IFIR filters were proposed [12–14] by using efficient 

methods to design the masking filters. In this chapter, a new class of masking filter 

structures is proposed to design narrowband lowpass, highpass and bandpass IFIR filters, 

respectively. Wideband lowpass (highpass) IFIR filters can be easily obtained from the 
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corresponding narrowband IFIR filters. The proposed masking filters can also be used as 

a prefilter in the “prefilter plus equalizer” technique. Examples show that the new 

masking filters can achieve great savings in terms of arithmetic operations compared 

with the original IFIR filters. Meanwhile, the required delay elements are decreased 

compared with other equivalent computationally efficient filters.  

 

The organization of this chapter is as follows. New masking filter structures for the 

design of lowpass, highpass, and bandpass IFIR filters are developed in Section 5.2. In 

Section 5.3, design procedures are discussed thoroughly.  Implementation consideration 

is introduced in Section 5.4. Design examples and comparison are illustrated in Section 

5.5. Section 5.6 summarizes this chapter.  

5.2 New Masking Filters 

5.2.1 For Lowpass FIR Filter Design 

In Chapter 3, a multiplication-free FIR filter is developed with the transfer function 

given by (3.10), i.e.,  

       ( ) ( ) ( ) ( )
2

2 21
, , , 1 1 1

8 3

L
K

N N N N

Lc L K
P N L K z z z z z− − − − = + + + +  ⋅

             (5.3) 

where N is a positive integer, L and K are called sharpening factors for the purpose of 

providing enough stopband attenuation. By selecting different values of L and K, 

different stopband attenuations are obtained. ( )
Lc

P z  has periodic frequency response 

with a period of 
2

N

π
 and is monotonically decreasing in 0,  

2N

π
ω

 
∈   

. To utilize ( )
Lc

P z  
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as the masking filter for IFIR filters, the aliasing bands beyond 
2N

π
 must be removed. It 

is noted that reducing the value of N, the number of aliasing bands is reduced too. 

Therefore, using ( )
Lc

P z  as a basic building block, a new masking filter ( )
L

P z  is 

obtained. The transfer function is defined as  

            ( ) ( ) ( )4 2

1

i i
i i

r L K
N N

L L L

i

P z P z P z
=

   =    ∏                                          (5.4) 

where iN  are positive integers and 1 2 ... rN N N> > > , 4 ( )iN

L
P z  and 2 ( )iN

L
P z  are given 

by  

( ) ( ) ( )
2

2

4

1
1 1

8
i i iN N N

L
P z z z

− −= + +                                            (5.5)  

and 

( ) ( )2

2

1
1

3
i i iN N N

L
P z z z

− −= + + ,                                              (5.6) 

respectively. The magnitude response of ( )
L

P z  is expressed as 

 ( ) ( ) ( )2

1

1
( ) cos cos 1 2cos .

2 3

i i

i i

r
L Kj

L i i iL K
i

P e N N N
ω ω ω ω

=

 = + +   ⋅
∏          (5.7) 

The selection of 
i

N  will be discussed in later sections. It should be noted that if 
i

L  or 

i
K  equals to 0, the corresponding subfilter 4 ( )

L
P z  or 2 ( )

L
P z  is in fact not used to 

construct ( )
L

P z .  

5.2.2 For Highpass FIR Filter Design 

Applying the transformation: 1 1
z z

− −→ −  in (5.3), a highpass version ( )
Hc

P z  is formed 

which is suitable for the design of highpass IFIR filters. The transfer function and the 

magnitude response are written as  
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( ) ( ) ( ) ( )
2

2 21
, , , 1 1 1

8 3

L
K

N N N N

Hc L K
P N L K z z z z z− − − − = − + − +  ⋅

                      (5.8) 

and 

     [ ]21
( ) cos ( ) cos( ) 1 2cos( )

2 3

L Kj

Hc L K
P e N N N

ω ω ω ω = − − ⋅
                   (5.9) 

where N must be odd to include π  in the passband. By combining different ( )
Lc

P z  and 

( )
Hc

P z  together, a new masking filter for highpass IFIR filters is obtained with the 

transfer function written as 

           ( ) ( ) ( )1 1 1 2 2 2

1

, , , , , ,
r

H Lc i i i Hc i i i

i

P z P N L K z P N L K z
=

= ∏                         (5.10) 

where N1i ( 11 12 1...
k

N N N> > ) are even integers, and N2i ( 21 22 2...
k

N N N> > ) are odd 

integers.  

5.2.3 For Bandpass Filter Design 

( , , , )
Lc

P N L K z  has periodic frequency response with main lobes centered at 
2 n

N

π
, 

where 0,  1, ..., 1n N= − . Similarly, ( , , , )
Hc

P N L K z  has periodic frequency response 

with main lobes centered at 
( )2 0.5 n

N

π +
. The main lobes of ( , , , )

Lc
P N L K z  or 

( , , , )
Hc

P N L K z  can be used to design IFIR bandpass filters. A new masking filter ( )
B

P z  

is obtained by cascading r sections of ( )
Lc

P z  and/or ( )
Hc

P z  with different N, K, L. The 

transfer function of ( )
B

P z  is given by 

( ) ( )
1

, , ,
r

B LH i i i

i

P z P N L K z
=

= ∏                                                 (5.11) 
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where ( ), , ,LH i i iP N L K z  is chosen from [ ( ), , ,Lc i i iP N L K z , ( ), , ,Hc i i iP N L K z ]. 1N  is the 

largest integer among 
i

N . 
i

N  ( 2i ≥ ) should be chosen in such a way that the nulls of 

( ), , ,LH i i iP N L K z  should cancel the undesired lobes of ( )1 1 1, , ,LHP N L K z  and should 

keep the desired lobe of ( )1 1 1, , ,LHP N L K z  undistorted. Fig. 5.4 shows the magnitude 

response of ( )
B

P z , when 
i

N  are ( )9 L , ( )6 L , ( )3 L , and ( )2 H , where the superscript “(L)” 

or “(H)” corresponds to ( ), , ,Lc i i iP N L K z  or ( ), , ,Hc i i iP N L K z , respectively. 
i

L  for all i   

are 1. 
i

K  are 1, 0, 1, and 0. ( )
B

P z  can serve as a masking filter in IFIR filters or a 

prefilter in the prefitler-equalizer approach (this will be illustrated in Section 5.5.) The 

passband degradation of ( )
B

P z  can be easily compensated by a bandedge shaping filter 

or an equalizer.  
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Figure 5.4 Magnitude response of ( )
B

P z  for 9,  6,  3,  2
i

N = , 1
i

L =  and 

1,  0,  1,  1
i

K = , ( 1,  2,  3,  4i = ). 
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5.3 Filter Design 

5.3.1 Lowpass Filter Design 

In this section, the design for narrowband lowpass filter is discussed. Similar results can 

be easily obtained for highpass cases. Let the desired passband and stopband edges are 

p
ω  and 

s
ω , respectively. The passband and stopband edges of ( )

M
H z  are given by  

   
p

Mθ ω=                                                            (5.12) 

and  

         
s

Mφ ω= ,                                                          (5.13) 

respectively. To remove the aliasing bands of ( )M

M
H z , ( )

L
P z  should meet the 

following requirement: 

       ( ) 2
,  for ,  j

L sP e
M

ω π φ
δ ω π

− 
< ∈   

                                 (5.14) 

where 
s

δ  is the required stopband ripple. For a given M, a set of 
i

N  , 
i

K  and 
i

L  

( 1,  2, ..., i k= ) should be found to meet (5.14). 1N  is selected as follows. From (5.7), the 

first null 1

null
ω  of ( )

L
P z  is given by 

 1

12
null

N

π
ω =                                                            (5.15) 

1

null
ω  should be chosen in such a way that it falls into the interval 

2 -
,  s

M

π φ
ω
 
  

 and it 

should be as close to 
2 -

M

π φ
 as possible, as shown in Fig. 5.3(b). Hence, we get 

1

2

2N M

π π φ−
≤                                                        (5.16) 
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Solve (5.16), we have  

 1 round
2(2 )

M
N

π

π φ

 
≥  − 

                                         (5.17) 

where round[x] rounds x to the nearest integer. After 1N  is determined, a search program 

can be made to find a set of 
i

N   , 
i

K  and  
i

L  ( 1,  2, ..., i k= ) satisfying (5.14) and 

leading to the minimum number of delays of ( )
L

P z .  

 

For the design of ( )
M

H z , we have 

 
( ) ( )

( ) ( ) [ ]

1 ,  for 0,  

,  for ,  

jM j

p M L p p

jM j

M L s s

H e P e

H e P e

ω ω

ω ω

δ δ ω ω

δ ω ω π

  − ≤ − ≤ ∈  


≤ ∈

                          (5.18) 

where 
p

δ  is the required passband ripple. Given ( )j

L
P e

ω , an optimal ( )j

M
H e

ω  

minimizing 
p

δ  and 
s

δ  in the passband and stopband, respectively, can be obtained 

using well-known filter design tools, such as the modified Parks-McClellan method [79] 

and linear programming [78]. 

5.3.2  Bandpass Filter Design 

 Let a lowpass filter ( )
a

H z  be used as the model filter. Fig. 5.5 shows the frequency 

response of each subfilter for the design of a bandpass filter ( )H z .  The passband and 

stopband cutoff frequencies of ( )
a

H z  are 
a

θ  and 
a

φ ,  respectively, as shown in Fig. 

5.5(a). The passband center frequency is given by 

         
2

o

m

M

π
ω =                                                        (5.19) 
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where m is an integer. Let 1ω∆  denote the required passband width and 2ω∆  denote the 

transition-width. For a given M, we have 

 

1

1
2

2

2

a

a

M

M

ω
θ

ω
φ ω

∆
=


∆  = + ∆   

 (5.20) 

When M is specified, the masking filter ( )
B

P z  can be designed. Assume that 

( )1 1 1, , ,LHP N L K z  is ( )1 1 1, , ,LcP N L K z . The center frequency of one of the main lobes of 

( )1 1 1, , ,LHP N L K z  should be as close to 
o

ω  as possible. Therefore, we have 

1

1

2 2n m

N M

π π
≈                                                        (5.21) 

 where 1n  is a positive integer. 

 

( )j

BP e ω

M

m aφπ −+ )1(2oω

)( ωjeH

)( ωjM
a eH

2P

ωπ

ωπ

1P

ωπ

)( ωj
a eH

aθ aφ

aω bω

2( 1) am

M

π φ− +

 

Figure 5.5 Frequency responses for the design of bandpass IFIR filters. 

 

As shown in Fig. 5.5(b), the nulls P1 and P2 of ( )1 1 1, , ,LcP N L K z  should meet the 

conditions: 
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1P a
ω ω<                                                               (5.22) 

and 

2P b
ω ω>                                                              (5.23) 

where 
a

ω  and 
b

ω  denote the required lower and upper stopband edges, respectively. 
1P

ω  

and 
2P

ω  are given by 

1

2

1

1

1

1

(2 1)

2

(2 3)

2

P

P

q

N

q

N

π
ω

π
ω

+
=




+ =


                                                      (5.24) 

where 1q  is an integer. 1N  can be found using (5.21)–(5.23). Similar to (5.14), ( )
B

P z  

needs to satisfy the following: 

( ) 2 ( 1) 2 ( 1)
,  for 0,  ,  j a a

B s

m m
P e

M M

ω π φ π φ
δ ω π

− + + −   
< ∈ ∪   

   
.               (5.25) 

An exhaustive search should be preformed to determine
i

N , 
i

L  and 
i

K  based on (5.21)

–(5.25) for a given M. The selected set of 
i

N , 
i

L  and 
i

K  should produce low hardware 

cost for the overall filter in terms of multiplications, additions and delays. When ( )
B

P z  

is determined, ( )
a

H z  can be designed in a similar way as for lowpass cases. 

  

In case that (5.25) can not be satisfied thoroughly in some frequency ranges, an 

additional simple masking filter is required to perform the task which leads to a modified 

IFIR structure as shown in Fig. 5.6. The frequency response of each subfilter in Fig. 5.6 

is sketched in Fig. 5.7. In Fig. 5.6, the cascade of ( )G z  and ( )
B

P z  removes all unwanted 

passbands of ( )M

a
H z  as shown in Figs. 5.7(b) and 5.7(c).  
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a zH ( )
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Figure 5.6 A modified IFIR structure. 

 

 

( )
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BP e
ω

)( ωj
eG

M

m aφπ −+ )1(2oω
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Figure 5.7 Frequency responses for the filters in Fig. 5.6. 

 

If the structure in Fig. 5.6 is used, (5.25) can be relaxed to  

( )

( )

1

2

j

B s

j

B s

P e

P e

ω

ω

δ

δ

 ≤


≤

                                                  (5.26) 

where 1ω  and 2ω  are given by 

 
1

2

2 ( 1)

2 ( 1)

a

a

m

M

m

M

π φ
ω

π φ
ω

− +
=


+ − =



 (5.27) 
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In this case, ( )
B

P z  is used as prefilter and ( )
a

H z  is designed in such a way that 

( ) ( )
a B

H z P z  meet the overall passband and transition-band specifications. The role of 

( )G z  is to achieve the overall specification. 

5.4 Implementation Issue 

The proposed masking filters are combinations of identical subfilters with different 

periods. By folding transformation [81], identical subfilters may be mapped to a single 

hardware structure [17]. Fig. 5.8 shows an implementation structure for 

1 2

2 2( ) ( )N N

L L
P z P z  by applying the concept in [17], where T is a latch for the purpose of 

storing previous signals for the next operation. A loop is introduced in Fig. 5.8 which is 

only significant for the view of implementation and will not affect such features as 

stability and linear-phase for the overall filter. Therefore, adders can be shared between 

identical subfilters with different periods.  

 

D

D

D D

1N

D D

D

(0) 1h =
)(ny

( )x n

D

D D

D D

(1) 1h =

T

(2) 1h =

2N

 

Figure 5.8 An implementation structure for 1 2

2 2( ) ( )N N

L L
P z P z . 
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5.5 Design Examples and Comparison 

5.5.1 Narrowband Lowpass Filters 

Two lowpass filters are designed to illustrate the proposed method. Let us consider the 

first filter with the specifications taken from [12]: 0.05
p

ω π= , 0.1
s

ω π=  and 

0.01
p

δ =  , 0.001
s

δ = . To design such a filter, different sets of 
i

N , 
i

L , and 
i

K  

( 1,  2,  ...,  i r=  ) can be found for different M. Using the proposed method, for 9M = , 

i
N  are 5, 3, 2, 1. 

i
L  and 

i
K   for all i  equal to 1. The length for ( )

M
H z  is 9. To 

implement the overall filter, 5 multipliers and 13 adders are required; the total number of 

delay elements is 140. In [12], the optimal IFIR design requires 15 multipliers with 127 

delay elements. The proposed approach can achieve more than 66% savings in the 

number of multipliers. The designed filter is also more efficient than the one in [15], in 

which 5 multiplier and 170 delay elements are required.  

 

The second example is also taken from [12], which have the passband and stopband 

edges located at 0.01 ,
p

ω π=  and 0.02 ,
s

ω π=  respectively. The passband ripple is 0.01 

and the stopband ripple is 0.001. With the proposed method, M is chosen to be 30, r = 5 

and 1N  to 5N  in ascending order are 17, 12, 4, 2, 1.  
i

L  for all i  are 1. And the values of 

1K  to 5K  in ascending order are 1, 1, 1, 0, 0.  The length for the model filter ( )
M

H z  is 

15. The hardware cost is 8 multipliers, 19 adders and 632 delay elements. Considerable 

computational savings have been achieved compared with the design in [12] which 

requires 21 multipliers, 35 adders and 640 delay elements. The results using different 

design methods are summarized in Table 5.1. The magnitude responses for example 1 
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and 2 are shown in Figs. 5.9–5.12, respectively. Coefficients for ( )
M

H z  in example 1 

and 2 are shown in Appendix A.  
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Figure 5.9 Magnitude responses of  ( )
L

P z  (solid line) and ( )M

M
H z  (dotted line)  in 

example 1 (lowpass filter). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Magnitude response of ( )H z  in example 1 (lowpass filter). 
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Figure 5.11 Magnitude responses of ( )
L

P z  (solid line) and ( )M

M
H z  (dotted line) in 

example 2 (lowpass filter). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 Magnitude response of ( )H z  in example 2 (lowpass filter). 
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Table 5.1 Results of designing narrowband lowpass filters using different 

methods. 

 Design method Multipliers Adders Delays 

Conventional 55 108 108 

3-stage IFIR [12] 15 24 127 

SFFM [18] 10 18 181 

Example 1 

Design of [15] 5 19 170 

 Proposed: M = 9 5 13 140 

Conventional 270 538 538 

3-stage IFIR [12] 21 35 640 

SFFM [18] 9 16 913 

Example 2 

Proposed: M = 30 8 19 632 

 

5.5.2 Wideband Lowpass Filter  

This example is a wideband lowpass filter taken from [19] with passband edge and 

stopband edge at 0.9π  and 0.91π , respectively. The passband and stopband ripples are 

0.05 and 0.01, respectively. A narrowband highpass filter is designed firstly with the 

passband and stopband edges at 0.91π  and 0.9π , respectively. The overall filter is the 

complement of the highpass filter. Using the proposed method, for 8M = , only the filter 

type of ( )
Hc

P z  is required to form the masking filter. r is found to be 2. 21N  and 22N  are 

3 and 1, respectively. 21L  and 22L  are 2 and 1, respectively. 21K  and 22K  are 1 and  2, 

respectively. The length for the model filter ( )
M

H z  is 57. The implementation of the 

overall filter requires 29 multipliers, 62 adders and 488 delay elements. Using the single 

filter frequency masking (SFFM) technique [19], the best design required 37 multipliers, 

72 adders and 720 delay elements. Compared with IFIR filters in [10], the proposed 



Chapter 5. Computationally Efficient Narrowband & Wideband FIR Filters 

 

134 

method achieves considerable arithmetic savings with less delay elements, as 

summarized in Table 5.2. Figs. 5.13–5.15 show the magnitude responses for this 

example. 

 

Table 5.2 Results of designing the wideband lowpass filter using different 

methods. 

Design method Multipliers Adders Delays 

Conventional  217 432 432 

One stage IFIR [10] 58 115 512 

SFFM [19] 37 72 720 

Proposed: M = 8 29 62 488 
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Figure 5.13 Magnitude responses of ( )
H

P z  (dashed line) and ( )M

M
H z  (solid line) 

for the wideband lowpass filter. 
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Figure 5.14 Magnitude response of ( ) ( )M

H M
P z H z  for the wideband lowpass filter. 
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Figure 5.15 Magnitude response of ( )H z  for the wideband lowpass filter. 
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5.5.3 Bandpass Filters 

Three bandpass filters are designed using the proposed filter ( )
B

P z  given by (5.11). 

When designing the first filter, ( )
B

P z  is a masking filter. For the design of the other two 

filters, ( )
B

P z  is a prefilter.  

 

Let us consider the first narrowband bandpass filter with the specifications given by 

1
0.24 2

p
ω π= × ,   

2
0.26 2

p
ω π= ×   (passband edges) 

1
0.239 2

s
ω π= × ,   

2
0.261 2

s
ω π= ×  (stopband edges) 

Maximum passband ripple: 0.01. 

Minimum stopband attenuation: 40 dB. 

For 24M = , 
i

N  are found to be ( )8 L , ( )4 L , and ( )2 H , respectively. 
i

L  for all i  are 1. 
i

K  

are 1, 0 and 0. The length of the model filter is 82. The implementation of this filter 

requires 41 multipliers, 89 adders and 2018 delay elements. The estimated filter length 

of the conventional design is about 1850. Using the original IFIR approach, the optimal 

interpolation factor is 20. The lengths of the corresponding model filter and masking 

filter are 99 and 81, respectively. This corresponds to 91 multipliers, 178 adders, and 

2040 delay elements. Compared with the original IFIR approach the overall savings in 

the number of multipliers and adders are about 55.4% and 50%, respectively. Moreover, 

the implementation using the proposed method requires less delay elements than the 

original IFIR approach. The computational cost of different design methods is 

summarized in Table 5.3. Figs. 5.16 and 5.17 show the magnitude responses for this 

example.   
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Figure 5.16 Magnitude responses of ( )
B

P z  (dashed line) and ( )M

M
H z  (solid line) in 

example 1(bandpass filter ). 
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Figure 5.17 Magnitude response of ( )H z  in example 1 (bandpass filter ). 

0.24 0.26
0.99

1

1.01

M
a
g

n
it

u
d

e



Chapter 5. Computationally Efficient Narrowband & Wideband FIR Filters 

 

138 

The second filter is taken from [15]. The center frequency of the passband of the filter is 

located at 0.251 2
o

ω π= × . The passband width and the transition-width are 0.02π  and 

0.04π , respectively. The passband ripple is at most 0.045±  dB and the stopband 

attenuation is at least 30 dB. The implementation of this filter using the method in [15] 

requires 5 multipliers, 12 adders and 120 delay elements. Using the proposed approach, 

( )
B

P z  serves as a prefilter. ( )
B

P z  is constructed by ( )
Lc

P z  only.
i

N  are found to be 8, 4 

and 2. 
i

L  are 1 for 1,  2,  3i = . 1K  to 3K  are 1, 0, and 0. The length of the interpolated 

equalizer is 5 with an interpolation filter factor of 12. The design corresponds to 3 

multipliers, 9 adders and 121 delay elements. In [13], 18 multipliers, 27 adders and 111 

delay elements are required to implement this filter. Clearly, the proposed method 

achieves significant savings in terms of arithmetic operations compared with the 

techniques in [13] and [15]. The magnitude responses of subfilters designed in this 

example are illustrated in Figs. 5.18 and 5.19. The computational cost of different design 

methods is also summarized in Table 5.3.  
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Figure 5.18 Magnitude responses of ( )
B

P z  (solid line) and ( )M

M
H z  (dashed line) in 

example 2 (bandpass filter). 
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Figure 5.19 Magnitude response of ( )H z  in example 2 (bandpass filter). 
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The last example is a bandpass filter taken from [15] with the center frequency of the 

passband located at 0.2 2
o

ω π= × . The passband width and the transition-width are 

0.044π  and 0.042π , respectively. The passband ripple is at most 0.5±  dB and the 

stopband attenuation is at least 60 dB. Using the prefilter-equalizer [4] design method, 

43 multiplier, 163 adders and 162 delay elements are required to implement this filter. In 

[15], the hardware cost is 7 multipliers, 48 adders and 217 delay elements. Using the 

proposed design, 4 sections of ( )
LH i

P N  are cascaded to form the prefilter ( )
B

P z . 
i

N  are 

found to be ( )10 L , ( )5 L , ( )3 H  and ( )2 H . 
i

L  for all i  are 1. 1K  to 4K  are 1, 1, 1, and 2. 

The length of the interpolated equalizer is 7 with an interpolation factor of 15. The 

implementation requires 4 multipliers, 16 adders and 218 delay elements. Table 5.3 

summarizes the design results of different design methods. If a larger interpolation factor 

is adopted for the equalizer, more savings in terms of multipliers can be achieved at the 

price of increasing the number of delay elements as shown in Table 5.3.  Compared with 

other computationally efficient FIR design methods, the proposed approach can greatly 

decrease the required number of multipliers and adders in implementation, as shown in 

Table 5.3. The magnitude responses for this example for 15M =  are plotted in Figs. 

5.20 and 5.21. Coefficients for ( )
M

H z  in example 2 and 3 are shown in Appendix B. 
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Figure 5.20 Magnitude responses of ( )
B

P z  (solid line) and ( )M

M
H z  (dashed line) in 

example 3 (bandpass filter ). 
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Figure 5.21 Magnitude response of ( )H z  in example 3 (bandpass filter ). 
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Table 5.3 Results of designing narrowband bandpass filters using different 

methods. 

 Design method Multipliers Adders Delays 

Conventional  925 1849 1849 

One stage IFIR filter 91 178 2040 

Filter 1 

Proposed: M = 9 41 89 2018 

Conventional  48 94 94 

Design of [13] 18 27 111 

Design of [15] 5 12 120 

Filter 2 

Proposed: M = 12 3 9 121 

Conventional  61 120 120 

Prefilter-equalizer [4] 43 163 162 

Design of [15] 7 48 217 

Proposed: M = 15 4 16 218 

Filter 3 

Proposed: M = 30 3 14 238 

 
 

5.6 Summary 

In this chapter, a new class of multiplication-free masking filters is proposed for the 

design of narrowband lowpass, highpass and bandpass IFIR filters. Wideband filters can 

be easily obtained from the corresponding narrowband IFIR filters. Using the proposed 

method significant savings in arithmetic operations can be achieved compared with 

other efficient design methods. The advantage of the new approach is that the required 

number of multipliers and adders is reduced greatly while keeping the number of the 

delay elements in check. Moreover, the proposed filter structures are simple and can be 

easily realized with VLSI technology.  
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Chapter 6 

Novel Digital Filter Banks for Digital Audio 

Applications 

6.1 Introduction 

Digital audio systems have many advantages in the quality of sound reproduction, such 

as reduced distortions. The rapid development in CMOS technology has made it 

possible to implement sophisticated digital algorithms on-chip. This helps to push the 

audio signal processing which is currently done in the analog domain into the digital 

domain. Digital filter banks are desirable in high-fidelity audio applications, where an 

audio signal is split into n adjacent frequency bands for processing, as shown in Fig. 

6.1.  

 

Various ways [82–87] have been proposed to design digital filter banks for audio 

applications. However, there exist some disadvantages among those methods such as 

phase distortion [82], limited frequency bands (normally less than 4) and dynamic 



Chapter 6. Novel Digital Filter Banks for Audio Applications 144 

range [83–85], uniform subbands [86], and relatively high computationally cost [87]. 

In this chapter, the FRM technique is extended for the design of non-uniform linear-

phase filter banks. The proposed filter banks are not multi-rate systems. Therefore, 

equalization for each subband can be easily performed. Moreover, the multi-

complementary concept is employed in the new filter banks, leading to perfect 

reconstruction of signals.  

 

1G)(1 ωH

)(2 ωH

)(ωnH

...

2G

nG

..

.

Input

Filter bank
 

Figure 6.1 An n-way digital audio system. 

 

This chapter is organized as follows. A new structure for a 3-way non-uniform filter 

bank is presented in Section 6.2. Design equations are given in Section 6.3. A 

generalized structure for the digital filter banks is presented in Section 6.4, and the 

design examples are provided in Section 6.5. A summary is given in Section 6.6. 

6.2 A New Non-uniform 3-way Filter Bank 

In the FRM approach, a bandedge shaping filter ( )L

a
H z  has periodic frequency 

response. The multiple passbands of ( )L

a
H z  can be used to form a non-uniform filter 
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bank if the delayed-complementary concept in the FRM technique is applied. Fig. 6.2 

shows one of such non-uniform filter bank structures, where 
a

N  is filter length of 

( )
a

H z  and 
m

N  is the length of the longer filter among two masking filters 1( )F z  and 

2 ( )F z . 3N  is the filter length of 3( )F z . The frequency responses of the various 

subfilters in the 3-way filter bank are shown in Figs. 6.3(a)–6.3(i).  
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Figure 6.2 A realization structure for the 3-way filter bank. 
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Figure 6.3 Frequency responses of the subfilters of the 3-way filter bank. 
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In Fig. 6.3(a), ( )aH z  is a prototype lowpass filter with passband and stopband edges at 

aθ  and aφ , respectively. Replacing each delay element of ( )aH z  with L delay elements, 

the frequency response of ( )aH z  is compressed by a factor of L, as shown in Fig. 

6.3(b). ( )L

cH z  is the complement of ( )L

aH z . Two masking filters 1( )F z  and 2 ( )F z , 

as shown in Figs. 6.3(c) and 6.3(d), are cascaded to ( )L

aH z  and ( )L

cH z , respectively, 

to form the middle frequency band ( )HM z  as shown in Figs. 6.2 and 6.3(e). Cascading 

the complement of ( )HM z  with another lowpass masking filter 3( )F z  and 3 ( )cF z , 

respectively, where 3 ( )cF z  refers to the complement of 3( )F z  as shown in Fig. 6.3(f), 

we get  the lower frequency band ( )HL z  and the upper frequency band ( )HH z  with 

their frequency responses shown in Figs. 6.3(g) and 6.3(h), respectively. The case 

where the bandedges of ( )HM z  are determined by ( )L

aH z  is denoted as Case AA as 

shown in Fig. 6.3(e), and the case where the bandedges of ( )HM z  are determined by 

( )L

cH z  is denoted as Case BB as shown in Fig. 6.3(i). If the transition-bands of 

( )HM z  are determined by ( )L

cH z  and ( )L

aH z , respectively, it refers to Case BA. 

Similarly, Case AB refers to the case where the transition-bands of ( )HM z  are 

determined by ( )L

aH z  and ( )L

cH z , respectively. 

6.3 Design Equations   

To synthesize the 3-way non-uniform filter bank introduced in Section 6.2, four 

subfilters need to be designed, namely, ( )aH z , 1( )F z , 2 ( )F z , and 3( )F z . In this section, 

the design equations are derived using a lowpass prototype filter. The main issue here 

is how to select a proper prototype filter ( )aH z  and the interpolation factor L such that 
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the middle frequency bandpass filter ( )HM z  meets the given specifications. Let us 

denote 1ω , 2ω , 3ω  and 4ω  as the bandedge specifications of the overall filter as shown 

in Figs. 6.3(f) and 6.3(i).  

 

In case AA and BA the right-side transition-band of ( )HM z  is determined by ( )L

aH z , 

as shown in Figs. 6.3(b) and 6.3(e), we have 

1
3

1
4

2

2

a

a

m

L

m

L

π θ
ω

π φ
ω

+
=


+ =



                                                  (6.1) 

where 1m  is an integer. To ensure that (6.1) yields a solution with 0 a aθ φ π< < < ,   we 

have 

3
1

2

L
m

ω

π

 
=  
 

                                                           (6.2) 

3 12
a

L mθ ω π= −                                                        (6.3) 

4 12
a

L mφ ω π= −                                                        (6.4) 

where x    denotes the largest integer less than or equal to x.  

 

 Similarly, in Case AB and Case BB the right-side transition-band of ( )HM z  is 

determined by ( )L

cH z , and the following design equations are obtained: 

1
3

1
4

2

2

a

a

m

L

m

L

π φ
ω

π θ
ω

−
=


− =



                                                       (6.5) 

4
1

2

L
m

ω

π

 
=   

                                                             (6.6) 
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            1 42
a

m Lθ π ω= −                                                         (6.7) 

1 32
a

m Lφ π ω= −                                                         (6.8) 

where x    denotes the least integer larger than or equal to x.  

 

To meet the requirement of the left-side transition-band of ( )HM z , L must satisfy the 

following conditions: 

2
1

2
2

2

, for Case A
2

a

a

m

L

m

L

π φ
ω

π θ
ω

−
=

•
− =



                                            (6.9) 

and 

 

2
1

2
2

2

, for Case B
2

a

a

m

L

m

L

π θ
ω

π φ
ω

+
=

•
+ =



                                          (6.10) 

where 2m  is an integer less than m1, and “ • ” denotes “A” or “B”. (6.1)–(6.10) are used 

to determine the bandedges of the prototype filter ( )
a

H z  and the interpolation factor L. 

The value of L minimizing the overall filter complexity can be found using an 

exhaustive search program. 

 

When the bandedges of ( )
a

H z  are determined, it is easy to derive the bandedges of the 

other subfilters. Let 11ω , 12ω , 13ω  and 14ω  be the bandedges of 1( )F z , as shown in Fig. 

6.3(c). Similar notations are applied to 2 ( )F z , as shown in Fig. 6.3(d). For case AA, 

we have 

2
11

2( 1)
a

m

L

π φ
ω

− +
=                                                  (6.11) 
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 12 2ω ω=                                                              (6.12) 

13 3ω ω=                                                              (6.13) 

1
14

2( 1)
a

m

L

π φ
ω

+ −
=                                                  (6.14) 

21 1ω ω=                                                              (6.15) 

2
22

2
a

m

L

π θ
ω

+
=                                                      (6.16) 

1
23

2
a

m

L

π θ
ω

−
=                                                      (6.17) 

24 4ω ω=                                                             (6.18) 

For case BB, the bandedges of 1( )F z  and 2 ( )F z  are given by 

11 1ω ω=                                                                   (6.19) 

2
12

2( 1)
a

m

L

π φ
ω

+ −
=                                                     (6.20) 

1
13

2( 1)
a

m

L

π φ
ω

− +
=                                                     (6.21) 

14 4ω ω=                                                                  (6.22) 

2
21

2
a

m

L

π θ
ω

−
=                                                          (6.23) 

22 2ω ω=                                                                 (6.24) 

23 3ω ω=                                                                 (6.25) 

1
24

2
a

m

L

π θ
ω

+
=                                                         (6.26) 

3( )F z  is a lowpass filter with the passband and stopband edges located at 2ω  and 3ω , 

respectively, as shown in Fig. 6.3(f). 
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The same procedures can be employed to calculate the bandedges of each subfilter for 

Case AB and Case BA.  For convenience, Table 6.1 lists the design equations of 1( )F z  

and 2 ( )F z  for Case AB and Case BA, respectively.  

 

Table 6.1 Design equations of 1( )F z  and 2 ( )F z  for Case AB and Case BA. 

 
1( )F z  2 ( )F z  

Case AB Lm a /])1(2[ 211 φπω +−=  

212 ωω =  

Lm a /])1(2[ 113 φπω +−=  

414 ωω =  

121 ωω =  

Lm a /)2( 222 θπω +=  

323 ωω =  

Lm a /)2( 124 θπω +=  

Case BA 
111 ωω =  

Lm a /])1(2[ 212 φπω −+=  

313 ωω =  

Lm a /)])1(2[ 114 φπω −+=                                                                                     

Lm a /)2( 221 θπω −=  

222 ωω =  

Lm a /)2( 123 θπω −=  

424 ωω =  

 

 

 

6.4 A Generalized Structure 

The structure in Fig. 6.2 is able to synthesize most of non-uniform filter banks.  In 

some cases, it is difficult to find a suitable L and a prototype filter that produce an 

overall filter satisfying the given bandedge specifications. A generalized structure of 

the filter bank, as shown in Fig. 6.4, can be employed. The frequency responses of the 

various subfilters in Fig. 6.4 are sketched in Fig. 6.5. 1( )H z  is a lowpass filter used to 

produce the lower-band output. Its complement is cascaded with another lowpass filter 

2 ( )H z  to form the middle-band output. The higher-band output can be derived from 
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1 ( )
c

H z  and 2 ( )
c

H z , which are the complements of 1( )H z  and 2 ( )H z , respectively. 1G  

and 2G  are the group delays of 1( )H z  and 2 ( )H z , respectively.  

 

)(1 zH

1G
z

− )(2 zH
)(1 zH c

2G
z

−

2G
z

−

 

Figure 6.4 A generalized structure for the 3-way filter bank. 

 

 

The structure of Fig. 6.4 is able to synthesize any non-uniform filter bank with given 

specifications. However, the computational complexity is normally higher than the one 

in Fig. 6.2. In practical implementation, 1( )H z  is a narrowband filter which can be 

realized by interpolated finite impulse response (IFIR) filters or filter structures 

introduced in Chapter 5 in order to minimize the computational complexity. Whereas, 

2 ( )H z  can be designed using the FRM technique to reduce the hardware cost.  
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Figure 6.5 Frequency responses of the subfilters in Fig. 6.4. 

6.5 Examples 

Example 1 

To illustrate the new method, a 3-way digital filter bank is designed with the same 

specifications as in the example of [87], namely, ,12.01 πω = ,2.02 πω = ,4.03 πω =  

and .48.04 πω =  The maximum passband ripple and the minimum stopband 

attenuation for each subband are 0.0001 and 80 dB, respectively. The generalized 

structure in Fig. 6.4 is used to synthesize this filter bank. The lengths for 1( )H z  and  

2 ( )H z  are 45 and 107, respectively. In [87], three subfilters were used with a total 

length of 195. The proposed approach requires a total length of 152 which corresponds 
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to more than 20% savings in the number of arithmetic operations compared with the 

method in [87]. The magnitude responses of the three subfilters are shown in Fig. 6.6 

(a).  The peak-to-peak deviation for the magnitude-summed frequency responses of all 

subband filters is less than 15105 −×  dB as shown in Figs. 6.6 and 6.7. 
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Figure 6.6 Magnitude responses of three subbands in example 1. 
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Figure 6.7 The summered magnitude response in example 1. 

 

 

Example 2 

In this example, another 3-way crossover system is designed with the following 

specifications: ,08.01 πω = ,16.02 πω = ,34.03 πω =  and .42.04 πω =  The filter has 

the same transition-width and ripple requirements as in example 1. For this filter bank, 

the structure in Fig. 6.2 is used. The interpolation factor for ( )
a

H z  is 4, for this reason, 

( )HM z  can be obtained from the complement of 4( )
a

H z . As a result, 1( )F z  is omitted. 

The lengths of ( )
a

H z , 2 ( )F z , and 3( )F z  are 29, 35, and 53, respectively. The total 

length is 117. The magnitude responses of subfilters are shown in Fig. 6.8. Clearly, this 

design is more computationally efficient than example 1 and the one in [87]. 
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Figure 6.8 Magnitude responses of subbands in example 2. 

 

6.6 Summary 

Two structures have been presented for the design of the FRM based non-uniform 

linear-phase digital filter banks. The proposed filter banks yield considerable savings in 

terms of arithmetic operations. The design procedure is simple and standard filter 

design algorithms can be used to design the proposed filter banks.  

 

 



 

 

 

Chapter 7 

Conclusions  

There are three main techniques to design computationally efficient FIR filters: the 

“prefilter plus equalizer” approach, the IFIR approach and the FRM technique. A 

common feature among these techniques is to design a filter using several subfilters 

with low complexities. The IFIR and FRM techniques are closely related. The IFIR 

filters can be treated as a special case of the FRM filters. Both methods share a 

common concept in which a low order FIR filter is interpolated to yield the narrow 

transition-width. The resulting interpolated filter has very sparse coefficients which 

lowers the complexity of the overall filter significantly. In the thesis, significant 

improvements and developments have been made to the FRM and IFIR techniques as 

well as the prefilter-equalizer method.   

 

In the FRM technique, there is a correlation between the transition-widths of the two 

masking filters and the bandedge shaping filter. A new structure was proposed in 

Chapter 2 to decouple the masking filters from the bandedge shaping filter. The 

proposed structure generalizes the IFIR-FRM approach. As a result, more flexibility is 

157 
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obtained in selection of the interpolation factors for the bandedge shaping filter and the 

masking filters. A decoupling stage is inserted between the bandedge shaping filter and 

the masking filters which lowers the complexity of the long masking filter in the IFIR-

FRM approach. The two masking filters in the new structure have much wider 

transition-widths than those of the masking filters in the FRM technique and 

consequently have little correlation with the bandedge shaping filter. Examples 

showed that the proposed structure achieves up to 40% computational savings 

compared with the FRM technique.  

 

In Chapter 3, a new method to design sharp FIR filters was presented. Two modified 

FRM structures were developed in which a prefilter-equalizer is combined with a 

bandedge shaping filter to perform the tasks of the bandedge shaping filter and one 

masking filter in the original FRM approach. The other masking filter can be designed 

using the FRM approach if required. New multiplication-free prefilters were developed 

for the design of the prefilter-equalizer. Results indicated that the proposed method 

reduces the number of multipliers and adders in implementation of sharp FIR filters 

considerably. Moreover, the group delay of the overall filter is relatively short 

compared to other computationally efficient FRM filters.  

 

To further reduce the arithmetic operations of sharp FIR filters, a new structure 

combining the single filter frequency masking filter and the FRM technique was 

proposed in Chapter 4. This approach utilizes one model filter and a masking filter to 

design arbitrary bandwidth FIR filters. By the cascade of several identical model filters 

with different periods, new bandedge shaping filter is formed. With the help of the 

masking filter, the specification of the overall filter can be satisfied. The example 
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showed that more than 42% savings in the number of multipliers can be achieved 

compared with the FRM technique. Simple modifications to the proposed structure 

allow it to design FIR filters with different specifications, which is desirable in many 

practical applications. 

 

Besides the developments to the FRM filters, new masking filters for the design of 

narrowband and wideband lowpass/highpass IFIR filters as well as narrowband 

bandpass IFIR filters were proposed in Chapter 5. The masking filters are 

multiplication free and provide good stopband attenuation. The proposed filter 

structures can also serve as prefilters if they are used in the prefilter-equalizer method. 

It was illustrated by examples that the proposed method can reduce the number of 

multipliers and adders of IFIR filters significantly. Meanwhile, the required delay 

elements are decreased compared with other computationally efficient narrowband FIR 

filters. 

 

Using the FRM technique, new linear-phase digital filter banks for audio applications 

were proposed in Chapter 6. The filter banks have non-uniform subbands with narrow 

transition-band. Equalization for each band can be easily realized. Perfect 

reconstruction of signals can be achieved using the proposed filter banks. Furthermore, 

the implementation of the digital filter banks requires low hardware cost.  

 

Among the proposed computationally efficient methods for the design of sharp FIR 

filters in the thesis, linear programming was the main optimization algorithm adopted 

in designing the examples which is a sub-optimized method. It is interesting to note 

that the algorithms introduced in [33-36] can be utilized to optimize subfilters in the 
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proposed structures to achieve more computational savings. Therefore, future research 

works may investigate some other non-linear optimization algorithms to design the 

proposed filters to achieve better results. Besides the optimization algorithm, the real 

VLSI implementation for the proposed filters is an interesting field to explore which 

may include finite wordlength effect, maximizing speed and low power consumption. 

Another interesting work is to realize the proposed digital filter banks in real high 

fidelity audio playback system to achieve high quality sound effects. 

 

 



 

 

 

 

Appendix A 

Coefficient values for  in example 1 (Narrowband lowpass filter)  ( )MH z

( )MH z  

H( 0) = -0.1674314239 = H( 8) 

H( 1) = 0.6086136831 = H( 7) 

H( 2) = -0.7901437373 = H( 6) 

H( 3) = -0.3676139013 = H( 5)  

H( 4) = 2.4239401918 

 

Coefficient values for  in example 2 (Narrowband lowpass filter)  ( )MH z

( )MH z  

H(0) = -0.0464258108 = H(14) 

H(1) = 0.0685611252 = H(13) 

H(2) = 0.0446615854 = H(12) 

H(3) = 0.0085200157 = H(11) 

H(4) = -0.2530002261 = H(10) 

H(5) = -0.0237502730 = H(9) 

H(6) = 0.3498438613 = H(8) 

H(7) = 0.7123327259 
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Appendix B 

Coefficient values for  in example 2 (Narrowband bandpass filter)  ( )MH z

( )MH z  

H(0) = -0.4416197687 = H(4) 

H(1) = -1.0000000000 = H(3) 

H(2) = -0.1028481760 

 

Coefficient values for  in example 3 (Narrowband bandpass filter)  ( )MH z

( )MH z  

H(0) = 0.3448723992 = H(4) 

H(1) = -1.4212786873 = H(3) 

H(2) = 5.0592890742 
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